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Abstract19

Garbling schemes, also known as decomposable randomized encodings (DRE), have found many20

applications in cryptography. However, despite a large body of work on constructing such schemes,21

very little is known about their limitations.22

We initiate a systematic study of the DRE complexity of Boolean functions, obtaining the23

following main results:24

Near-quadratic lower bounds. We use a classical lower bound technique of Nečiporuk25

[Dokl. Akad. Nauk SSSR ’66] to show an Ω(n2/ logn) lower bound on the size of any DRE for26

many explicit Boolean functions. For some natural functions, we obtain a corresponding upper27

bound, thus settling their DRE complexity up to polylogarithmic factors. Prior to our work, no28

superlinear lower bounds were known, even for non-explicit functions.29

Garbling-friendly PRFs. We show that any exponentially secure PRF has Ω(n2/ logn) DRE30

size, and present a plausible candidate for a “garbling-optimal” PRF that nearly meets this31

bound. This candidate establishes a barrier for super-quadratic DRE lower bounds via natural32

proof techniques. In contrast, we show a candidate for a weak PRF with near-exponential security33

and linear DRE size.34

Our results establish several qualitative separations, including near-quadratic separations between35

computational and information-theoretic DRE size of Boolean functions, and between DRE size of36

weak vs. strong PRFs.37
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1 Introduction58

Originating from Yao’s garbled circuit construction [65], garbling schemes have played an59

important role in different sub-areas of cryptography. A garbled representation of f(x) is a60

randomized function f̂(x; r) such that: (1) a sample from the output of f̂(x; r) reveals f(x)61

and no additional information about x; and (2) each output bit of f̂ depends on at most62

one bit of x (but can depend arbitrarily on r); equivalently, each bit of x acts as a selector63

between two strings that are determined by r. We refer to such a garbled representation f̂64

for f as a decomposable randomized encoding (DRE)1 of f , and refer to the output length of65

f̂ as its size.66

Garbling schemes were initially motivated by the goal of efficient secure computation [65,67

44, 30, 40]. This still serves as a primary motivation for their study, which has led to many68

optimized constructions (see, e.g., [12] and references therein).69

Over the years, different flavors of garbling schemes have found applications in many70

other areas of cryptography, including parallel cryptography [8], one-time programs and71

leakage-resilient cryptography [36], verifiable computation [33, 10], key-dependent message72

security [13, 5], identity-based encryption [29], and more. See [18, 39, 6] for surveys.73

Despite the large body of work on constructing and applying such garbling schemes, very74

little is known about their limitations. Previous relevant works show very limited lower75

bounds for more liberal notions of garbling. These include either conditional lower bounds76

that apply to computationally efficient garbling of intractable functions [5, 1] or linear size77

lower bounds for so-called “2-party PSM protocols” [30, 25, 7].78

In this work, we initiate a complexity theoretic study of standard (“DRE-style”) garbling79

schemes, providing lower bounds in both information-theoretic and computational settings.80

1.1 Our Contribution81

We make two types of contributions: (1) obtaining the first super-linear lower bounds on the82

DRE size of Boolean functions (with some matching upper bounds), and (2) studying the83

minimal DRE size of (strong and weak) pseudorandom functions. We now detail both types84

of results.85

1 This notion of garbling roughly corresponds to a projective garbling scheme in the terminology of Bellare
et al. [18]. We use the DRE terminology when we want to emphasize that we are not interested in the
process of “garbling” a given representation of f , but only in the existence of a garbled representation f̂
with a given complexity.
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1.1.1 Near-quadratic lower bounds and matching upper bounds86

We adapt a classical lower bound technique of Nečiporuk [49] to show an Ω(n2/ logn) lower87

bound on the size of any DRE for many explicit Boolean functions f : {0, 1}n → {0, 1}.88

Nečiporuk showed that functions with many subfunctions cannot have small formulas or89

branching programs. We provide matching lower bounds on DRE for the same class. In90

particular, this yields Ω(n2/logn) lower bounds on DRE size for almost all functions, including91

the explicit examples of Element Distinctness, Indirect Storage Access, Clique, Determinant,92

Matching, and others. These bounds hold in both the information theoretic setting and the93

exponentially-secure computational setting, provided the DRE admits a sub-exponential94

decoding algorithm in the latter case.95

For the explicit example of Element Distinctness, we obtain a corresponding upper bound,96

thus settling its DRE complexity up to polylogarithmic factors. Furthermore, since some97

of the functions that admit nearly quadratic lower bounds on DRE size can be computed98

by linear-size circuits, our lower bounds establish a near-quadratic gap between the size of99

computationally secure and information-theoretic DRE in a setting where the input size100

is polynomially bigger than the computational security parameter. In fact, given that our101

nearly quadratic lower bounds also apply to computational DREs with security parameter102

nearly that of the input size, this means, in a concrete sense, that a tradeoff between DRE103

size and security parameter is inherent!104

The only previous lower bounds we are aware of are linear lower bounds that also apply105

to the more liberal 2-party Private Simultaneous Messages (PSM)2 setting [30, 25, 7] and106

quadratic lower bounds for non-Boolean functions f : {0, 1}n → {0, 1}n that follow from107

the input locality lower bounds of [9]. In contrast to the other classes lower bounded by108

Nečiporuk’s method, such as formulas and branching programs, no superlinear lower bounds109

on DRE size were known prior to our work, even for a non-explicit (e.g., random or worst-case)110

Boolean function.111

1.1.2 Garbling-friendly PRFs112

There is a recent line of work on “MPC-friendly” block ciphers [3, 37, 54, 28, 27, 2] and113

pseudorandom functions (PRFs) [48, 32, 37, 19]. In this context, DRE size is a highly relevant114

complexity measure that is often used as a benchmark. The question of minimizing the115

DRE size of PRFs is motivated by the goal of securely evaluating a PRF in a setting where116

the input (and possibly also the key) is secret-shared between two or more parties. This is117

useful for natural applications that involve secure keyword search and distributed forms of118

searchable symmetric encryption; see [19] for discussion.119

For the case of exponentially secure (strong) PRFs, we show that the DRE size must120

be Ω(n2/ logn).3 Finally, we conjecture that a candidate PRF based on the “hidden shift121

problem” is exponentially secure PRF with almost matching DRE size O(n2). That is, the122

function outputs the quadratic character of a hidden shift of the input, determined by the123

secret key. To defeat known attacks (both quantum and classical), we restrict inputs bounded124

interval rather than the entire domain. A similar PRF (without the input restriction) has125

been proposed in [37] as an attractive candidate for MPC-friendly PRF, but in an interactive126

2 A DRE can be viewed as an n-party PSM protocol in which each party holds just one bit. Any 2-party
PSM lower bound implies a similar DRE lower bound, but the converse is not true.

3 This is almost immediate in the non-uniform setting, given our lower bounds. In the appendix we give a
constructive proof for this fact in the uniform setting by exhibiting a sublinear test for an average-case
variant of the natural property used in Nečiporuk’s method.
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setting of arithmetic MPC, rather than in the context of garbling. We also present a similar127

PRF construction with Ω(n) bits of output, for which we can still obtain a near-quadratic128

DRE size upper bound.4 Consequently, modulo the validity of the conjectured security, these129

PRFs are nearly garbling-optimal.130

Interpreted differently, our garbling-friendly PRF candidate establishes a barrier for super-131

quadratic DRE lower bounds on explicit Boolean functions via natural proof techniques [53].132

In contrast, we show that a recent candidate for a weak PRF with near-exponential security133

due to Boneh et al. [19] has a linear DRE size.134

Our results imply several qualitative separations, including near-quadratic separations135

between computational and information-theoretic DRE size of Boolean functions, and between136

the DRE size of weak vs. strong PRFs.137

2 Preliminaries138

2.1 Cryptography139

I Definition 1 (Pseudorandom Functions [35]). An (s(·), δ(·))-secure pseudorandom function140

(PRF) family is an ensemble F = {Fλ}λ∈Z+ , where each Fλ is a keyed family of functions141

Fλ = {fk : {0, 1}n(λ) → {0, 1}m(λ)}k∈{0,1}κ(λ) , satisfying the following security property:142

Pseudorandomness For every λ ∈ Z+ and every size-s (ensemble) of oracle circuits A (with143

output in {0, 1}),144 ∣∣∣∣∣∣∣∣ E
k←{0,1}κ(λ)

U :{0,1}n(λ)→{0,1}m(λ)

[Afk(1λ)−AU (1λ)]

∣∣∣∣∣∣∣∣ ≤ δ(λ).145

n(·), m(·), and κ(·) are respectively called the input length, output length, and key length of146

F .147

I Definition 2 (Weak PRFs [34]). An (s(·), δ(·))-secure weak PRF family is a relaxation of a148

PRF family as in Definition 1, with the “pseudorandomness” security property replaced by149

the following notion of “weak pseudorandomness”:150

Weak Pseudorandomness For every λ, the tuples151 (
X1, . . . , Xs(λ), fK(X1), . . . , fK(Xs(λ))

)
152

and153 (
X1, . . . , Xs(λ), Y1, . . . , Ys(λ)

)
154

are (s(λ), δ(λ))-indistinguishable in the probability space defined by sampling155

K ← {0, 1}`(λ)

X1, . . . , Xs(λ) ← {0, 1}n(λ)

Y1, . . . , Ys(λ) ← {0, 1}m(λ).

156

I Definition 3. Random variables X and Y are (s, ε)-indistinguishable if the advantage of157

every size-s circuit in distinguishing X from Y is at most ε. We denote this by X ≈(s,ε) Y .158

4 For this case, multi-bit output, we use input locality bounds of [9] to prove a slightly stronger (and
nearly tight) quadratic lower bound (contrast with our Ω(n2/ logn) bounds for single bit output).
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2.2 Information Theory159

IDefinition 4. The min-entropy of a random variable X is H∞(X) def= minx∈Supp(X) log2

(
1

Pr[X=x]

)
.160

2.3 Decomposable Randomized Encodings161

I Definition 5 (Randomized Encodings). A randomized encoding for a function f : {0, 1}n →162

Y consists of a “randomness” distribution R, an encoding function Enc : {0, 1}n×R → {0, 1}`,163

and a decoding function Dec : {0, 1}` → Y. ` is called the size of the randomized encoding.164

A randomized encoding (R,Enc,Dec) for function f : {0, 1}n → Y should satisfy:165

Correctness For any input x ∈ {0, 1}n,166

Pr
R←R

[Dec(Enc(x,R)) = f(x)] = 1.167

Security For all x, y ∈ {0, 1}n with f(x) = f(y), the distribution of Enc(x,R) is identical to168

the distribution of Enc(y,R) when sampling R← R.169

The security can be relaxed to require only that Enc(x,R) and Enc(y,R) cannot be effectively170

distinguished by small circuits.171

(s, δ)-Security For all x, y ∈ {0, 1}n such that f(x) = f(y), for any circuit A : {0, 1}` →172

{0, 1} of size at most s,173 ∣∣ Pr
R←R

[A(Enc(x,R)) = 1]− Pr
R←R

[A(Enc(y,R)) = 1]
∣∣ ≤ δ.174

In this paper, we focus on decomposable randomized encoding (DRE), which is a randomized175

encoding that also satisfies an additional property:176

Decomposability Each output bit of Enc(x, r) is determined by r and 1 bit of input x.177

To ease presentation, we also introduce an equivalent definition of DRE. The equivalent178

definition is used when we prove lower bounds on the size of DRE.179

I Definition 6. An (s, δ)-secure decomposable randomized encoding (DRE) for a function180

f : {0, 1}n → {0, 1} is a family of random variables181

X =
(
X 1

0 , . . . ,Xn0
X 1

1 , . . . ,Xn1

)
182

such that183

Correctness There is an algorithm Dec such that for every x ∈ {0, 1}n,184

Pr[Dec(X 1
x1
, . . . ,Xnxn) = f(x)] = 1.185

Dec is called a decoding algorithm for X .186

(s, δ)-Security For all x, y ∈ {0, 1}n such that f(x) = f(y),187

(X 1
x1
, . . . ,Xnxn) ≈(s,δ) (X 1

y1
, . . . ,Xnyn).188

The size of X is189

|X | def=
∑

i∈[n],b∈{0,1}

log2
∣∣ Supp(X ib )

∣∣.190
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2.4 Function Restrictions191

I Definition 7 ([50]). For any function f : Xn → Y , any set S ⊆ [n] with complement S̄,192

and any z ∈ X S̄, the restriction of f to S using z is the function193

fS|z : XS → Y194

defined by fixing the coordinates in S̄ to the value z. More formally, for any x ∈ XS, we195

define196

fS|z(x) def= f(x′),197

where for each i ∈ [n],198

x′i =
{
xi if i ∈ S
zi otherwise.

199

3 Lower Bounds on DRE Size200

Over 50 years ago, Nečiporuk published a two-page note titled “On a boolean function.” [49]201

Within these two pages, Nečiporuk introduced an elegant combinatorial measure of a function202

related to the number of ways a function can be restricted distinctly. To this day, Nečiporuk’s203

method still provides the strongest lower bounds known for formulas over arbitrary finite204

bases, deterministic branching programs, non-deterministic branching programs, parity205

branching programs, switching networks, span programs, and more [16].206

In this section we recall Nečiporuk’s measure and add decomposable randomized encoding207

(DRE) size to the list of complexity measures that are lower bounded by Nečiporuk’s measure.208

Specifically, we show that for any function f , the DRE complexity of f is at least Nečiporuk’s209

measure (which for explicit functions is as large as n2/ logn). Prior to this work no super210

linear lower bounds on DRE size were known.211

3.1 Technical Overview212

To lower bound the DRE size of a function f : {0, 1}n → {0, 1}, we first consider all possible213

restrictions of f , using notation as in Definition 7. For simplicity, suppose that214

X =
(
X 1

0 , . . . ,Xn0
X 1

1 , . . . ,Xn1

)
215

is a perfect DRE for f . Then for all S ⊆ [n] (with complement denoted by S̄), we observe216

that:217

1. The distribution of (X izi)i∈S̄ does not depend on z ∈ {0, 1}S̄ (as long as fS|z is non-218

constant). This follows from DRE security.219

2. Given (X izi)i∈S̄ , the values (Xi
b)i∈S,b∈{0,1} are sufficient to reconstruct the truth table of220

fS|z. This follows from DRE correctness.221

Together, these properties imply that the size of the support of (Xi
b)i∈S,b∈{0,1} is at least222

the number of non-constant truth tables of the form fS|z for some z ∈ {0, 1}S̄ . We obtain a223

bound on the size of X by partitioning [n] into sets S1, . . . , Sm, and lower bounding the size224

of each (X ib )i∈Sj ,b∈{0,1}. The maximum bound on the bit length of X that can be achieved225

in this way is essentially Nečiporuk’s measure of f .226

We elaborate further below, defining a somewhat more general computational analogue227

of Nečiporuk’s measure (that will suffice for lower bounds on computationally secure DREs).228
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3.2 Nečiporuk’s Measure229

Let f : {0, 1}n → {0, 1} be any boolean function. For any subset S ⊆ [n], let S̄ denote [n]\S,230

and define231

gS(f) def= log(#{fS|z : z ∈ {0, 1}S̄}).232

Let V = (V1, . . . , Vm) denote a partition of [n]. That is, V1, . . . , Vm are pairwise disjoint233

subsets of [n] whose union is [n]. Then, the Nečiporuk measure of f is234

G(f) def= max
V

∑
Vi∈V

gVi(f).235

I Remark 8. It is well known that for any function f , G(f) ≤ n2/ logn [57].236

3.3 Functions with Maximal Measure237

We recall several functions whose Nečiporuk measures are known to be as high as possible238

(Ω(n2/ logn), where n is the bit-length of the input).239

Element Distinctness.240

Element Distinctness is a function EDm : [m2]m → {0, 1} which given a vector (x1, . . . , xm) ∈241

[m2]m and outputs 1 if all xi are distinct and 0 otherwise (∃i 6= j such that xi = xj).242

Others.243

Clique, matching, and determinant all have measure Ω(n2/ logn) [57].244

Random.245

Finally, and perhaps unsurprisingly, we note that a random function has measure at least246
n(n−2)

logn ) with overwhelming probability (for n large enough). See Appendix B for proof.247

3.4 DRE Size Lower Bounds via Nečiporuk248

We define a pseudo-min-entropic analogue of Nečiporuk’s measure, with an additional249

non-constantness restriction that is tailored for use in DRE lower bounds.250

I Definition 9. The (s, ε)-pseudo min-entropy of a random variable X, which we will denote251

by H̃
(s,ε)
∞ (X), is the supremum of H∞(X̃) over all random variables X̃ that are (s, ε)-252

indistinguishable from X.253

I Definition 10. For any function f : {0, 1}n → {0, 1} and any subset ∅ 6= V ⊆ [n], define254

G̃
(s,ε)
V (f) def= sup

(
H̃(s,ε)
∞ (fV |Z)

)
,255

where the supremum is taken over all {0, 1}V̄ -valued random variables Z whose support only256

consists of values z that make fV |z non-constant.257

We define G̃(s,ε)(f) to be the maximum over all partitions [n] = V1 ∪ · · · ∪ Vm of258 ∑
i∈[m] G̃

(s,ε)
Vi

(f).259
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I Remark 11. If not for the non-constantness constraint on fV |Z , the measure G̃(∞,0) is the260

same as Nečiporuk’s original measure. Reducing s or increasing ε only increases this measure.261

Taking the non-constantness restriction into account, our measure cannot be smaller than262

Nečiporuk’s measure by more than O(n) (so superlinear lower bounds on Nečiporuk’s measure263

imply an asymptotically identical lower bound on our measure).264

Beyond a certain threshold, increasing s no longer changes the value of G̃(s,ε):265

B Claim 12. For any function f : {0, 1}n → {0, 1} and any subset V ⊆ [n], we have266

G̃
(∞,ε)
V (f) = G̃

(
22|V | ,ε

)
V (f).267

Proof. Any function of n bits can be computed by a circuit of size 2n. In fact this can268

be strengthened to O( 2n
n ) [59, 45], but we prefer the simpler bound 2n. Apply this to the269

(s, ε)-indistinguishability in the definition of pseudo-min-entropy of fV |Z (which is a truth270

table of bit length n = 2|V |). J271

Our main lower bound is given by the following theorem.272

I Theorem 13. Let f : {0, 1}n → {0, 1} be a function, and let X be a (s∗DRE,
1
3 )-secure DRE273

for f with a decoding algorithm of size sDec.274

Then for all V ⊆ [n], we have275

|X V | ≥ min
(

log2

(
s∗DRE

sDec · 2|V |

)
, G̃

(s∗DRE,
1
3 )

V (f)− 2
)
.276

Proof. Suppose otherwise — that |X V | < log2

(
s∗DRE

sDec·2|V |

)
and |X V | < G̃

(s∗DRE,
1
3 )

V (f)− 2.277

Let Z be a {0, 1}V̄ -valued random variable that maximizes H̃(s∗DRE,
1
3 )

∞ (fV |Z), supported278

by values z for which fV |z is non-constant, and let F̃V denote a random variable that is279

(s∗DRE,
1
3 )-indistinguishable from fV |Z and satisfies H∞(F̃V ) = H̃

(s∗DRE,
1
3 )

∞ (fV |Z). Let Z ′ be an280

independent copy of Z.281

We first claim that (X V̄Z , fV |Z) ≈(s∗DRE,
1
3 ) (X V̄Z′ , fV |Z). To see why, suppose for contradiction282

that there is size-s∗DRE circuitA that distinguishes (X V̄Z , fV |Z) from (X V̄Z′ , fV |Z) with advantage283

better than 1
3 . Then in particular there exist z, z′ ∈ {0, 1}V̄ such that A distinguishes284

(X V̄z , fV |z) from (X V̄z′ , fV |z) with the same advantage. Hardwiring fV |z into A, this gives a285

circuit B of size5 |B| ≤ |A| for distinguishing X V̄z from X V̄z′ with the same advantage. But286

this contradicts the (s∗DRE,
1
3 )-indistinguishability that is guaranteed by DRE security.287

We also know that (X V̄Z′ , fV |Z) ≈(s∗DRE,
1
3 ) (X V̄Z′ , F̃V ), so together with the previous claim, we288

have (X V̄Z , fV |Z) ≈(s∗DRE,
2
3 ) (X V̄Z′ , F̃V ). However, there is a distinguisher that contradicts this.289

Specifically, try all possible values of
(
X ib
)
i∈V,b∈{0,1} (there are at most s∗DRE

sDec·2|V |
possibilities),290

and apply the DRE decoding algorithm (2|V | times per possibility) to see whether any291

possibility “explains” the given truth table.292

By correctness of the DRE, there will always exist a value that explains fV |Z given X V̄Z ,293

but because H∞(F̃V ) > log2 |X V |+ 2, the probability that any value explains F̃V is at most294

1
4 . Hence the distinguisher succeeds with probability 3

4 >
2
3 , which is a contradiction. J295

5 Recall that the size of a circuit is measured in number of gates, and all gates of A whose inputs are the
hard-wired value fV |z can be simplified or eliminated.
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3.5 The Nečiporuk Measure of PRFs296

In this section, we prove lower bounds on the Nečiporuk measure of PRFs (of varying security297

levels), which imply corresponding lower bounds on the size of DREs.298

I Proposition 14. If E : {0, 1}κ+n → {0, 1} is an (s, ε)-secure PRF with key length κ and299

input length n satisfying s ≥ 4 and ε ≤ 1
6 , then for any subset V ⊆ [κ+ 1, κ+n] with |V | ≥ 2,300

we have G̃(s,ε′)
V (E) = 2|V | for ε′ = 3ε+ 2−s+1 + 2−2|V |+1.301

Proof. Let Z ′ be a {0, 1}V̄ -valued random variable whose first κ coordinates are independent302

and uniformly random, and the rest of whose coordinates are 0. By PRF security, the303

probability that EV |Z′ is constant is at most δ def= ε+2−min(s,2|V |)+1 ≤ ε+2−s+1 +2−2|V |+1 ≤304

1
2 .305

Let A be an arbitrary size-s circuit. Suppose for contradiction that A distinguishes EV |Z′306

from a uniformly random truth table with advantage greater than ε. Then each input wire307

of A can be replaced by an oracle gate to yield a circuit that distinguishes oracle access to308

E(K, ·) (for uniform K) from oracle access to a uniformly random function with the same309

advantage ε. This contradicts (s, ε)-security of the PRF. So EV |Z′ is (s, ε)-indistinguishable310

from a uniformly random truth table.311

Conditioned on EV |Z′ being non-constant, the advantage of any A in distinguishing EV |Z′312

from a uniformly random truth table can increase to at most313

1
2 + ε

1− δ −
1
2 ≤ (1

2 + ε) · (1 + 2δ)− 1
2 = ε+ δ + 2ε · δ ≤ 3ε+ 2−s+1 + 2−2|V |+1.314

Thus if Z denotes the random variable Z ′ conditioned on EV |Z′ being non-constant, we315

have H̃(s,ε′)(EV |Z) = 2|V | for ε′ = 3ε+ 2−s+1 + 2−2|V |+1. J316

I Corollary 15. If E : {0, 1}κ+n → {0, 1} is the evaluation algorithm for an (s, ε)-secure PRF317

family with key length κ and input length n satisfying s ≥ 4 and ε ≤ 1
6 , then G̃

(∞,ε′)(E) ≥318

Ω
(
n log s

log log s

)
for ε′ = 3ε + 2−s+2. In particular, if the PRF family is exponentially secure,319

then G̃(∞,ε′)(E) ≥ Ω
(

n2

logn

)
.320

Proof. For every V ⊆ [κ + 1, n] of size |V | = log log s, Proposition 14 implies that there321

exists a random variable Z such that H̃(s,ε′)(EV |Z) = 2|V | = log s for ε′ = 3ε+ 2−s+2. But322

by Claim 12, H̃(s,ε′)(EV |Z) = H̃(∞,ε′)(EV |Z).323

The lower bound on G̃(∞,ε′)(E) follows by partitioning [κ+n] into V0∪V1∪· · ·∪Vn/ log log s,324

where V0 = [κ] and each Vi has size |Vi| = log log s for 1 ≤ i ≤ n/ log log s. J325

I Remark 16. We obtain a similar result to Corollary 15 in Appendix A that applies to326

uniformly secure PRFs.327

I Corollary 17. If E is the evaluation algorithm for an exponentially secure PRF family328

with input length n, then any statistically secure DRE for E has size at least Ω
(

n2

logn

)
.329

3.6 A Truly Quadratic Lower Bound330

We observe that for exponentially secure PRFs with n-bit output, even computationally331

secure DREs require size Ω(n2).332

I Theorem 18. Any computational DRE of an exponentially-secure PRF with n-bits of333

output must have size Ω(n2).334
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To prove this theorem we will rely on the following result of Applebaum et al. [9].335

I Theorem 19. Let S(k, x, r) be a one-time MAC with key k, message x, and randomness336

r. Let `(n) denote the input locality of Sk(x, r) and let s(n) denote the length of a tag, where337

n is the security parameter. (A function has input locality ` if no input bit affects more than338

` output bits.) Then, there is an efficient attack on S(k, x, r) that succeeds with probability339

1/
(
s(n)
`(n)
)
· 2−`(n).340

Proof. Recall that an exponentially secure PRF fk : {0, 1}n → {0, 1}n is also an exponentially341

secure one-time MAC [42]. Moreover, a DRE of a MAC preserves unforgeability [9]. Because342

1/
(
n
`(n)
)
· 2−`(n) ≤ 2`(n), it follows Theorem 19 that any DRE of an exponentially-secure fk343

must have input locality Ω(n). By decomposability, any such DRE must have size Ω(n2). J344

4 Upper Bounds on DRE Size345

In this section we present nearly matching upper bounds for some of the explicit functions346

to which our lower bounds apply. We explicitly conjecture two variants of the “hidden shift347

problem” are exponentially secure PRFs and show that they admit nearly quadratic size348

(efficient, perfect) DREs. Finally, we show a recent weak PRF candidate due to Boneh et349

al. [19], conjectured to be nearly exponentially-secure, admits a linear-size (efficient and350

perfect) DRE351

4.1 Almost Tight Quadratic Upper Bounds352

Partial Decomposability.353

We introduce the notation of a partially decomposable randomized encoding, so that later we354

can construction DRE by composing a randomized encoding and a partially decomposable355

randomized encoding. A randomized encoding (Enc,Dec) for a function f : {0, 1}n×W → Y356

is a partially decomposable randomized encoding (PDRE) if every bit of Enc(x,w, r) is357

determined by w ∈ W, r ∈ R and only 1 bit of x ∈ {0, 1}n.358

I Lemma 20 (Composition of randomized encodings). Let Enc : {0, 1}n ×W → {0, 1}` be359

(the encoding function of) a randomized encoding (Enc,Dec) for function f : {0, 1}n → Y.360

Let Enc′ : ({0, 1}n ×W)×R → {0, 1}`′ be the encoding function of a PDRE (Enc′,Dec′) for361

function Enc. Then Enc′ : {0, 1}n × (W ×R)→ {0, 1}`′ is the encoding function of a DRE362

for function f .363

Proof. The corresponding decoding function is Dec′′(c) := Dec(Dec′(c)). It’s easy to verify364

(Enc′,Dec′′) is a DRE, as each bit of Enc′(x, r, w) is determined by (r, w) and only 1 bit of x.365

A DRE for Element Distinctness.366

Choose an O(logn)-bit prime p with p >
(
n
2
)
. For all 1 ≤ i < i′ ≤ n, define indicator367

δi,i′ ∈ {0, 1} that captures whether xi = xi′ ,368

δi,i′ :=
{

1, if xi = xi′ ,

0, if xi 6= xi′ .
369

Sample a ← Zp \ {0} for the CRS. For all 1 ≤ i < i′ ≤ n, sample random ri,i′ ∈ Zp from370

CRS such that
∑

1≤i<i′≤n ri,i′ = 0. Define r̂i,i′ ∈ Zp as r̂i,i′ := ri,i′ + a · δi,i′ .371

Then a DRE for element distinctness is induced by composing the following two claims:372
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Claim 1. (r̂i,i′)1≤i<i′≤n is a randomized encoding of the functionality output.373

Proof. It’s obvious that (r̂i,i′)1≤i<i′≤n is a randomized encoding of a ·
∑

1≤i<i′≤n δi,i′ . The374

later is a randomized encoding of the functionality output because: when (xi)1≤i≤n are all375

distinct, a ·
∑

1≤i<i′≤n δi,i′ is zero; when there is a collision, a ·
∑

1≤i<i′≤n δi,i′ is uniformly376

random in Zp \ {0}.377

Claim 2. For all 1 ≤ i < i′ ≤ n, there exists a PDRE for r̂i,i′ of size O(log4 n).378

Proof. For any v ∈ Zp, let v[k] denote the k-th bit of its binary representation. Then the379

k-th bit of ri,i′ can be computed from380

r̂i,i′ [k] =
{
ri,i′ [k], if δi,i′ = 0
(ri,i′ + a)[k], if δi,i′ = 1

= ri,i′ [k]⊕ (ri,i′ [k]⊕ (ri,i′ + a)[k]) ·
log p∨
j=1

(xi[j]⊕ xi′ [j]),

381

which, as a function of (xi, xi′), is a binary branching program of size O(logn). Thus there382

is a PDRE for r̂i,i′ of size O(log3 n) [8]6. As r̂i,i′ has logn bits, there exists a PDRE for r̂i,i′383

of size O(log4 n).384

4.2 A PRF Candidate With A Nearly Optimal DRE385

Now we can present the almost-optimally-garble-able candidate PRF. Modulo a conjecture386

on its hardness, this simple algebraic PRF candidate admits a (perfect) DRE of size at most387

a logn factor from the minimum. Moreover, a simple generalization of this candidate yields388

linear output length with the same DRE complexity. Thus, if this candidate is exponentially389

secure, it is indeed optimally-garble-able.390

In addition to applications in efficient MPC, this candidate can be conversely interpreted391

through Razborov and Rudich’s natural proof framework as barrier to proving super quadratic392

bounds on DRE size [53].393

An Exponentially-Secure PRF Candidate.394

Our starting point is an algebraic object that has received considerable attention in both395

cryptography and mathematics: Legendre sequences. A Legendre sequence is a sequence of396

the form:397

(x+ 1)(p−1)/2, (x+ 2)(p−1)/2, (x+ 3)(p−1)/2, . . .398

where all operations are over Zp for some prime p.399

The pseudorandomness of sequences of quadratic characters have a long history in both400

cryptography and mathematics [4, 20, 24, 26, 38, 46, 47, 52, 55]. These sequences have401

been shown to behave as if random with respect to a variety of statistical tests designed for402

randomness.403

Recent work has considered the so-called “hidden shift problems” and their generalizations.404

In the quadratic character variant of the hidden shift problem, algorithms are given oracle405

6 For a branching program of size s and has t input bits, there is a DRE for the branching program of
size s2t.
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access to a function φk : Zp → {−1, 0,+1} where φk(x) = (k + x)(p−1)/2 from some406

k ∈ Zp. The task is then to recover k. Efficient quantum algorithms for this problem are407

known [61, 62, 63, 56, 41]. However, the best classical algorithms to date are still just408

subexponentional (under an assumption on the density of smooth integers) [20, 56, 43].409

Indeed, Dam, Hallgren, and Ip [63] have explicitly conjectured that φk is a PRF with410

respect to polytime classical algorithms. Grassi et al. [37] additionally proposed this function411

specifically as an “MPC-friendly” PRF. Recently, cryptanalytic bounties have been announced412

on this PRF [31].413

With the known attacks in mind, we give a twist on the hidden shift problem restricting414

evaluation to a short interval. So far as we know this confounds all existing techniques415

(including quantum algorithms) and the best algorithm7 runs in 2(1+o(1))n-time [60].416

We actually make two conjectures: (1) restricted hidden shift yields an exponentially-417

secure PRF with one bit of output, (2) a natural generalization is an exponentially-secure418

PRF with many bits of output. But first, we define the restricted hidden shift function.419

For any m ∈ Z+, let p ≡ 1 (mod m) be a prime with p ≥ 22n, and let 〈ζm〉 denote the420

group of mth roots of unity in Z×p . For k ∈ Zp define421

Charp,m,nk : [0, 2n − 1]→ 〈ζm〉
Charp,m,nk : x 7→ (k + x)

p−1
m (mod p).

422

Note that Charp,2,nk (x) = 0 for k + x = p. In order to achieve single bit output (just two423

possible output values) we restrict the key space in addition to the input space, so that this424

equation cannot be satisfied.425

B Conjecture 21. Let p = p(n) be any prime sequence satisfying p ≡ 1 (mod m), p > 2n+1.426

Then,
{{

Charp,2,nk

}
k∈{1,...,2n}

}
n∈Z+

is, for some s(n) = 2Ω(n), an (s(·), s(·)−1)-secure PRF427

family.428

Next, we present a variant with long output by applying an input restriction to the429

“hidden power problem” [21] or “hidden root problem” [64]. In this problem, the goal is to430

recover k using query access to x 7→ (k + x)e for more general e|p − 1 (the shift problem431

discussed above is simply the specific case of e = p−1
2 ). Notably, [21] demonstrated (classical)432

algorithms for this problem that make O(1) queries and recover k in time e1+ε logO(1) p.433

With this in mind, we make the following conjecture.434

B Conjecture 22. Let p = p(n) be any prime sequence and m = m(n) be any positive integer435

sequence satisfying p ≡ 1 (mod m), p ≥ 22n, and p
m ≥ 2n. Then

{{
Charp,m,nk

}
k∈Zp

}
n∈Z+

is,436

for some s(n) = 2Ω(n), an (s(·), s(·)−1)-secure PRF family.437

An O(n2) DRE for the Candidate PRF438

We now show that there is a DRE for Charn,m,p(·) (·) of size O(n2). Assuming the above439

conjectures, it follows from Corollary 30 that this DRE has essentially optimal size, not just440

for Charn,m,p(·) (·), but among DREs for any exponentially-secure PRF.441

7 The algorithm is to simply guess k and test on enough x. However it is worth noting that even this is not
known to work, and requires making a conjecture on the distribution of Legendre sequences generated
by random k [60]. The best provable distinguisher that we know of runs in time 2(3/2+o(1))n-time by
simply exhaustively enumerate all sequences of length 2n/2 and comparing [60]
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For clarity, we present a DRE for Charp,2,nk and note that the construction can easily be442

extended to the multi-bit output case.443

Our starting point is a simple perfect randomized encoding for quadratic residue8:444

Enc : x 7→ x · r2, for uniformly sampled r ← Zp445

Dec : y 7→ y(p−1)/2
446
447

Security follows from the fact that any quadratic residue is mapped to a uniformly random448

quadratic residue, and any non-residue is mapped to a uniformly random non-residue. Note449

that this randomized encoding has size O(n).450

However, we would like a randomized encoding of the quadratic residuosity of x+ k and451

moreover we would like it to be decomposable. This is easily remedied via bit decomposition452

and the fact that the above encoding is linear with respect to the input.453

Enc : xi 7→ xi · 2i−1 · r2 + si454

ki 7→ ki · 2i−1 · r2 + ti455

where r, s1, . . . , sn, t1, . . . , t2n+1 are drawn uniformly from Zp456

such that s1 + · · ·+ sn + t1 + · · ·+ t2n+1 = 0.457

Dec : y1, . . . , y3n+1 7→
(∑

yi

)(p−1)/2
458
459

Similarly, correctness and security follow from the fact that an encoding is simply 3n + 1460

random elements, conditioned on the fact that their sum is a random element with the461

quadratic residuosity of x. Note that because the encoding consists of 3n+ 1 elements, each462

of bit length 2n+ 1, the size of this DRE is O(n2).463

4.3 A WPRF Candidate With A Nearly Optimal DRE464

In this section, we observe that a recent weak pseudorandom function candidate put forward465

by Boneh et al. admits a DRE of quasi-linear size [19].466

Boneh et al. [19] have put forward the following WPRF candidate related to both the467

learning parity with noise problem (with “deterministic” noise) and learning with rounding468

problem (over constant-size modulus). Given a key k ∈ {0, 1}n, they define469

LWR6
k : {0, 1}n → {0, 1}

LWR6
k(x) =

{
0 if 〈x, k〉 ≡ 0, 1, or 2 (mod 6)
1 if 〈x, k〉 ≡ 3, 4, or 5 (mod 6).

470

This candidate was proposed with efficient secure function evaluation protocols in mind;471

however, the protocol presented in [19] requires two phases of interaction: first it applies a472

DRE-based subprotocol for computing shares of the mod-6 inner product, and then another473

subprotocol for rounding. Here we show that LWR6 has a DRE of size O(n).9474

8 A similar randomization technique for quadratic characters was previously used in related contexts
in [30, 5, 1, 37].

9 In contrast to the PRF candidate proposed above, this WPRF candidate is at most 2n/ logn-secure.
Assuming it is indeed 2n/ logn secure, an O(λ log λ) size DRE is needed to get 2λ security.
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Protocol

Let S6 and f act on Z6 on the right in the natural way. Let σ ∈ S6 denote the permutation
that maps x to x+ 1. Let L = 0 ∈ Z6.
Randomness :

Sample r1, . . . , rn−1 ← S6.
Define (R1,0, R1,1) = (L · r1, L · σ · r1)
For 2 ≤ i ≤ n− 1, define (Ri,0, Ri,1) = (r−1

i−1 · ri, r
−1
i−1 · σ · ri)

Define (Rn,0, Rn,1) = (r−1
n−1 · f, r

−1
n−1 · σ · f)

Encoding For 1 ≤ i ≤ n, Enci(zi, Ri) = Mi = Ri,zi

Decoding M1 · · ·Mn

Figure 1 A DRE for a function of a sum mod 6 [17]

Let b·e : Z6 → {0, 1} denote the function475

bxc =
{

0 if x ∈ {0, 1, 2}
1 otherwise.

476

We obtain our DRE for LWR6
k by composing two DREs ([8, 11]); the first is for a function477

that maps (z1, . . . , zn) 7→
⌊∑

i zi (mod 6)
⌉
for z1, . . . , zn ∈ {0, 1}, and the second is for the478

AND function mapping (ki, xi) ∈ {0, 1}2 to ki · xi.479

The DRE for the first function is obtained as a special case of a result on symmetric480

functions due to Beimel et al. [17, Theorem 7.2, Figure 9] that refines a group-based DRE481

due to Kilian [44]:482

B Imported Theorem 23 ([17]). For any function f : Z6 → {0, 1}, the scheme of Figure 1 is a483

size-O(n) DRE of the function h that maps (z1, . . . , zn) 7→ f
(∑

zi (mod 6)
)
.484

The second function is constant-sized, and thus has a constant-sized DRE by Barrington’s485

theorem [14] and Kilian’s rerandomization.486
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A.1 PRFs are complex under (average-case) Nečiporuk700

Intuitively, because a random function has high measure under Nečiporuk, so should a701

pseudorandom function.10 In fact, Servedio and Tan have recently shown how to exactly702

learn functions with low (O(n1.99)) measure under Nečiporuk in time 2n−nδ (via membership703

and equivalence queries) [58]. We show that the much simpler task of simply distinguishing a704

function with low measure can be done much more quickly (and without equivalence queries,705

which do not fit into the usual PRF game).706

We accomplish this via an average case variant of Nečiporuk. Recall that Nečiporuk707

is ultimately statement about the number of functions that can be generated under some708

restriction. Viewed differently, this can be framed as a statement about the maximum entropy709

of the random variable defined by sampling a restricted function uniformly at random. Our710

observation is that for the special case of distinguishing from a random function it suffices to711

look at the Shannon entropy of the same variable. Consequently, instead of bounding the712

support size we can focus on much easier task of bounding the entropy.713

An “average-case” notion of Nečiporuk.714

We begin by introducing our average-case variant of Nečiporuk’s measure that relies on715

Shannon entropy as opposed to maximum entropy.716

For a function f : {0, 1}n → {0, 1}, and a set S ⊂ [n], let Zf,S denote the variable
distributed according to fS|z for uniformly drawn z ← {0, 1}S̄ . Define,

hS(f) def= H(Zf,S).

Notice that Hmax(Zf,S) = gS(f), thus it follows that hS(f) ≤ gS(f).717

Random functions are complex (under hS)718

Next we observe that random functions have high complexity with respect to the average-case719

variant of Nečiporuk we defined above.720

I Proposition 24. For any set S ⊆ [n] and a uniformly random function F : {0, 1}n → {0, 1},721

Pr[hS(F ) ≤ 2|S| − t] < exp(− 2t2

|S̄|+ ln(2)
)722

We can apply the same style of balls/bins argument used for Nečiporuk’s original measure723

again here.724

Proof. First, we bound E[H(ZF,S)] from below. We will omit S from the superscript in this725

proof (ZF = ZF,S). Additionally, we will take ZFφ to denote PrF [ZF = φ]. Note that for726

10 Statements of this form indeed were at the heart of Razoborov and Rudich’s natural proof framework
and its recent extensions [53, 22, 23, 51]. Unfortunately, because Nečiporuk’s measure seems to behave
poorly under known pseudorandom function generators, its not clear how to apply their framework here
to get strong bounds on pseudorandom generators with simple DREs.
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any φ, E[ZFφ ] = 1/#{φ : {0, 1}|S| → {0, 1}} = 2−2|S| .11727

EF [H(Z)] = EF

∑
φ

ZFφ log(1/ZFφ )

728

=
∑
φ

EF [ZFφ log(1/ZFφ )]729

≥
∑
φ

EF [ZFφ ] log(1/EF [ZFφ ])730

= 22|S| · 1
22|S| log(22|S|)731

= 2|S|732
733

Note that the third line follows from Jensen’s inequality.734

Next, we show concentration around the mean in the standard way. Consider H(ZF ) as a735

Doob martingale on the independent random variables FS|z for z ∈ {0, 1}S̄ . Clearly, if F and736

F ′ only differ on single restriction of f to z, then |H(ZF )−H(ZF ′)| ≤ log(2|S̄|)+ln(2)
2|S̄| . Moreover,737

because F is random, these variables are independent. So, we can apply McDiarmid/Azuma’s738

inequality to get, for any t > 0:739

Pr
F

[E[H(ZF )]−H(ZF ) ≥ t] ≤ exp( 2t2
|S̄|+ln(2) ).740

J741

Plugging |S| = logn and t = n/2 into the above proposition we immediately get the742

following corollary.743

I Corollary 25. For any set S ⊆ [n] such that |S| = logn, if F : {0, 1}n → {0, 1} is a744

uniformly random function, then745

Pr[hS(F ) ≤ n/2] < exp(− n2

2(n− logn+ ln(2)) ) < exp(−n/2).746

A.2 Low Nečiporuk measure can be distinguished from random747

Next, we use the above to show that any function with Nečiporuk measure that is slightly less748

than maximal can be distinguished from a random function in time O(2n/10). It immediately749

follows that none of the classes whose functions have bounded Nečiporuk measure can contain750

exponentially-secure PRFs.751

The following theorem is implicit in Batu et al. [15].752

B Imported Theorem 26. There is an algorithm that given sample access to a distribution X753

supported on [N ], promised to either have “high” entropy (at least N/2) or “low” entropy (at754

most N/21), runs in time Õ(N1/100) and distinguishes which is the case with overwhelming755

probability.756

11 In more detail: Let M = #{0, 1}S̄ (number of balls) and N = #{0, 1}{0,1}
S

(number of bins).
Then, for k ∈ N we can see that Pr[ZFφ = k/M ] is the probability that exactly k out M balls
(or restrictions z ∈ {0, 1}S̄) hit the bin φ (which happens with probability 1/N). Thus, Pr[ZFφ =
k/M ] =

(
M
k

)
N−k(1− 1

N )M−k. Because this is simply a rescaled binomial distribution it follows that
E[ZFφ ] = 1

M ·
M
N = 1

N .
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I Remark 27. Batu et al. actually show how to multiplicatively approximate entropy within757

a factor of (1 + 2ε)γ (γ > 1, ε ∈ (0, 1/2]) given sample access in time O(N1/γ2
/ε2 logn) with758

constant failure probability when the distribution has entropy at least Ω(γ/η) for some small759

constant η ([15, Theorem 2]).760

To apply this to the low entropy case, it suffices to suffices to show min-entropy is greater761

than the constant assumed above. For these parameters, empirical estimates are more than762

efficient enough. In fact, [15, Lemma 2] says just that. Finally, correctness of these estimates763

can be amplified by taking the median/majority after poly logn repetitions.764

I Theorem 28. There is an algorithm running in time Õ(2n/100) that given oracle access765

to either a random function F : {0, 1}n → {0, 1} or any f : {0, 1}n → {0, 1} such that766

G(f) < n2

21 logn can distinguish between the two cases with overwhelming advantage.767

Proof. Note that if G(f) < n2

21 logn , then in particular
∑
Vi
gVi(f) < n2

21 logn for the partition768

(V1, . . . , Vn/ logn) of [n] into consecutive logn-bit blocks. Moreover, there must be some Vi769

such that hVi(f) ≤ gVi(f) < n/21.770

In contrast, Corollary 25 implies that for a uniformly random F , it holds with overwhelm-771

ing probability that for all i, hVi(F ) ≥ n/2.772

Additionally, for any i, it is possible to efficiently sample Zf,Vi by simply drawing773

z ← {0, 1}|V̄i| uniformly at random and evaluating fVi|z on all x ∈ {0, 1}Vi . Because774

|Vi| = logn, this procedure takes time poly(n).775

It follows that we can run the procedure from Imported Theorem 26 on all Vi in time776

Õ(2n/100). If the procedure outputs “High” on all Vi, then output “F .” Otherwise, output777

“f .” By Theorem 26 and the above observations, the procedure described will err with at778

most negligible probability. J779

I Remark 29. We note that for ε > 0 the above distinguisher can be modified to test on780

the partition V = (V1, . . . , Vm) where each Vi is a block of size ε logn (m = n
εn ) and again781

distinguish entropy that differs by constant factor in any block from nε/2, taking time O(2nε)782

overall. By Proposition 24 a random function will have Nečiporuk measure hVi(f) ≥ nε/2 for783

all Vi with high probability. It follows that an O(2nε)-secure PRF must have DRE complexity784

Ω(n1+ε/ logn).785

PRFs have high complexity.786

From Theorem 28, it almost immediately follows that there can be no exponentially-secure787

PRFs in any class to which Nečiporuk applies. This yields a host of lower bounds on PRF788

complexity that, to our knowledge, were not known before now.789

I Corollary 30. No exponentially-secure PRF has790

Decomposable Randomized Encodings of size o(n2/ logn),791

Binary formulas of size o(n2/ logn) over arbitrary basis,792

Deterministic branching programs of size o(n2/ log2 n),793

Switching networks of size o(n2/ log2 n),794

Non-deterministic branching programs of size o(n3/2/ logn),795

Parity branching programs of size o(n3/2/ logn),796

Span programs of size o(n3/2/ logn),797

Switching-and-rectifier networks of size o(n3/2/ logn).798
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B Deferred Proofs799

I Proposition 31. For any set S ⊆ [n] and a random function f : {0, 1}n → {0, 1},800

Prf [2gS(f) ≤ 2n−|S| − t] < exp(− 2t2
2n−|S| )801

This follows from a standard balls & bins argument, reproduced here for completeness.802

Proof. Recall that 2gV (f) = #{fS|z : z ∈ {0, 1}S̄}. If we let Yφ for φ : {0, 1}S → {0, 1} be803

the indicator random variable such that804

Yφ :=
{

1 if ∃z ∈ {0, 1}S̄ : fS|z = φ

0 otherwise
805

Then we can rewrite the above as,806

2gS(f) =
∑

φ:{0,1}S→{0,1}

Yφ.807

By linearity of expectation,808

E[2gS(f)] = E[
∑
φ

Yφ] =
∑
φ

E[Yφ] = 22|S| · 2|S̄|

22|S| = 2n−|S|.809

Finally, we consider 2gS(f) as a doob martingale on the independent random variables810

fS|z for z ∈ {0, 1}S̄ . Clearly, if f and f ′ only differ on single restriction of f to z, then811

|gS(f)− gS(f ′)| ≤ 1. Moreover, because f is random, these variables are independent. So,812

we can apply McDiarmid/Azuma’s inequality to get, for any t > 0:813

Pr
f

[E[2gS(f)]− 2gS(f) ≥ t] ≤ exp( 2t2
2|S̄| ).814

J815

In particular, if we take |S| = logn and t = 2n−logn−1, then Prf [gS(f) ≤ n− logn− 1] ≤816

exp(−2n−logn−1). This yields the following corollary via a union bound.817

I Corollary 32. For a random function f , Prf [G(f) ≤ n2/ logn− 2n] ≤ n
logn · exp(−2n−1)818
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