Non-Interactive Secure Computation (NISC)

Goal: receiver gets $f(x, y)$ for a public function f.

Non-Interactive Secure Computation (NISC)

Goal: receiver gets $f(x, y)$ for a public function f.
Non-Interactive Secure Computation (NISC)

E.g. FHE => Semi-honest NISC

Goal: receiver gets $f(x, y)$ for a public function f.
Non-Interactive Secure Computation (NISC)

\[f(x, y) \]

Goal: receiver gets \(f(x, y) \) for a public function \(f \).
Non-Interactive Secure Computation (NISC)

E.g. FHE \iff Semi-honest NISC

Goal: receiver gets $f(x, y)$ for a public function f.

S \hspace{1cm} R

y \hspace{2cm} x

$f(x, y)$
Non-Interactive Secure Computation (NISC)

E.g. FHE \implies Semi-honest NISC

Goal: receiver gets $f(x, y)$ for a public function f.
Non-Interactive Secure Computation (NISC)

E.g. FHE \rightarrow Semi-honest NISC

Goal: receiver gets $f(x, y)$ for a public function f.

\[\text{Enc}(x), \text{Enc}(f(x, y)) \]

\[
\begin{array}{c}
S \\
y
\end{array} \quad \leftrightarrow \quad \begin{array}{c}
\text{Enc}(x) \\
\text{Enc}(f(x, y))
\end{array} \quad \begin{array}{c}
R \\
x
\end{array}
\]

f(x, y)
Garbled Circuit + OT \implies Semi-honest NISC [Kilian’88]
Garbled Circuit + OT \Rightarrow Semi-honest NISC [Kilian’88]

\tilde{C} and tags

<table>
<thead>
<tr>
<th>$w_{1,0}$</th>
<th>$w_{1,1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_{2,0}$</td>
<td>$w_{2,1}$</td>
</tr>
<tr>
<td>$w_{3,0}$</td>
<td>$w_{3,1}$</td>
</tr>
<tr>
<td>$w_{4,0}$</td>
<td>$w_{4,1}$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>$w_{n,0}$</td>
<td>$w_{n,1}$</td>
</tr>
</tbody>
</table>
Garbled Circuit + OT \Rightarrow Semi-honest NISC [Kilian’88]

S and R

\tilde{C} and tags

$$
\begin{array}{cc}
 w_{1,0} & w_{1,1} \\
 w_{2,0} & w_{2,1} \\
 w_{3,0} & w_{3,1} \\
 w_{4,0} & w_{4,1} \\
 \vdots \\
 w_{n,0} & w_{n,1}
\end{array}
$$

$x = \begin{bmatrix}
 1 \\
 0 \\
 0 \\
 1 \\
 \vdots \\
 1
\end{bmatrix}$
Garbled Circuit + OT \implies Semi-honest NISC [Kilian’88]

$$S \quad \begin{array}{c} y \\ \end{array} \quad R \quad \begin{array}{c} x \\ \end{array}$$

\[x = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \]

\[\tilde{C} \text{ and tags} \]

<table>
<thead>
<tr>
<th></th>
<th>(w_{1,0})</th>
<th>(w_{1,1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(w_{2,0})</td>
<td>(w_{2,1})</td>
</tr>
<tr>
<td></td>
<td>(w_{3,0})</td>
<td>(w_{3,1})</td>
</tr>
<tr>
<td></td>
<td>(w_{4,0})</td>
<td>(w_{4,1})</td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(w_{n,0})</td>
<td>(w_{n,1})</td>
</tr>
</tbody>
</table>
Garbled Circuit $+$ OT \implies Semi-honest NISC [Kilian’88]

\tilde{C} and tags

\tilde{C} and $(w_i,x_i)_{i=1}^n$ reveals $f(x,y)$ and nothing else computationally.

$x = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$
Garbled Circuit + OT \implies Semi-honest NISC [Kilian'88]

$S \xrightarrow{y} \tilde{C} \xrightarrow{x} R$

\tilde{C} and tags $w_i, 0, w_i, 1$

\tilde{C} and $(w_i, x_i)_{i=1}^n$ reveals $f(x, y)$ and nothing else computationally.
Garbled Circuit + OT ⇒ Semi-honest NISC [Kilian’88]

\[\tilde{C} \quad \text{AND tags} \]

\[w_{i,0}, w_{i,1} \quad \text{OT} \quad x_i \quad w_{i,x_i} \quad x \]

\[\tilde{C} \text{ and } (w_{i,x_i})_{i=1}^n \text{ reveals } f(x, y) \text{ and nothing else computationally.} \]
NISC in OT-hybrid model

Advantages
- OT realization from various models/assumptions
- Efficiency
 - Malicious Security [Ishai-Kushilevitz-Ostrovsky-Prabhakaran-Sahai’88]
 - Information-theoretical NISC for NC0 in OT-hybrid.
 - NISC in OT-hybrid using black-box PRG.

Disadvantages
- NOT reusable secure.
NISC in OT-hybrid model

Advantages

▶ OT realization from various models/assumptions
▶ Efficiency
▶ Malicious Security [Ishai-Kushilevitz-Ostrovsky-Prabhakaran-Sahai’88]
 ▶ Information-theoretical NISC for \textbf{NC}^0 in OT-hybrid.
 ▶ NISC in OT-hybrid using black-box PRG.

Disadvantages

▶ NOT reusable secure.
NISC in OT-hybrid model

Advantages
- OT realization from various models/assumptions
- Efficiency
- Malicious Security [Ishai-Kushilevitz-Ostrovsky-Prabhakaran-Sahai’88]
 - Information-theoretical NISC for NC^0 in OT-hybrid.
 - NISC in OT-hybrid using black-box PRG.

Disadvantages
- NOT reusable secure.
Reusable NISC

$S \ y$

$R \ x$
Reusable NISC

“encryption” of my data C_x
Reusable NISC

“encryption” of my data C_x
Reusable NISC

“encryption” of my data C_x

$S \xrightarrow{y} \text{msg} \xrightarrow{x} R$

$f(x, y)$
Reusable NISC

“encryption” of my data C_x

S $\xrightarrow{\text{msg}}$ R

S \xrightarrow{msg} R

$f(x, y)$

Reusability: Safe for receiver to reuse first msg and randomness
Reusable NISC

S

y

S'

y', y''

msg

R

x

"encryption" of my data C_x

Reusability: Safe for receiver to reuse first msg and randomness

$f(x, y)$
Reusable NISC

“encryption” of my data C_x

Reusability: Safe for receiver to reuse first msg and randomness
Reusable NISC

"encryption" of my data C_x

Reusability: Safe for receiver to reuse first msg and randomness
Reusable NISC

“encryption” of my data C_x

Reusability: Safe for receiver to reuse first msg and randomness
NISC in OT-hybrid model

\[S \xrightarrow{y} \tilde{C} \xrightarrow{\text{reusable OT}} R \]

\[w_{i,0}, w_{i,1} \]

\[\tilde{C} \text{ and tags} \]

\[
\begin{array}{cc}
 w_{1,0} & w_{1,1} \\
 w_{2,0} & w_{2,1} \\
 w_{3,0} & w_{3,1} \\
 w_{4,0} & w_{4,1} \\
 \vdots \\
 w_{n,0} & w_{n,1} \\
\end{array}
\]

\[x = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \]
NISC in OT-hybrid model

\[S \xrightarrow{y} \tilde{C} \xrightarrow{w_i,0, w_i,1} \text{reusable OT} \xrightarrow{x_i} \tilde{C} \xrightarrow{w_i, x_i} R \]

\[\begin{array}{c|c}
 w_{1,0} & \text{mess} \\
 w_{2,0} & w_{2,1} \\
 w_{3,0} & w_{3,1} \\
 w_{4,0} & w_{4,1} \\
 \vdots & \vdots \\
 w_{n,0} & w_{n,1} \\
\end{array} \]

\[x = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} \]
NISC in OT-hybrid model

\[w_{i,0}, w_{i,1} \]

\[\tilde{\mathcal{C}} \]

\[x_i \]

\[w_{i,x_i} \]

\[x \]

\[x = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \]

\[w_{1,0} \text{ mess} \]

\[w_{2,0} \quad w_{2,1} \]

\[w_{3,0} \quad w_{3,1} \]

\[w_{4,0} \quad w_{4,1} \]

\[\vdots \]

\[w_{n,0} \quad w_{n,1} \]

Replacing \(w_{1,1} \) changes \(\tilde{\mathcal{C}} \)'s behaviour \[\implies \]

\(x[1] = 1 \)

thus **NO security** against malicious sender.
NISC in OT-hybrid model

\[y \xrightarrow{w_{i,0}, w_{i,1}} \tilde{C} \xrightarrow{x_i} x \]

\[\tilde{C} \text{ and tags} \]

<table>
<thead>
<tr>
<th>(w_{i,0})</th>
<th>(w_{i,1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>mess</td>
<td></td>
</tr>
<tr>
<td>(w_{2,0})</td>
<td>(w_{2,1})</td>
</tr>
<tr>
<td>(w_{3,0})</td>
<td>(w_{3,1})</td>
</tr>
<tr>
<td>(w_{4,0})</td>
<td>(w_{4,1})</td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
</tr>
<tr>
<td>(w_{n,0})</td>
<td>(w_{n,1})</td>
</tr>
</tbody>
</table>

\[x = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \]
NISC in OT-hybrid model + one-shot UC-security [IKOPS’11]

\[\tilde{C} \xleftarrow{\text{encoding } \tilde{x}} \tilde{C} \xrightarrow{\text{OT input be encoding } \tilde{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix}} \]
NISC in OT-hybrid model + one-shot UC-security [IKOPS’11]

\[y \xrightarrow{w_{i,0}, w_{i,1}} \tilde{C} \xrightarrow{\tilde{x}_i, w_{i,0}} x \]

\[\tilde{C} \text{ and tags} \]

\(w_{1,0} \)	\text{mess}
\(w_{2,0} \)	\(w_{2,1} \)
\(w_{3,0} \)	\(w_{3,1} \)
\(w_{4,0} \)	\(w_{4,1} \)
\vdots	
\(w_{n,0} \)	\(w_{n,1} \)

let OT input be encoding \(\tilde{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \)

A few bits of \(\tilde{x} \) leaks no information about \(x \).
NISC in OT-hybrid model + one-shot UC-security [IKOPS’11]

\[\tilde{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \]

Repeat the attack to learn the whole encoding \tilde{x} thus NO reusable security against malicious sender.
Our Results

Impossible to patch the protocol against malicious adversaries in reusable settings, as we show...

Theorem 1

There is no information-theoretic reusable NISC in rOT-hybrid model.
Our Results

Impossible to patch the protocol against malicious adversaries in reusable settings, as we show...

Theorem 1

There is no information-theoretic reusable NISC in rOT-hybrid model.

There is no reusable NISC for certain functionalities in rOT-hybrid model with black-box simulation, assuming OWF.
Our Results

Impossible to patch the protocol against malicious adversaries in reusable settings, as we show...

Theorem 1

There is no information-theoretic reusable NISC in rOT-hybrid model.

There is no reusable NISC for certain functionalities in rOT-hybrid model with black-box simulation, assuming OWF.

Expansive alternative:
Semi-honest NISC + reusable NIZK \implies reusable NISC.
Our Results (continue)

NEW primitive: Oblivious linear function evaluation (OLE)

\[S \xrightarrow{\text{OLE}} R \]

\[a, b \in \mathbb{F} \quad x \in \mathbb{F} \]

Theorem 2
An information-theoretical UC-secure reusable NISC protocol in \textit{rOLE}-hybrid model.

Theorem 3
An UC-secure 2-msg reusable OLE protocol in the CRS setting, under Paillier assumption.

Security loss \(\approx \frac{1}{|\mathbb{F}|} \)
NEW primitive: Oblivious linear function evaluation (OLE)

\[S, \quad a, b \in \mathbb{F} \quad \text{get} \quad ax + b \in \mathbb{F} \]

Degenerate into OT if \(|\mathbb{F}| = 2\).

Theorem 2
An information-theoretical UC-secure reusable NISC protocol in rOLE-hybrid model.

Theorem 3
An UC-secure 2-msg reusable OLE protocol in the CRS setting, under Paillier assumption.
Our Results (continue)

NEW primitive: Oblivious linear function evaluation (OLE)

Theorem 2
An information-theoretical UC-secure reusable NISC protocol in rOLE-hybrid model.
Our Results (continue)

NEW primitive: Oblivious linear function evaluation (OLE)

\[S \xrightarrow{a, b \in \mathbb{F}} R \xleftarrow{x \in \mathbb{F}} ax + b \in \mathbb{F} \]

Degenerate into OT if \(|\mathbb{F}| = 2\).

Theorem 2
An information-theoretical UC-secure reusable NISC protocol in rOLE-hybrid model.

Theorem 3
An UC-secure 2-msg reusable OLE protocol in the CRS setting, under Paillier assumption.
NEW primitive: Oblivious linear function evaluation (OLE)

An information-theoretical UC-secure reusable NISC protocol in rOLE-hybrid model.

Theorem 2

Theorem 3

An UC-secure 2-msg reusable OLE protocol in the CRS setting, under Paillier assumption.
NEW primitive: Oblivious linear function evaluation (OLE)

\[S \xrightarrow{a, b \in \mathbb{F}} R \xrightarrow{x \in \mathbb{F}} \text{get } ax + b \in \mathbb{F} \]

Degenerate into OT if \(|\mathbb{F}| = 2\).

Theorem 2
An information-theoretical UC-secure reusable NISC protocol in rOLE-hybrid model.

Security loss \(\approx \frac{1}{|\mathbb{F}|} \)

Theorem 3
An UC-secure 2-msg reusable OLE protocol in the CRS setting, under Paillier assumption.
How to Lift One-shot Security to Reusability

\[
S \xrightarrow{a_i, b_i} \text{rOLE} \xrightarrow{\tilde{x}_i} R \quad a_i\tilde{x}_i + b_i \\
\]

UC-security: \(\exists\) an efficient simulator \(S(a_1, b_1, a_2, b_2, \ldots) \rightarrow y^* \)

No Abort (optional): When abnormal behavior was detected, output \(f(x, 0)\)

Difficulty: distribution \(y^* = \Rightarrow f(x, y^*)\) has entropy in ideal world \(\Rightarrow\) leak information of receiver's randomness in real world

"Strong" UC-security = \(\Rightarrow\) Reusability

The simulator is deterministic
How to Lift One-shot Security to Reusability

UC-security: \(\exists \) an efficient simulator \(S(a_1, b_1, a_2, b_2, \ldots) \rightarrow y^* \)

- No Abort (optional): When abnormal behavior was detected, output \(f(x, 0) \)
- Difficulty: distribution \(y^* = f(x, y^*) \) has entropy in ideal world \(\Rightarrow \) leak information of receiver's randomness in real world

"Strong" UC-security \(\Rightarrow \) Reusability

The simulator is deterministic
How to Lift One-shot Security to Reusability

UC-security: \exists an efficient simulator $S(a_1, b_1, a_2, b_2, \ldots) \rightarrow y^*$

No Abort (optional): When abnormal behavior was detected, output $f(x, 0)$

Difficulty: distribution $y^* = f(x, y^*)$ has entropy in ideal world \Rightarrow leak information of receiver's randomness in real world

"Strong" UC-security \Rightarrow Reusability

The simulator is deterministic
How to Lift One-shot Security to Reusability

UC-security: \(\exists \) an efficient simulator \(\mathcal{S} \)
\(\mathcal{S}(a_1, b_1, a_2, b_2, \ldots) \rightarrow y^* \)
How to Lift One-shot Security to Reusability

- **UC-security**: ∃ an efficient simulator S
 $S(a_1, b_1, a_2, b_2, \ldots) \rightarrow y^*$

- **No Abort** (optional): When abnormal behavior was detected, output $f(x, 0)$
How to Lift One-shot Security to Reusability

- **UC-security**: \(\exists \) an efficient simulator \(\mathcal{S} \)

 \[\mathcal{S}(a_1, b_1, a_2, b_2, \ldots) \rightarrow y^* \]

- **No Abort** (optional): When abnormal behavior was detected, output \(f(x, 0) \)

- **Difficulty**: distribution \(y^* \) \(\Rightarrow \) \(f(x, y^*) \) has entropy in ideal world

 \(\Rightarrow \) leak information of receiver’s randomness in real world

\[f(x, y^*) \]
How to Lift One-shot Security to Reusability

UC-security: \(\exists \) an efficient simulator \(\mathcal{I} \)
\(\mathcal{I}(a_1, b_1, a_2, b_2, \ldots) \rightarrow y^* \)

No Abort (optional): When abnormal behavior was detected, output \(f(x, 0) \)

Difficulty: distribution \(y^* \) \(\Rightarrow \) \(f(x, y^*) \) has entropy in ideal world
\(\Rightarrow \) leak information of receiver’s randomness in real world
How to Lift One-shot Security to Reusability

UC-security: \(\exists \) an efficient simulator \(\mathcal{S} \)
\(\mathcal{S}(a_1, b_1, a_2, b_2, \ldots) \rightarrow y^* \)

No Abort (optional): When abnormal behavior was detected, output \(f(x, 0) \)

Difficulty: distribution \(y^* \) \(\rightarrow \) \(f(x, y^*) \) has entropy in ideal world
\(\rightarrow \) leak information of receiver’s randomness in real world

The simulator is deterministic
How to Lift One-shot Security to Reusability

\[S \xrightarrow{a_i, b_i} \text{rOLE} \xleftarrow{\tilde{x}_i} a_i \tilde{x}_i + b_i \rightarrow R \]

- **UC-security**: \(\exists \) an efficient simulator \(\mathcal{I} \)
 \(\mathcal{I}(a_1, b_1, a_2, b_2, \ldots) \rightarrow y^* \)

- **No Abort** (optional): When abnormal behavior was detected, output \(f(x, 0) \)

- **Difficulty**: distribution \(y^* \) \(\Rightarrow \) \(f(x, y^*) \) has entropy in ideal world
 \(\Rightarrow \) leak information of receiver’s randomness in real world

- **“Strong” UC-security** \(\Rightarrow \) Reusability
 The simulator is deterministic
Overview: rNISC in rOLE-hybrid model

Assume f is an arithmetic NC^1 circuit or an arithmetic branching program over \mathbb{F}

[$\text{IK'}02, \text{AIK'}14$] encode $y \mapsto (A, b)$ s.t. $Ax + b$ reveals $f(x, y)$ and nothing else

Against malicious sender: detect if (A, b) is honestly generated, i.e. satisfies some simple arithmetic constraints

Certified rOLE $\rightarrow \begin{cases} Ax + b, & \text{if } (A, b) \text{ satisfies constraints} \\ \bot, & \text{otherwise} \end{cases}$
Overview: rNISC in rOLE-hybrid model

\[
S \quad y \in \mathbb{F}^n
\]

\[
R \quad x \in \mathbb{F}^n
\]

- Assume \(f \) is an arithmetic \(\mathbf{NC}^1 \) circuit or an arithmetic branching program over \(\mathbb{F} \)

- [IK’02,AIK’14] encode \(y \mapsto (A, b) \)
 such that \(Ax + b \) reveals \(f(x, y) \) and nothing else

- Against malicious sender: detect if \((A, b) \) is honestly generated, i.e. satisfies some simple arithmetic constraints

Certified rOLE \(\rightarrow \begin{cases} Ax + b, & \text{if } (A, b) \text{ satisfies constraints} \\ \bot, & \text{otherwise} \end{cases} \)
Overview: rNISC in rOLE-hybrid model

Assume \(f \) is an arithmetic \(\text{NC}^1 \) circuit or an arithmetic branching program over \(\mathbb{F} \)

[IK'02, AIK'14] encode \(y \mapsto (A, b) \)
s.t. \(Ax + b \) reveals \(f(x, y) \) and nothing else

Against malicious sender: detect if \((A, b)\) is honestly generated, i.e. satisfies some simple arithmetic constraints

Certified rOLE \(\rightarrow \begin{cases} Ax + b, & \text{if } (A, b) \text{ satisfies constraints} \\ \bot, & \text{otherwise} \end{cases} \)
Overview: rNISC in rOLE-hybrid model

Assume f is an arithmetic NC^1 circuit or an arithmetic branching program over \mathbb{F}

[IK’02, AIK’14] encode $y \mapsto (A, b)$ s.t. $Ax + b$ reveals $f(x, y)$ and nothing else

Against malicious sender: detect if (A, b) is honestly generated, i.e. satisfies some simple arithmetic constraints

Certified rOLE $\rightarrow \begin{cases} Ax + b, & \text{if } (A, b) \text{ satisfies constraints} \\ \bot, & \text{otherwise} \end{cases}$
Overview: rNISC in rOLE-hybrid model

- Assume f is an arithmetic \textbf{NC}^1 circuit or an arithmetic branching program over \mathbb{F}
- [IK’02, AIK’14] encode $y \mapsto (A, b)$ s.t. $Ax + b$ reveals $f(x, y)$ and nothing else
- **Against malicious sender:** detect if (A, b) is honestly generated, i.e. satisfies some simple arithmetic constraints

Certified rOLE $\rightarrow \begin{cases} Ax + b, & \text{if } (A, b) \text{ satisfies constraints} \\ \bot, & \text{otherwise} \end{cases}$
Overview: rNISC in rOLE-hybrid model

Assume f is an arithmetic \textbf{NC}^1 circuit or an arithmetic branching program over \mathbb{F}

[IK’02, AIK’14] encode $y \mapsto (A, b)$ s.t. $Ax + b$ reveals $f(x, y)$ and nothing else

Against malicious sender: detect if (A, b) is honestly generated, i.e. satisfies some simple arithmetic constraints

$\text{Certified rOLE} \rightarrow \begin{cases} Ax + b, & \text{if } (A, b) \text{ satisfies constraints} \\ \bot, & \text{otherwise} \end{cases}$
Overview: rNISC in rOLE-hybrid model

Assume f is an arithmetic \textbf{NC}^1 circuit or an arithmetic branching program over \mathbb{F}

[IK’02, AIK’14] encode $y \mapsto (A, b)$ s.t. $Ax + b$ reveals $f(x, y)$ and nothing else

Against malicious sender: detect if (A, b) is honestly generated, i.e. satisfies some simple arithmetic constraints

Certified rOLE $\rightarrow \begin{cases} Ax + b, & \text{if } (A, b) \text{ satisfies constraints} \\ \bot, & \text{otherwise} \end{cases}$
Certified rOLE

$S \quad R$

Sender can prove $(a_1, b_1, a_2, b_2, \ldots)$ satisfies arithmetic constraints

Side product: reusable DV-NIZK in rOLE-hybrid model.
Certified rOLE

Sender can prove \((a_1, b_1, a_2, b_2, \ldots)\) satisfies arithmetic constraints

Side product: reusable DV-NIZK in rOLE-hybrid model.
Certified rOLE

Sender can prove \((a_1, b_1, a_2, b_2, \ldots)\) satisfies arithmetic constraints

Side product: reusable DV-NIZK in rOLE-hybrid model.
Sender can prove \((a_1, b_1, a_2, b_2, \ldots)\) satisfies arithmetic constraints.
Certified rOLE

Sender can prove \((a_1, b_1, a_2, b_2, \ldots)\) satisfies arithmetic constraints

Side product: reusable DV-NIZK in rOLE-hybrid model.
Certified rOLE

Sender can prove \((a_1, b_1, a_2, b_2, \ldots)\) satisfies arithmetic constraints.

Side product: reusable DV-NIZK in rOLE-hybrid model.
Certified rOLE

Sender can prove \((a_1, b_1, a_2, b_2, \ldots)\) satisfies arithmetic constraints \(a_i = a_j\) for some \((i, j)\)

Side product: reusable DV-NIZK in rOLE-hybrid model.
Certified rOLE

\[S \]

\[\text{Certified rOLE} \]

\[\vdots \]

\[\text{Certified rOLE} \]

\[R \]
Certified rOLE

\[w \leftarrow F \]
Certified rOLE

\[S \xrightarrow{r \leftarrow F} a, r \xrightarrow{\text{rOLE}} w \xrightarrow{aw + r} R \xrightarrow{w \leftarrow F} \]
Certified rOLE

\[r \leftarrow F \]

\[w \leftarrow F \]

\[aw + r \]

\[\text{Commitment}(a) \]

\[a, r \rightarrow \text{rOLE} \]

\[w \rightarrow \text{Certified rOLE} \]
Certified rOLE

\[r \leftarrow \mathbb{F} \]

\[a, r \rightarrow \text{rOLE} \]

\[w \rightarrow \text{rOLE} \]

\[aw + r \rightarrow w \leftarrow \mathbb{F} \]

\[ax_i + b \]

\[\text{Target} \]

\[aw + r \]

\[\text{Commitment}(a) \]
Certified rOLE

\[r \leftarrow F \]

\[a, r \rightarrow \text{rOLE} \]

\[w \rightarrow \text{rOLE} \]

\[aw + r \rightarrow \text{rOLE} \]

\[\hat{x}_i \rightarrow \text{rOLE} \]

\[\hat{x}_i = x_i - w \hat{x}_i \]

\[ax_i + b \rightarrow \text{Target} \]

\[aw + r \rightarrow \text{Commitment}(a) \]
Certified rOLE

\[r \leftarrow F \]
\[r' \leftarrow F \]

\[r, r' \]
\[r\hat{x} + r' \]
\[a, b + r' \]

\[\hat{x}_i = x_i - w\hat{x}_i \]
\[a\hat{x}_i + b + r' \]

\[ax_i + b \]
\[aw + r \]

Target

Commitment(a)
Certified rOLE

\[r \leftarrow F \]
\[r' \leftarrow F \]

\[a, r \rightarrow w \rightarrow \text{rOLE} \rightarrow aw + r \rightarrow R \]
\[a, b + r' \rightarrow \text{rOLE} \rightarrow \hat{x}_i \rightarrow r\hat{x}_i + r' \rightarrow w \leftarrow F \]
\[\hat{x}_i \leftarrow F \]

\[\hat{x}_i = x_i - w\hat{x}_i \]
\[a\hat{x}_i + b + r' \rightarrow \vdots \]

Target
Commitment\((a)\)
rOLE outputs
Certified rOLE

\[ax_i + b = (aw + r) \cdot \hat{x}_i - (r\hat{x}_i + r') + (a\hat{x}_i + b + r') \]

Target

Commitment(a)

rOLE outputs
Certified rOLE

\[a, r \rightarrow \text{rOLE} \]
\[w \rightarrow \text{rOLE} \]
\[r, r' \rightarrow \text{rOLE} \]
\[\hat{x}_i \rightarrow w, \hat{x}_i \leftarrow \mathbb{F} \]

\[a, b + r' \rightarrow \text{rOLE} \]
\[\hat{x}_i = x_i - w\hat{x}_i \rightarrow \]

\[ax_i + b = (aw + r)\cdot\hat{x}_i - (r\hat{x}_i + r') + e(a\hat{x}_i + b + r') \]

Target
Commitment\((a)\)
rOLE outputs

Target Commitment
Correctness: Above equation.
UC-secure against Receiver:
\[x_i := w\hat{x}_i + \hat{x}_i \]
"Strong" UC-secure against Sender:
\[\text{Deviate} \Rightarrow \text{random output} \]
Certified rOLE

\[\hat{x}_i = x_i - w \hat{x}_i \]

\[ax_i + b = (aw + r) \cdot \hat{x}_i - (r \hat{x}_i + r') + e(a \hat{x}_i + b + r') \]

Certified rOLE outputs

Correctness: Above equation.
Certified rOLE

S → rOLE → R

\[r, r' \leftarrow \mathbb{F} \]

\[a, r \]

\[r, r' \]

\[a, b + r' \]

\[x_i = w\hat{x}_i + \hat{x}_i \]

\[ax_i + b = (aw + r) \cdot \hat{x}_i - (r\hat{x}_i + r') + e(a\hat{x}_i + b + r') \]

Target

Commitment(a)

rOLE outputs

- Correctness: Above equation.
- UC-secure against Receiver: \(x_i := w\hat{x}_i + \hat{x}_i \).
Certified rOLE

\[S \xrightarrow{r, r'} F \]

\[\hat{x}_i \leftarrow F \]

\[a, b + r' \rightarrow \text{rOLE} \]

\[\hat{x}_i = x_i - w\hat{x}_i \]

\[ax_i + b = (aw + r) \cdot \hat{x}_i - (r\hat{x}_i + r') + e(a\hat{x}_i + b + r') \]

Target Commitment(a) rOLE outputs

- Correctness: Above equation.
- UC-secure against Receiver: \(x_i := w\hat{x}_i + \hat{x}_i \).
- "Strong" UC-secure against Sender:
Certified rOLE

\[
\begin{align*}
r, r' &\leftarrow \mathbb{F} \\
a, b + r' &\rightarrow \text{rOLE} \\
\hat{x}_i &\leftarrow \text{rOLE} \\
\hat{x}_i = x_i - w\hat{x}_i &\rightarrow \\
a x_i + b &= (aw + r) \cdot \hat{x}_i - (r\hat{x}_i + r') + e(a\hat{x}_i + b + r') \\
\end{align*}
\]

- **Target**: \(a x_i + b\)
- **Commitment** \((a)\)**: \(\hat{x}_i = x_i - w\hat{x}_i\)
- **rOLE outputs**: \(w, \hat{x}_i \leftarrow \mathbb{F}\)

- **Correctness**: Above equation.
- **UC-secure against Receiver**: \(x_i := w\hat{x}_i + \hat{x}_i\).
- **“Strong” UC-secure against Sender**:
Certified rOLE

\[r, r' \leftarrow \mathbb{F} \]

\[a, b + r' \rightarrow \]

\[a, \hat{x}_i \rightarrow \]

\[\hat{x}_i = x_i - w\hat{x}_i \]

\[aw + r \cdot \hat{x}_i - (r\hat{x}_i + r') + e(a\hat{x}_i + b + r') \]

Target

Commitment(a)

rOLE outputs

- Correctness: Above equation.
- UC-secure against Receiver: \(x_i := w\hat{x}_i + \hat{x}_i \).
- “Strong” UC-secure against Sender: Deviate \(\implies \) random output.
Certified rOLE

\[r, r' \leftarrow \mathbb{F} \]

\[a, b + r' \leftarrow \mathbb{F} \]

\[a, r \]

\[r, r' \]

\[w, \hat{x}_i \leftarrow \mathbb{F} \]

\[\hat{x}_i = x_i - w\hat{x}_i \]

\[ax_i + b = (aw + r) \cdot \hat{x}_i - (r\hat{x}_i + r') + e(a\hat{x}_i + b + r') \]

- **Correctness**: Above equation.
- **UC-secure against Receiver**: \(x_i := w\hat{x}_i + \hat{x}_i \).
- **“Strong” UC-secure against Sender**: Deviate \(\Rightarrow \) random output not yet
Our Results

NEW primitive: Oblivious linear function evaluation (OLE)

Theorem 2
An information-theoretical UC-secure reusable NISC protocol in rOLE-hybrid model.

Theorem 3
An UC-secure 2-msg reusable OLE protocol in the CRS setting, under Paillier assumption.
Our Results

NEW primitive: Oblivious linear function evaluation (OLE)

\[S \xrightarrow{\text{get}} ax + b \in \mathbb{F} \]

Theorem 2
An information-theoretical UC-secure reusable NISC protocol in rOLE-hybrid model.

Theorem 3
An UC-secure 2-msg reusable OLE protocol in the CRS setting, under Paillier assumption.
rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

Mode I

\[S \leftarrow a, b \]
\[\text{crs} \leftarrow D_1 \]
\[x \]

Mode II

\[S \leftarrow a, b \]
\[\text{crs} \leftarrow D_2 \]
\[x \]
rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

Mode I

\[S \leftarrow a, b \]
\[\text{crs} \leftarrow D_1 \]
\[x \leftarrow \text{Enc}(x) \]

Mode II

\[S \leftarrow a, b \]
\[\text{crs} \leftarrow D_2 \]

Efficient simulator against unbounded malicious receiver

Efficient simulator against unbounded malicious sender
rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

Mode I

\(S \)

\(a, b \)

\(x \)

\(\text{crs} \leftarrow \mathcal{D}_1 \)

\(\text{Enc}(x) \)

\(\text{Enc}(a - r) \)

\(\text{Enc}(b + rx) \)

Mode II

\(S \)

\(a, b \)

\(x \)

\(\text{crs} \leftarrow \mathcal{D}_2 \)

Efficient simulator against unbounded malicious receiver

Efficient simulator against unbounded malicious sender
rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

Mode I

- $S \leftarrow a, b$
- $\text{crs} \leftarrow \mathcal{D}_1$
- $R \leftarrow x$
- $\text{Enc}(x)$
- $\text{Enc}(a - r)$
- $\text{Enc}(b + rx)$

Efficient simulator against unbounded malicious receiver

Mode II

- $S \leftarrow a, b$
- $\text{crs} \leftarrow \mathcal{D}_2$
- $R \leftarrow x$
- $\text{Enc}(x)$
- $\text{Enc}(a - r)$
- $\text{Enc}(b + rx)$

Efficient simulator against unbounded malicious sender
rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

Mode I
- S sends \(a, b \)
- CRS \(\leftarrow D_1 \)
- \(x \) is indistinguishable from \(D_2 \)
- \(x \) is indistinguishable from \(D_1 \)
- Efficient simulator against unbounded malicious receiver

Mode II
- S sends \(a, b \)
- CRS \(\leftarrow D_2 \)
- Efficient simulator against unbounded malicious sender

\[
\begin{align*}
S & \quad a, b \\
\text{Sends} & \\
\text{CRS} & \leftarrow D_1 \\
R & \quad x \\
S & \quad a, b \\
\text{Sends} & \\
\text{CRS} & \leftarrow D_2 \\
R & \quad x
\end{align*}
\]
rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

Mode I

\[
\begin{align*}
S &\leftarrow a, b \\
\text{crs} &\leftarrow D_1 \\
\text{cr} &\leftarrow \mathbb{D}_1 \\
\text{Enc}(x) &\leftarrow \mathbb{D}_1 \\
\text{Enc}(a - r) &\leftarrow \mathbb{D}_1 \\
\text{Enc}(b + rx) &\leftarrow \mathbb{D}_1 \\
\end{align*}
\]

Efficient simulator against unbounded malicious receiver

Mode II

\[
\begin{align*}
S &\leftarrow a, b \\
\text{crs} &\leftarrow D_2 \\
\text{cr} &\leftarrow \mathbb{D}_2 \\
\text{Enc}(0) &\leftarrow \mathbb{D}_2 \\
\text{Enc}(a) &\leftarrow \mathbb{D}_2 \\
\text{Enc}(b) &\leftarrow \mathbb{D}_2 \\
\end{align*}
\]

Efficient simulator against unbounded malicious sender
rOLE from Paillier

Dual-mode (similar to OT from [PVW'08])

Mode I

\[S \leftarrow a, b \]

\[\text{crs} \leftarrow \mathcal{D}_1 \]

\[x \]

\[\text{Efficient simulator against unbounded malicious receiver} \]

\[\text{Enc}(x) \]

\[\text{Enc}(a - r) \]

\[\text{Enc}(b + rx) \]

Mode II

\[S \leftarrow a, b \]

\[\text{crs} \leftarrow \mathcal{D}_2 \]

\[x \]

\[\text{Efficient simulator against unbounded malicious sender} \]

\[\text{Enc}(0) \]

\[\text{Enc}(a) \]

\[\text{Enc}(b) \]
rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

\[\mathcal{D}_1 \text{ is indistinguishable from } \mathcal{D}_2 \]

Mode I

- **S**
 - \(a, b \)
- **R**
 - \(x \)
- **crs** \(\leftarrow \mathcal{D}_1 \)
- **Efficient simulator against unbounded malicious receiver**
- \(\text{Enc}(x) \)
- \(\text{Enc}(a - r) \)
- \(\text{Enc}(b + rx) \)

Mode II

- **S**
 - \(a, b \)
- **R**
 - \(x \)
- **crs** \(\leftarrow \mathcal{D}_2 \)
- **Efficient simulator against unbounded malicious sender**
- \(\text{Enc}(0) \)
- \(\text{Enc}(a) \)
- \(\text{Enc}(b) \)
Paillier Encryption Scheme

KeyGen \rightarrow public key, trapdoor
Paillier Encryption Scheme

KeyGen → public key, trapdoor

Encrypt randomness \(r \) → Enc\(_r\)(x) → Decrypt trapdoor → x

\[\text{Encrypt} \ x \text{ randomness} \ r \text{ Decrypt} \ x \]
Paillier Encryption Scheme

KeyGen \rightarrow public key, trapdoor

Encrypt \rightarrow $\text{Enc}_r(x)$

randomness r

Decrypt \rightarrow x

$\text{Enc}_0(x) \rightarrow$ Decrypt \rightarrow x

$\text{Enc}_r(x) \cdot \text{Enc}_s(y) = \text{Enc}_r(x + y)$
Paillier Encryption Scheme

KeyGen \rightarrow public key, trapdoor

Encrypt \rightarrow $\text{Enc}_r(x)$

randomness r

Decrypt \rightarrow x

\[
\text{Enc}_0(x) \quad \rightarrow \quad \text{Encrypt} \quad \rightarrow \quad \text{Decrypt} \\
\text{Decrypt} \quad \rightarrow \quad x
\]

\[
\text{Enc}_r(x) \cdot \text{Enc}_s(y) = \text{Enc}_{r+s}(x+y)
\]
rOLE from Paillier

s, a, b

x, R
rOLE from Paillier

CRS (Mode I)

\[h = \text{Enc}_0(1) \]
\[w = \text{Enc}_\alpha(0) \]
\[W_0 = \text{Enc}_\beta(1) \]
rOLE from Paillier

CRS (Mode I)

\[h = \text{Enc}_0(1) \]
\[w = \text{Enc}_\alpha(0) \]
\[W_0 = \text{Enc}_\beta(1) \]

\[W_1 = w^sk W_0^x = \text{Enc}_{x\beta + \alpha \cdot sk}(x) \]

"Strong" UC-security requires a mechanism to detect malicious sender
rOLE from Paillier

CRS (Mode I)

\[h = \text{Enc}_0(1) \]
\[w = \text{Enc}_\alpha(0) \]
\[W_0 = \text{Enc}_\beta(1) \]

\[W_1 = w^{sk} W_0^{x} = \text{Enc}_{x\beta + \alpha \cdot sk}(x) \]

\[\nu = w^{r} = \text{Enc}_{r\alpha}(0) \]

\[V_0 = h^{a} W_0^{-r} = \text{Enc}_{-r\beta}(a - r) \]

\[V_1 = h^{b} W_1^{r} = \text{Enc}_{rx\beta + r\alpha \cdot sk}(b + rx) \]

"Strong" UC-security requires a mechanism to detect malicious sender.
rOLE from Paillier

CRS (Mode I)

\[h = \text{Enc}_0(1) \]
\[w = \text{Enc}_\alpha(0) \]
\[W_0 = \text{Enc}_\beta(1) \]

\[W_1 = w^\text{sk} W_0^x = \text{Enc}_{x\beta + \alpha \cdot \text{sk}}(x) \]

\[v = w^r = \text{Enc}_{r\alpha}(0) \]

\[V_0 = h^a W_0^{-r} = \text{Enc}_{-r\beta}(a - r) \]
\[V_1 = h^b W_1^r = \text{Enc}_{r\beta + r\alpha \cdot \text{sk}}(b + rx) \]

\[v^{\text{sk}} V_0^x V_1 = \text{Enc}_0(ax + b) \]

"Strong" UC-security requires a mechanism to detect malicious sender.
rOLE from Paillier

RS

- Sample a, b

S

- Sample r

CRS (Mode II)

- $h = \text{Enc}_0(1)$
- $w = \text{Enc}_\alpha(0)$
- $W_0 = \text{Enc}_\beta(0)$

$W_1 = w^sk W_0^x = \text{Enc}_{x\beta+\alpha.sk}(x)$

- $v = w^r = \text{Enc}_{r\alpha}(0)$

- $V_0 = h^a W_0^{-r} = \text{Enc}_{-r\beta}(a - r)$

- $V_1 = h^b W_1^r = \text{Enc}_{rx\beta+r\alpha.sk}(b + rx)$

$v^{sk} V_0^x V_1 = \text{Enc}_0(ax + b)$

"Strong" UC-security requires a mechanism to detect malicious sender.
Strong UC-security requires a mechanism to detect malicious sender.
rOLE from Paillier

CRS (Mode II)

\[h = \text{Enc}_0(1) \]
\[w = \text{Enc}_\alpha(0) \]
\[W_0 = \text{Enc}_\beta(0) \]

\[W_1 = w^{sk} W_0^x = \text{Enc}_{x\beta + \alpha \cdot sk}(0) \]

\[v = w^r = \text{Enc}_{r\alpha}(0) \]

\[V_0 = h^a W_0^{-r} = \text{Enc}_{-r\beta}(a) \]
\[V_1 = h^b W_1^r = \text{Enc}_{rx\beta + r\alpha \cdot sk}(b) \]

\[v^{sk} V_0^x V_1 = \text{Enc}_0(ax + b) \]

"Strong" UC-security requires a mechanism to detect malicious sender.
rOLE from Paillier

\begin{align*}
S & \quad \text{sample } a, b \\
R & \quad \text{sample } sk
\end{align*}

\begin{align*}
\text{CRS (Mode II)}
\quad h &= \text{Enc}_0(1) \\
\quad w &= \text{Enc}_\alpha(0) \\
\quad W_0 &= \text{Enc}_\beta(0)
\end{align*}

\begin{align*}
W_1 &= w^{sk} W_0^x = \text{Enc}_{x\beta + \alpha \cdot sk}(0) \\
V_0 &= h^a W_0^{-r} = \text{Enc}_{-r\beta}(a) \\
V_1 &= h^b W_1^r = \text{Enc}_{r\beta + r\alpha \cdot sk}(b)
\end{align*}

\[
v^{sk} V_0^x V_1 = \text{Enc}_0(ax + b)
\]

“Strong” UC-security requires a mechanism to detect malicious sender.
Our Results

- \((\exists \text{ IT rNISC/rOT})\) There is no information-theoretical reusable NISC protocol in rOT-hybrid model.

- \((\text{IT rNISC/rOLE for arithmetic NC}^1)\) Information-theoretical UC-secure reusable NISC protocol for any arithmetic \(\text{NC}^1\) circuit or arithmetic branching program in rOLE-hybrid model.

- \((\text{IT rNIZK/rOLE})\) Information-theoretical UC-secure reusable NIZK protocol in rOLE-hybrid model; \(O(1)\) calls per gate.

- **Previous two + Garbled circuit \(\rightarrow (\text{rNISC/rOLE})\)** UC-secure reusable NISC for general circuits; IT secure against sender; poly\((\lambda)\) calls per gate.

- \((\text{rOLE protocol from Paillier})\) UC-secure reusable 2-message OLE protocol in CRS model; one-side IT secure; c.c. \(O(1)\) group elements per call.
Our Results

- **rNISC** in CRS model assuming the security of Paillier encryption.
- **rNIZK** in CRS model assuming the security of Paillier encryption. c.c. $O(1)$ group elements per gate.
- Statistical designated-verifier NIZK argument for NP in CRS model assuming Paillier.
- Push cryptograph to offline phase.
 - In offline phase: prepare random $((a, b), (x, ax + b))$;
 - In online phase: consume the prepared randomness.
Our Results

▶ **rNISC** in CRS model assuming the security of Paillier encryption.

▶ **rNIZK** in CRS model assuming the security of Paillier encryption. c.c. $O(1)$ group elements per gate.

▶ **Statistical designated-verifier NIZK argument** for NP in CRS model assuming Paillier.

▶ Push cryptograph to offline phase.
 In offline phase: prepare random $((a, b), (x, ax + b))$;
 In online phase: consume the prepared randomness.
Our Results

- **rNISC** in CRS model assuming the security of Paillier encryption.

- **rNIZK** in CRS model assuming the security of Paillier encryption. c.c. $O(1)$ group elements per gate.

- **Statistical designated-verifier NIZK argument** for NP in CRS model assuming Paillier.

- Push cryptograph to offline phase.
 - In offline phase: prepare random $((a, b), (x, ax + b))$;
 - In online phase: consume the prepared randomness.