Secret Sharing for Slice Functions

A secret sharing scheme over \(n \) parties is a randomized algorithm that distributes a one-bit secret among \(n \) shares.

\[
\text{Sharing Algo : } s \in \{0, 1\} \mapsto (\text{share}_1, \ldots, \text{share}_n).
\]

The secret sharing scheme is associated to a monotone boolean function \(F : \{0, 1\}^n \to \{0, 1\} \), such that for any subset of parties \(T \subseteq [n] \),

- \(F(T) = 1 \implies s \) can be recovered from \(\{\text{share}_i\}_{i \in T} \),
- \(F(T) = 0 \implies s \) is independent from \(\{\text{share}_i\}_{i \in T} \).

One of the major long-standing questions in information-theoretic cryptography is to minimize the (total) size of the shares in a secret sharing scheme for arbitrary monotone functions \(F \). [Ito-Saito-Nishizeki'89]

General Secret Sharing

A secret sharing scheme over \(n \) parties is a randomized algorithm that distributes a one-bit secret among \(n \) shares.

\[
\text{Sharing Algo : } s \in \{0, 1\} \mapsto (\text{share}_1, \ldots, \text{share}_n).
\]

The secret sharing scheme is associated to a monotone boolean function \(F : \{0, 1\}^n \to \{0, 1\} \), such that for any subset of parties \(T \subseteq [n] \),

- \(F(T) = 1 \implies s \) can be recovered from \(\{\text{share}_i\}_{i \in T} \),
- \(F(T) = 0 \implies s \) is independent from \(\{\text{share}_i\}_{i \in T} \).

One of the major long-standing questions in information-theoretic cryptography is to minimize the (total) size of the shares in a secret sharing scheme for arbitrary monotone functions \(F \). [Ito-Saito-Nishizeki'89]

Previous Works

<table>
<thead>
<tr>
<th>General Secret Sharing</th>
<th>Linear Secret Sharing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2^n) (naive solution)</td>
<td>(n^2) (\log n) [Csirmaz'97]</td>
</tr>
<tr>
<td>(O(\text{monotone formula size}) \leq \frac{2^n}{\text{poly}(n)}) [Benaloh-Leichter'88]</td>
<td>(2^n/\text{poly}(n))</td>
</tr>
<tr>
<td>(\forall F), the share size is no more than (O(\text{monotone span program size}) \leq \frac{n^2}{\text{poly}(n)}) [Karchmer-Wigderson'93]</td>
<td>(\frac{n^2}{\text{poly}(n)})</td>
</tr>
<tr>
<td>Lower Bounds: (n^2) (\log n) [Csirmaz'97]</td>
<td>(\frac{2n}{\text{poly}(n)})</td>
</tr>
</tbody>
</table>

Our Results

New Upper Bounds:

<table>
<thead>
<tr>
<th>General Secret Sharing</th>
<th>Linear Secret Sharing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2.0994n)</td>
<td>(2.0999n)</td>
</tr>
</tbody>
</table>

\(\forall F \), the share size is no more than \(\frac{n^2}{\log n} \) \[Csirmaz'97\] and \(\frac{2n}{\text{poly}(n)} \)

Formula-Based Secret Sharing and its Bottleneck

- Monotone function \(F \) is computed by a monotone formula
- Generate a tag for each wire
- Output wire: the secret \(s \)
- AND gate: additively share its output wire tag
- OR gate: copy its output wire tag
- The \(i \)-th party’s share: all tags of input wire \(x_i \)
- Total share size \(\approx \) formula size of \(F \leq 2^n/\text{poly}(n) \)

Proof Outline

Every monotone function has secret sharing scheme with share size \(2^{(o(n))} \), which is the corollary of the following two theorems.

[Liu-Vaikuntanathan-Wee'18]

- Every \textit{slice functions} function \(F \) s.t.
 \[|x| > n/2 \implies F(x) = 1 \text{ and} \]
 \[|x| < n/2 \implies F(x) = 0, \]
 has a secret sharing scheme \(/w \) share size \(2^{O(\sqrt{n})} \).

[This work]

- Every monotone function can be computed by a monotone formula s.t.
 - Formula size: \(2^{o(n)} \)
 - Constant depth
 - Base gates: AND, OR, slice functions

Open Problems

- Every monotone function is computed by a monotone formula of size \(2^{(n)} \) using slice functions as gates? (It implies every monotone function has a secret sharing scheme with \(2^{(n)} \) share size.)
- Does amortization help improve information ratio?

Secret Sharing for all Functions \[This work\]

\(\iff \)

Secret Sharing for Slice Functions \[LV'18\]

\(\iff \)

Multi-party Conditional Disclosure of Secret \[LV'17\]

\(\iff \)

2-party Conditional Disclosure of Secret \[LV'17\]

\(\iff \)

2-server PIR \[Yek'08,Efr'09,DG'15\]