
Sequents and 
Trees 

Andrzej Indrzejczak

An Introduction to the Theory and 
Applications of Propositional Sequent 
Calculi

Studies in Universal Logic





Studies in Universal Logic

Series Editor

Jean-Yves Béziau, (Federal University of Rio de Janeiro, Rio de Janeiro, Brazil)

Editorial Board

Hajnal Andréka, (Hungarian Academy of Sciences, Budapest, Hungary)
Mark Burgin, (University of California, Los Angeles, CA, USA)
Răzvan Diaconescu, (Romanian Academy, Bucharest, Romania)
Andreas Herzig, (University Paul Sabatier, Toulouse, France)
Arnold Koslow, (City University of New York, New York, USA)
Jui-Lin Lee, (National Formosa University, Huwei Township, Taiwan)
Larissa Maksimova, (Russian Academy of Sciences, Novosibirsk, Russia)
Grzegorz Malinowski, (University of Lódz, Lódz, Poland)
Francesco Paoli, (University of Cagliari, Cagliari, Italy)
Darko Sarenac, (Colorado State University, Fort Collins, USA)
Peter Schröder-Heister, (University of Tübingen, Tübingen, Germany)
Vladimir Vasyukov, (Russian Academy of Sciences, Moscow, Russia)

This series is devoted to the universal approach to logic and the development of a
general theory of logics. It covers topics such as global set-ups for fundamental
theorems of logic and frameworks for the study of logics, in particular logical
matrices, Kripke structures, combination of logics, categorical logic, abstract
proof theory, consequence operators, and algebraic logic. It includes also books
with historical and philosophical discussions about the nature and scope of logic.
Three types of books will appear in the series: graduate textbooks, research
monographs, and volumes with contributed papers. All works are peer-reviewed to
meet the highest standards of scientific literature.

More information about this series at http://www.springer.com/series/7391

http://www.springer.com/series/7391


Andrzej Indrzejczak

Sequents and Trees
An Introduction to the Theory
and Applications of Propositional Sequent
Calculi



Andrzej Indrzejczak
Institute of Philosophy
University of Łódź
Łódź, Poland

ISSN 2297-0282 ISSN 2297-0290 (electronic)
Studies in Universal Logic
ISBN 978-3-030-57144-3 ISBN 978-3-030-57145-0 (eBook)
https://doi.org/10.1007/978-3-030-57145-0

Mathematics Subject Classification: 03F03, 03F05, 03F07, 03F52, 03B05, 03B35, 03B45, 03B50,
03B20, 03B53, 03B70

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered
company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-57145-0
https://www.birkhauser-science.com


Preface

There are a lot of excellent works in proof theory using various forms of
Sequent Calculi (SC) as the basic formal systems.1 This book is of a different
character. It is not a systematic exposition of proof theory using sequent
calculus but it is a methodological study of sequent calculi as such. Of course
it is not possible to present sequent calculi and their applications and to avoid
a presentation of important issues in proof theory. However, our aim is to
focus on the tools not on the results; the latter will serve as examples illus-
trating proof techniques developed in the framework of sequent calculi. In my
opinion sequent calculi are truly amazing kind of formal systems and they
deserve a separate study. In what follows we will present several variants of
rules and calculi, describe their merits and focus on their applications. In
particular, we will present in detail several methods of proving the most
important results like the cut-elimination theorem, completeness, decidabil-
ity, interpolation.

The book is elementary and self-contained. All technical details will be
introduced both formally and with informal explanations. Proofs will be
presented in detail but with a lot of gaps left as exercises for the careful
reader. As our aim is to show how to use sequent calculi we must underline
here that it is essential to do most of the exercises to gain a working
knowledge of the methods presented. There is a tendency in contemporary
works to present very general results. This is theoretically valuable but for a
novice it may be hard to follow. In this book we opt for a different route; we
rather present several case studies which are much simpler to grasp. After
careful study of such special cases, the general and uniform treatment of
broad classes of similar problems may be developed more easily.

We focus on proofs. Not so much on proofs in SC since their construc-
tion is rather simple and any reader who has worked with tableau systems
should have no problem with proof search in SC. We rather focus on proofs
of the most profound results concerning SC. We also want to show how easily

1For example: Takeuti [261] Troelstra and Schwichtenberg [264], Buss [43], Negri
and von Plato [185, 186], Bimbo [31] to mention just a few.
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SC may be used as a general and extremely elegant framework for doing
general metalogic, usually presented in the setting of axiom systems.

In particular, we are going to focus on different methods of proving the
cut-elimination (or admissibility) theorem which is one of the most important
results of proof theory established in the framework of SC. References to
Cut-Elimination Theorem (CET) are ubiquitous in the logical literature. One
may find them in so diverse fields as the foundations of mathematics, auto-
mated deduction, logical programming or philosophical logic. Despite the
widespread applications of this result, it is formulated in the specific frame-
work of sequent calculi and related systems like tableaux. Roughly speaking,
the cut-elimination theorem shows that every application of this important
rule called cut may be eliminated from any proof in SC for some logic or
theory. Although the rule of cut is in a sense essential for any SC, the pos-
sibility of its elimination yields many important consequences like consis-
tency, decidability, interpolation, for many logics and theories.

SC was developed in its modern form by Gerhard Gentzen [95] for
intuitionistic and classical logic in 1934, although the notion of a sequent was
introduced earlier by Paul Hertz [114]. In fact, Gentzen was primarily con-
cerned with Natural Deduction (ND) and SC was devised as a technical tool
for investigations on the structure of proofs in ND. Gentzen’s idea was not
only to provide rules of ND but also to show that every ND-proof may be
transformed into normal form (with no detours). However, he was able to
show it directly only for intuitionistic but not for classical logic, so he resigned
from its publication (see von Plato [197]). Instead he introduced SC for both
logics, proved that every proof in SC may be transformed into a cut-free
proof, and finally that this implies the existence of ND normal proofs for
every thesis of intuitionistic and classical logic.

Although SC was treated originally as a technical tool for investigations
on the properties of ND-proofs, soon it became of interest on its own for
researchers in proof theory like Ketonen [148], Curry [55, 56], Kleene [149], to
mention just a few names important for the earliest stage of development.

Since then many variants of SC were devised which are suitable for
dealing with various non-classical logics and formal theories. In addition,
many generalised versions of SC were provided like display calculi [25],
hypersequent calculi [10], many-sided SC [221] and the like. SC was also
influential in the field of investigation on automated proof search leading to
the invention of early forms of tableau calculi. The development of SC and its
methodology was particularly important for research on mathematical the-
ories and proofs [186], proof theory of non-classical logics [31], and investi-
gations on the philosophy of meaning (of logical constants) [229]. Summing
up, two things seem to be indisputable, that SC is a standard tool of modern
proof theory, and that the cut-elimination theorem is treated as the most
important result in the field.
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One may wonder why this result is so important that already Gentzen
used the name ‘Hauptsatz’ (the main theorem) for it. In fact, the rule of cut is
essential for any SC; Gentzen needed it for showing the equivalence of SC
with axiomatic formulations of intuitionistic and classical logic (namely for
the simulation of applications of Modus Ponens). This is not all—depending
on the interpretation of sequents, the cut rule may be seen as expressing the
transitivity of the consequence relation induced by SC, or as encoding the
process of using lemmata in proof construction, or even as expressing the
principle of bivalence (see section 1.8) On the other hand, it is welcome not to
have cut as a primitive rule of SC. Gentzen was well aware of the importance
of cut elimination and used it not only for showing the existence of normal
ND-proofs, but also for showing consistency and decidability of propositional
intuitionistic and classical logic. The list of important consequences of cut
elimination may be enlarged with many technical (e.g. automated deduction,
interpolation) and philosophical (e.g. analytic proofs, proof-theoretical
semantics) results. We will describe some of these consequences but the
main part of the book is concerned with an analysis of different proofs of cut
elimination as these methods are of interest on its own and provide beautiful
examples of the application of formal methods.

The Gentzen’s original proof is brilliant yet quite complicated. Since
then many other proof methods for CET were proposed. One can divide them
roughly into indirect (semantic) and direct (constructive) proofs. The former
show how to obtain cut-free proofs just from the beginning, whereas the latter
are based on syntactical transformations of proofs either of local (e.g.
Dragalin [64], Schütte [232]) or of global character (e.g. Curry [56], Buss [43]).
Some of the methods were suitably abstracted and generalised in order to
apply them in the framework of generalised variants of SC, and for many
non-classical logics.

Although we focus on the presentation of a variety of proofs of the
cut-elimination theorem, this book contains also a number of proofs of other
remarkable results. In particular, we provide numerous examples showing
that the application of SC yields simpler or more direct or elegant proofs of
well-known results like Kalmar’s or Henkin’s proofs of completeness. We
believe that a reader, even if well acquainted with SC and its applications,
will find also some relatively new things. In particular, connections between
invertibility and permutability of rules, confluence, proof search and decid-
ability of systems are described in detail. Some of the proofs may seem dif-
ficult to follow. In order to make their understanding easier a lot of details,
usually omitted, are explicitly stated. Following Bertrand Russell’s (or per-
haps Albert Einstein’s) advice, I was trying to put things as simple as possible
but not simpler.

In chapter 1, after a brief introduction to classical propositional logic,
we present the simple sequent calculus K and its features like the invertibility
of all rules. Sequents in K are built from sets of formulae which simplify some
proofs considerably and make it particularly well-behaved for beginners. We
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will show several proofs of completeness for K, a simple proof of admissibility
of cut rule, as well as a proof of decidability. The chapter ends with consid-
erations of strong completeness and cut elimination in the presence of addi-
tional axiomatic sequents.

Chapter 2 is concerned with Gentzen’s original system LK which signifi-
cantly differs from K. Sequents of LK are built from finite lists of formulae,
many rules have different shapes and are not invertible and, in addition to
rules for the connectives, there are special structural rules. This chapter
contains a presentation of many proofs of eliminability or admissibility of cut
and their analysis. Moreover, questions of the generation of equivalent rules
and permutability of rules are discussed.

Chapter 3 introduces calculus G3 which is similar to K but allows for a
more subtle analysis of proof structure. Several admissibility results for
structural rules are presented and some more proofs of cut admissibility of
different sorts. Moreover, this chapter contains a discussion of different
interpretations of sequents as well as a presentation of types of sequent calculi
and sequent rules. Additionally some constructive proofs of the interpolation
theorem are presented.

The last two chapters show how SC may be applied to non-classical
logics. They are more concise in comparison with the three chapters devoted
to classical propositional logic and strongly dependent on the results pre-
sented earlier. The focus is on the presentation of a variety of approaches and
a variety of techniques for resolving problems. We try to be comprehensive,
but of course it was unavoidable to refrain from presenting many interesting
and important results. In many places we decided to present in more detail
things which are not widely known and sometimes not easily accessible but
interesting in the Author’s opinion. On the other hand, many important but
well-documented issues are only mentioned with references to accessible
sources.

In chapter 4 we focus on a few modal logics which are extensions of
classical logic. It is shown how standard techniques may be extended to logics
which require rules of a different kind from those of classical logic. Since for
some modal logics standard solutions do not work, we must introduce gen-
eralised sequent calculi. This is illustrated on the basis of S5, one of the most
important modal logics.

In chapter 5 we are concerned with non-classical logics which are weaker
than classical logic. We discuss applications of SC to intuitionistic, sub-
structural (including relevant logics) and many-valued logics. In each case
the problems connected with the extension of standard solutions are dis-
cussed and some generalised sequent calculi are introduced that are well
suited for the particular logics under consideration. In both chapters we focus
on the cut-elimination theorem but other issues like proof search and
decidability are also discussed.
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Let me finish with a comment concerning the restriction of this volume
to propositional logics. It was mainly connected with the aim of presenting
essential methods and techniques of SC without being involved in discussing
too many details concerning richer languages and semantic structures.
However, a continuation of this volume is in progress which will be devoted to
the applications of sequent calculi to quantified logics, including some
non-classical ones, to logics in extended languages, and to some important
applications to mathematical theories. In a similar way this sequel is planned
as a series of detailed case studies showing the scope of applications, their
limitations and ways of overcoming problems.

Parts of this book are based on my earlier publications, in particular:
Sections 1.6–1.10, 2.1–2.2, 2.4–2.5, 3.1–3.3 are partially based on my

book (in Polish) ‘Sequent Calculi in Classical Logic’ published in 2013 by the
University of Lodz Publishers.

Section 3.5 is partially based on [133].
Parts of sect 4.5 are based on [138] and [139].
Parts of sect 4.7 are based on Bednarska and Indrzejczak [24].

Łódź, Poland
2019

Andrzej Indrzejczak
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Chapter 1

Analytic Sequent Calculus for
CPL

The sequent calculus was invented by Gerhard Gentzen in the 1930s and since then
many variants of this system were proposed. In what follows we will be using a
generic term ‘sequent calculus’ (SC) and specific names for some concrete variants.
We start our considerations not with the Gentzen’s original system LK but with
the system K which is essentially due to Oiva Ketonen. K differs from Gentzen’s
original calculus in many respects, concerning the rules and even the notion of a
sequent. However, the system K is better suited as a starting point for showing the
most important techniques and results developed for sequent calculi, as we are not
disturbed with too many technical details. The presentation of Gentzen’s calculus
LK is postponed to chapter 2.

In this chapter we start with semantical and axiomatic presentations of clas-
sical propositional logic CPL. In section 1.2 we introduce the notion of a sequent
and sequent rules of the calculus K. Proofs and derivations in K (as well as in any
other SC) will be characterised and illustrated with a few examples in section 1.3.
The problem of additional, derivable and admissible, rules is discussed in section
1.4, where also a notion of invertibility of rules is presented. Section 1.5 contains
a simple proof that K adequately characterises CPL, whereas the next section dis-
cusses the decision procedures at length. In section 1.7 a different kind of proof of
completeness is presented which is more general than that of section 1.5. In brief,
sections 1.2–1.7 contain a presentation of essential features and techniques of the
analytic form of SC.

Section 1.8 introduces the cut rule, one of the most important rules in the
framework of SC, and we prove that this rule is admissible in K. Cut itself destroys
the analytic character of K but enables additional important applications of SC. As
an illustration of advantages of having cut, a purely syntactical proof of equivalence
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2 Chapter 1. Analytic Sequent Calculus for CPL

of K with an axiomatic characterisation of CPL is demonstrated in section 1.9.
The next section shows that in the presence of cut we can also apply standard
Henkin-style techniques for proving the completeness of K. However, such a proof
is not constructive and not analytic in the sense explained in section 1.7. Finally
in section 1.11 we take up a problem of taking control of the applications of cut in
proofs. In particular, we present a slightly modified completeness proof with some
restrictions on the applications of cut which restore analyticity. Moreover, we show
that in the presence of (restricted) cut we can strengthen the completeness result
of section 1.7 to cover theories and to prove the interpolation theorem. This section
contains also a brief discussion of some other advantages of cut connected to the
complexity of proofs.

1.1 The Classical Propositional Calculus

Let us recall some basic facts concerning CPL since most of the material of this
volume works on sequent formalizations of this logic. The reader may skip this sec-
tion and take a look at it when necessary to understand notation and conventions
that will be used extensively in the text.

1.1.1 Language

In what follows we will use a rather standard form of a propositional language for
classical logic. Let LCPL denote an abstract algebra of formulae:

〈FOR,¬,∧,∨,→〉 (1.1)

with a denumerable set of propositional symbols, also called the atomic formulae
(or just atoms).

PROP = { p, q, r, . . . , p1, q1, . . .} ⊆ FOR (1.2)

Operations of this algebra correspond to the well-known functors (connectives) of
negation, conjunction, disjunction and implication. The signs ϕ, ψ, χ, ... will be
used to denote any formulae in LCPL and in each language considered further.
Γ,Δ,Π,Σ, ... will be used to denote sets (or multisets or lists in later chapters) of
formulae. For unary functors we will use prefix notation, and for binary functors
— infix notation; in particular the rules for generating the set FOR of all formulae
of CPL look as follows:

• if ϕ ∈ FOR, then ¬ϕ ∈ FOR;

• if ϕ ∈ FOR and ψ ∈ FOR, then (ϕ 	 ψ) ∈ FOR, where 	 ∈ {∧,∨,→}
Incidentally, we will use also propositional constants: ⊥,� and binary equiv-

alence connective ↔, defined in a standard way:
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Definition 1.1. (⊥,�,↔).

⊥ := p ∧ ¬p; � := ¬⊥
ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ)

To limit the number of necessary parentheses, we employ a convention concerning
the strength of argument’s binding. For binary functors we assume that ∧ binds
tighter than ∨, and ∨ binds tighter than →1. Negation, and all unary functors
in general, are assumed to bind their arguments tighter than binary functors.
Additionally we omit outer parentheses for any formula and inner parentheses in
case of many occurrences of associative operations like conjunction or disjunction
(we admit in this way n-ary conjunctions and disjunctions for n > 2). Thus:

p ∨ ¬q ∧ r → p ∧ ¬s ∨ q ∧ s ∧ t

is a legal abbreviation of the official:

((p ∨ (¬q ∧ r)) → ((p ∧ ¬s) ∨ (q ∧ (s ∧ t))))

Let us define some special types of formulae:

Definition 1.2. (Normal forms).

• An atom or its negation is called a literal (positive or negative).

• An n-ary conjunction of literals is an elementary conjunction.

• An n-ary disjunction of literals is a clause.

• Horn clause is a clause with at most one positive literal (atom).

• A formula is in conjunctive normal form (CNF) iff it is a conjunction of
clauses.

• A formula is in disjunctive normal form (DNF) iff it is a disjunction of
elementary conjunctions.

Remark 1.1. Notice that in case of clauses, elementary conjunctions and normal
forms we admit as a special case one-element (reduced) conjunctions and disjunc-
tions. For example, p is at the same time a clause (a Horn clause in particular),
an elementary conjunction and a formula in CNF or DNF; p ∨ q is a clause (but
not a Horn clause), but also a formula in CNF (a one-element conjunction) and
in DNF (two-element disjunction of one-element elementary conjunctions). Notice
also that if ⊥ and � are in use they are also treated as literals.

A set of atoms occurring in a formula or a set of formulae will be denoted by
PROP (ϕ) or PROP (Γ). A set of subformulae of ϕ or Γ will be denoted by SF (ϕ)
(SF (Γ)) and the complexity of a formula as c(ϕ). These notions are defined as
follows:

1In case we use the additional functor ↔, we assume that → binds tighter than ↔.
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Definition 1.3. (Subformulae, complexity).

• for ϕ ∈ PROP , SF (ϕ) = {ϕ} and c(ϕ) = 0;

• for ϕ := ¬ψ, SF (ϕ) = {ϕ} ∪ SF (ψ) and c(ϕ) = c(ψ) + 1;

• for ϕ := ψ 	 χ, where 	 ∈ {∧,∨,→}, SF (ϕ) = {ϕ} ∪ SF (ψ) ∪ SF (χ) and
c(ϕ) = c(ψ) + c(χ) + 1;

• SF (Γ) =
⋃{SF (ϕ) : ϕ ∈ Γ}.

ψ and χ are immediate subformulae of ϕ, and ϕ is (the only) improper
subformula of itself.

1.1.2 Semantics

We will interpret the language of CPL by means of valuations, these being map-
pings of the form: V : PROP −→ {1, 0}, where 1 is interpreted as truth and 0 as
falsity. Every valuation uniquely determines an interpretational structure (a model
M) for the whole language. It is specified by means of a satisfaction relation � in
the following way:

M � ϕ iff V (ϕ) = 1, for any ϕ ∈ PROP
M � ¬ϕ iff M � ϕ
M � ϕ ∧ ψ iff M � ϕ and M � ψ
M � ϕ ∨ ψ iff M � ϕ or M � ψ
M � ϕ → ψ iff M � ϕ or M � ψ

Hence M � ϕ means that a formula ϕ is true (satisfied) in the model M, or
simply that M is a model of ϕ. M � ϕ means that a formula ϕ is false (falsified)
in this model. M � Γ means that M � ψ for every ψ ∈ Γ. M � Γ means that at
least one formula in Γ is false in this model. Below we display the most important
semantical notions:

Definition 1.4. • ϕ (or Γ) is satisfiable iff there exists a model in which it is
satisfied (it has a model);

• ϕ (Γ) is falsifiable iff there exists a model in which it is false;

• ϕ (Γ) is unsatisfiable iff no model satisfies it;

• ϕ is valid (tautology) (|= ϕ) iff M � ϕ, for every M;

• ϕ logically follows from Γ, or is a logical consequence of Γ(Γ |= ϕ) iff M � Γ
implies M � ϕ, for every M.

�|= ϕ denotes an invalid formula and Γ �|= ϕ means that ϕ does not follow from Γ.

Let us notice the following:

Claim 1.1. • �|= ϕ iff ϕ is falsifiable iff ¬ϕ is satisfiable.
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• Γ |= ϕ iff Γ ∪ {¬ϕ} is unsatisfiable.

Claim 1.2. 1. For any clause ϕ, |= ϕ iff it contains some atom and its negation.

2. For any ϕ in CNF, |= ϕ iff |= ψ, for any clause ψ which is an element of ϕ.

1.1.3 Axiomatization

The earliest, and still the most popular, syntactic style of defining logics was ax-
iomatic, especially in the form provided by Hilbert. An axiomatic system consists
of two sets: (schemata of) axioms and rules. In what follows such systems, after
Hilbert will be called H-systems (although the name ‘Frege systems’ is also popu-
lar). We do not aim to focus on axiomatic formalizations and their properties, but
it is handy to specify some concrete system for further references. Any axiomatic
(or Hilbert) formalisation of the logic L will be denoted as H-L. In particular our
chosen H-CPL consists of a single rule called MP (Modus Ponens) which allows us
to deduce (a conclusion) ψ from (the premisses) ϕ → ψ and ϕ, and the following
(schemata of) axioms:

1 ϕ → (ψ → ϕ)
2 (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ))
3 ϕ ∧ ψ → ϕ; and ϕ ∧ ψ → ψ
4 ϕ → (ψ → ϕ ∧ ψ)
5 ϕ → ϕ ∨ ψ; and ψ → ϕ ∨ ψ
6 (ϕ → χ) → ((ψ → χ) → (ϕ ∨ ψ → χ))
7 (¬ϕ → ¬ψ) → (ψ → ϕ)

Remark 1.2. It is an invariant version of an axiomatic system in which instead of a
finite set of axioms in the object language we are using a set of schemata of axioms
in the metalanguage. As a result the set of axioms is infinite, but we do not need
a rule of substitution (for propositional symbols) as primitive. In what follows, for
simplicity both schemata and their concrete instances in the object language will
be called axioms.

The key notion of the provability (deducibility, derivability) relation (�),
and the related notions of a thesis (of CPL) and consistency, may be defined in
the following way:

Definition 1.5. • Γ � ϕ iff there is a finite sequence of formulae (a proof) in
which the last element is ϕ and every element is either:

1. an instance of an axiom, or

2. an element of Γ(assumption), or

3. a result of application of MP to earlier elements in the sequence.

• � ϕ iff ∅ � ϕ(ϕ is a thesis)

• Γ is inconsistent iff Γ � ⊥, otherwise it is consistent.
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Remark 1.3. Usually a symbol � occurs with indices denoting a kind of a sys-
tem or a logic, like �H ,�H−L,�S

L; for simplicity we apply these decorations only
when there is a risk of confusion, i.e. when we compare different relations (logics,
systems).

Note the following properties of �:

Lemma 1.1. 1. if ϕ ∈ Γ, then Γ � ϕ

2. if Γ � ϕ and Γ ⊆ Δ, then Δ � ϕ

3. � ϕ iff Γ � ϕ, for any set Γ

4. if Γ � ϕ and Δ, ϕ � ψ, then Γ,Δ � ψ

5. Γ � ϕ iff Δ � ϕ, for some finite Δ ⊆ Γ

6. Γ, ϕ � ψ iff Γ � ϕ → ψ

7. if Γ,¬ϕ � ϕ, then Γ � ϕ

8. if Γ, ϕ � ¬ϕ, then Γ � ¬ϕ

9. Γ,¬ϕ � ⊥ iff Γ � ϕ

10. if Γ, ϕ � ψ and Δ,¬ϕ � ψ, then Γ,Δ � ψ

11. if Γ, ϕ � ψ and Δ, ϕ � ¬ψ, then Γ,Δ � ¬ϕ

12. if Γ � ϕ and Δ � ¬ϕ, then Γ,Δ � ψ, for any ψ

13. Γ, ϕ, ψ � χ iff Γ, ϕ ∧ ψ � χ

14. if Γ � ϕ ∨ ψ and Δ, ϕ � χ and Π, ψ � χ, then Γ,Δ,Π � χ

15. if � ϕ ↔ ψ, then � χ ↔ χ[ϕ//ψ], where χ[ϕ//ψ] means that at least one
occurrence of ϕ in χ is replaced by ψ.

We omit the (mostly easy) proofs of these properties; more involved (inductive)
proofs of (one-half of) the point 6 and 15 are displayed in the Appendix. Note
that the last point is the extensionality principle, that the left-right implication of
6 is the deduction theorem (DT), and that its converse expresses the closure of �
under MP which may be equivalently stated:

1. ϕ,ϕ → ψ � ψ (inferential MP)

2. if Γ � ϕ and Δ � ϕ → ψ, then Γ,Δ � ψ (deductive MP)

The system presented above is an adequate formalisation of CPL. We recall that
the link between H-systems (and syntactic formalizations in general) and suitable
classes of models is obtained via soundness and completeness theorems of the form:

• (Soundness) if Γ � ϕ, then Γ |= ϕ

• (Completeness) if Γ |= ϕ, then Γ � ϕ
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The last one is often formulated equivalently:

• if Γ is consistent, then Γ is satisfiable.

If the first theorem holds, then the system is sound with respect to a suitable class
of models, if the second holds, then it is (strongly) complete. It is adequate if it
is both sound and complete. Note that if Γ is empty or finite, weak completeness
holds, otherwise we have a strong form (i.e. admitting infinite Γ).

Standard proofs of completeness apply the well-known construction of a
model due to Henkin (based on Lindenbaum’s earlier result). Essentially, it con-
sists in showing that there is a unique infinite model that falsifies every formula
unprovable in CPL. This method of proof is therefore not constructive. For ques-
tions of decidability and automated theorem proving it is more important that
there are constructive methods of proving completeness. They show how to find
for any unprovable formula some finite falsifying model.

CPL is a decidable logic, in the sense that there is an effective procedure
which, for every ϕ ∈ LCPL, resolves whether it is a tautology of this logic or not.
This is a special case of the decision problem generally called the validity problem
for a logic L. Very often the decidability of some logic L is posed as the so called
satisfiability problem (or shortly, sat-problem) for L: given ϕ in the language of
this logic, decide whether ϕ is satisfiable (in this logic). Clearly, these instances of
the decision problem are complementary since, for every logic considered in this
volume, it holds that |= ϕ iff ¬ϕ is not satisfiable. Hence, for any logic, the validity
problem is decidable iff the sat-problem is decidable.

The notion of an effective procedure, or algorithm, used in the characterisa-
tion of decidability needs some explanation. There are plenty of formal explications
of it, in terms of Turing machines, Markov algorithms, recursive functions, etc., to
mention just the oldest and the most popular. Advanced investigations on these
mathematical models of effectiveness form the core of computability theory. In this
book we do not need any formal treatment of these matters, however. Informally, it
must be a method which is mechanical (it works without any need for ingenuity),
fair (it does what it is assumed to do for every input) and terminating (it works in
finite time). On the other hand, in all mathematical models of effective procedure
no real bounds are put on the time of performance or amount of memory needed
to store the data. Hence effective is not the same as efficient. Investigations on
practical (time and space) requirements of algorithms, and the classification of
decidable problems belong to complexity theory.

1.2 Sequent Calculus

There are many sequent calculi with different rules and features. However, any SC
may be roughly described as a collection of (schemata) of rules of the form:

S1, ...., Sn / Sn+1, n ≥ 0,
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where any Si is a sequent. In case n = 0 we call Sn+1 an axiomatic sequent;
otherwise it is a conclusion of a rule and S1, ..., Sn are premisses. As we will see,
what is common (and fundamental) to different versions of SC is the notion of a
sequent.

1.2.1 Sequents and their Interpretation

Sequents are ordered pairs of the form Γ ⇒ Δ (or ϕ1, ..., ϕk ⇒ ψ1, ..., ψn, with
k ≥ 0, n ≥ 0). Γ is called the antecedent and Δ the succedent of a sequent with
Γ,Δ being finite sets of formulae2.

In order to understand the meaning of a sequent it is good to appeal to
Gentzen’s original interpretation by changing sequents into formulae, thus:

• any sequent ϕ1, ..., ϕi ⇒ ψ1, ..., ψk with i > 0, k > 0 may be interpreted as a
formula ϕ1 ∧ ... ∧ ϕi → ψ1 ∨ ... ∨ ψk;

• in case i = 1 or k = 1 we have a reduced (one-element) conjunction or
disjunction; the latter case is the common treatment of intuitionistic sequents;

• the empty antecedent is interpreted as �, the empty succedent as ⊥.

In what follows we will use I(S) for a formula that results from Gentzen’s
transformation of a sequent S. Note that in this interpretation a sequent with
empty antecedent and succedent denotes simply ⊥, since � → ⊥ ↔ ¬� ∨ ⊥ ↔
⊥∨⊥ ↔ ⊥. One may provide many other (syntactical) interpretations of sequents
(cf. Paoli [193]). Of particular importance is the interpretation of ⇒ as a kind of
consequence relation induced by SC (see Scott [234], Shoesmith and Smiley [238]).
In the basic form it reads:

Γ �s Δ iff for some finite Γ′ ⊆ Γ and Δ′ ⊆ Δ there is a proof of Γ′ ⇒ Δ′ .

Of course in order for this characterisation to be meaningful, we must have
a notion of a calculus and a proof of a sequent in it. This will be given below.

We can characterise sequents also semantically in terms of truth and validity.
Let M be a classical propositional model (extended valuation), we say that:

• S is true (satisfied) in M, or M is a model of S (M � S) iff at least one
formula in the antecedent is false, or at least one in the succedent is true;

• S is falsified in M (M � S) iff all formulae in the antecedent are true and all
in the succedent false;

• S is valid (|= S) iff it is true in every interpretation.

Exercise 1.1. Prove that S is true in M iff I(S) is true in M.

2Later we will introduce sequents built from different data structures like multisets or finite
lists.
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1.2.2 System K

The first sequent calculus introduced in this book is not the original system of
Gentzen. We start with a simplified version called K after Aiva Ketonen who first
proposed a similar variant of SC in [148]. Our system K for CPL consists of the
following logical rules:

(¬⇒) Γ⇒ Δ, ϕ
¬ϕ,Γ⇒ Δ (⇒¬) ϕ,Γ⇒ Δ

Γ⇒ Δ,¬ϕ

(∧⇒) ϕ,ψ,Γ⇒ Δ
ϕ∧ψ,Γ⇒ Δ (⇒∧) Γ⇒ Δ, ϕ Γ⇒ Δ, ψ

Γ⇒ Δ, ϕ∧ψ

(⇒∨) Γ⇒ Δ, ϕ, ψ
Γ⇒ Δ, ϕ∨ψ

(∨⇒) ϕ,Γ⇒ Δ ψ,Γ⇒ Δ
ϕ∨ψ,Γ⇒ Δ

(⇒→) ϕ,Γ⇒ Δ, ψ
Γ⇒ Δ, ϕ→ψ

(→⇒) Γ⇒ Δ, ϕ ψ,Γ⇒ Δ
ϕ→ψ,Γ⇒ Δ

There is only one type of axiomatic sequents of the form: Γ ⇒ Δ where Γ∩Δ
is nonempty.

One should notice a remarkable symmetry involved in the system. Every
logical constant is characterised by means of a pair of rules introducing a formula
with this constant either to the antecedent or to the succedent. Moreover, no other
occurrences of any constant are displayed.

It is useful to introduce some terminology for the formulae that are displayed
in the schemata of rules:

• A formula introduced by the application of a logical rule is the principal
formula of this rule application.

• Formulae used for the derivation of the principal formula are side formulae
of this rule application.

• All other elements of Γ and Δ are parametric formulae or the context of this
rule application.

• The principal and side formulae are the active formulae of this rule application.

By convention we take the formula which occurs on both sides of any ax-
iomatic sequent as an active formula. It is immediate that all rules satisfy the
principle of distributivity: every formula in any instance of a rule is either a para-
metric or a principal or a side formula. There is also an important connection
between formulae in premisses and conclusions. The former are immediate an-
cestors of the latter in the following sense: the side formulae are the immediate
ancestors of the principal formula and every parametric formula in premisses is an
immediate ancestor of the same parametric formula in the conclusion. A converse
of this relation is that of immediate descendant. As for parameters a relation of
congruence holds between them in the sense that every parameter in the conclusion
is congruent to itself and to all ancestors in all premisses.
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Example 1.1.
p ∧ q, q → r ⇒ ¬q, p → r p ∧ q, q → r ⇒ ¬q,¬s

p ∧ q, q → r ⇒ ¬q, (p → r) ∧ ¬s

provides an illustration of the application of (⇒ ∧) with p → r and ¬s as side
formulae, (p → r) ∧ ¬s—the principal formula, and p ∧ q, q → r,¬q—parametric
formulae. The identification of ancestors and congruent formulae is obvious.

One may notice two important features of the rules of K: the subformula
property and validity-preservation.

Subformula property: If some formula occurs in a premiss, it occurs in the conclu-
sion as a parameter or as a subformula of the principal formula. We can say that
SC has this property if all its (primitive) rules have it.

This is an extremely important property which for K may be verified by
inspection. A particular consequence of this feature is that each premiss is always
less complex than the respective conclusion, in the sense of having one occurrence
of some connective deleted. We will see (in sections 1.3 and 1.6) that this feature
has a strong impact on proof search in K (and other SC with the subformula
property). At this place we note some interesting consequence of the subformula
property which is more theoretical, namely separability. We say that SC has a
property of separation for a constant � iff every provable S with no occurrence of
� has a proof with no application of rules for �.

It is easy to prove:

Claim 1.3. If SC has the subformula property, then it has a property of separation
for all constants.

Proof: Assume that � does not occur in S. If a rule introducing � would be applied
in the proof of S, then by the subformula property this introduced occurrence of
� would be present in S—contradiction. �

The second important property is semantic:

Validity-preservation: If all premisses are valid, then the conclusion is valid.

We prove that it holds for K.

Lemma 1.2. (Validity-preservation). All rules of K are validity-preserving in CPL.

Proof: We provide one example for (→⇒).
Assume that |= Γ ⇒ Δ, ϕ and |= ψ,Γ ⇒ Δ but �|= ϕ → ψ,Γ ⇒ Δ. So in some

M both ϕ → ψ and all elements of Γ are true but all elements of Δ are false. If
M � ϕ → ψ, then M � ϕ or M � ψ. Both cases lead to contradiction since either
the left or the right premiss must be falsified by M. �
Exercise 1.2. Prove the remaining 7 cases.

In fact, for all rules of K one may show also a weaker semantical feature which
we call normality or truth-preservation. Let us say that a rule is normal whenever,
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if all premisses are true in some M, then the conclusion is true in the same M.

Exercise 1.3. 1. Prove that all rules of K are normal.

2. Show that every normal rule is also validity-preserving.

1.3 Proofs and Derivations

Proofs in SC are usually built as trees of sequents (i.e. with nodes labelled with
sequents) with axioms as leaves and the proven sequent as a root. Formally this
notion may be defined inductively as follows:

1. An axiomatic sequent S is a proof of a sequent S.

2. If D is a proof of a sequent S, then D
S′ is a proof of a sequent S′, provided

that S is an instance of the premiss and S′ an instance of the conclusion of
some one-premiss rule.

3. If D is a proof of a sequent S and D′ is a proof of a sequent S′, then
D D′

S′′ is a proof of a sequent S′′, provided that S and S′ are instances of
the premisses and S′′ an instance of the conclusion of some two-premiss rule.

We can relax the definition of a proof in K (or any SC) by admitting any sequents
(not only axiomatic ones) as leaves of a tree. In this case we say that there is a
derivation of S from S1, ..., Sn. So a derivation of S from S1, ..., Sn is a tree where
some leaves are decorated with sequents that are not axioms but belong to the
list S1, ..., Sn. If n = 0 we have a proof of S as a special case of a derivation. In
semantical terms we will say that S logically follows from S1, ..., Sn (S1, ..., Sn |= S)
iff S is satisfied in every model in which all S1, ..., Sn are satisfied. In what follows
we will be often using the term derivation as covering proofs as a special case.

Note that the notion of immediate ancestor (descendant) may be naturally
extended on proofs as the transitive closures of the relation of immediate ances-
try (descendancy). In a similar way we may generalise the notion of congruency
between parameters from the level of rules to the level of derivations.

We will use the symbol � S if there is a proof of S in K (or any other SC) and
in case of a derivation we will write S1, ..., Sn � S. Although this is a different
sense of derivability than that considered for axiomatic systems or induced by
⇒ for SC (see �s in subsection 1.2.1), the application of the same sign � should
not lead to misunderstanding. Note however that it is possible to define different
relations of logical consequence on the basis of SC. In particular, we may introduce
a consequence relation between sequents and this is just what we have done. From
now on this meaning of � will be the basic one in the framework of SC. In case of a
tree D that is a proof (or a derivation) of S we will write D � S or S1, ..., Sn �D S.



12 Chapter 1. Analytic Sequent Calculus for CPL

Another handy concept is that of a subtree of a tree of sequents. A single

sequent is its only subtree. If S has a proof (a derivation) D of the form D′
S

,
then D itself is its (improper) subtree as well as D′ and all its subtrees. Note that
the subtrees of a tree of sequents are in natural one-one correspondence with all
sequents in this tree in the sense that every subtree of a proof (derivation) is also a
proof (derivation) of its root sequent. In particular, a subtree of a derivation may
be a proof of its root sequent.

Remark 1.4. We have stressed that the new usage of � is a bit different since no
object on the left or right side of � is a formula. However, as we pointed out, this
ambiguity should not lead to misunderstandings and seems to be a better solution
than the addition of a new sign. Anyway, we should provide some explanation
concerning this special application of �, since sequents are not the items we meet
in standard axiomatic or natural deduction systems, where we are proving theses
or demonstrate derivability from assumptions. Also in the semantic framework
we rather speak about tautologies or valid formulae and about relations of con-
sequence or entailment. How to relate SC to this more common approach? It is
straightforward in case of theses: we can say that ϕ is a thesis if � ⇒ ϕ.

What about consequence relations in Tarski’s sense, i.e. holding between for-
mulae? One possible answer was suggested in section 1.2.1 where ⇒ was identified
with some such relation �s (Scott’s relation). Leaving aside the problem that on
the right side of �s we have a set of formulae, not a single formula as in the
standard (Tarski-style) approach, this is a reasonable option3. If we want to have
something more resembling a Tarski-style relation we can say that ϕ is derivable
from Γ (Γ �t ϕ) iff � Γ′ ⇒ ϕ for some finite Γ′ ⊆ Γ. We have used �t (‘t’ for
‘truth’) to denote this kind of a Tarski-style consequence relation leaving � for the
derivability relation between sequents.

It is certainly not the only way one can define a Tarski-style consequence
relation on the basis of K, or any other SC. Avron [9] provides another one: Γ �v ϕ
iff ⇒ ψ1, ...,⇒ ψk �⇒ ϕ, for {ψ1, ..., ψk} ⊆ Γ. In fact, in case of K, �t and �v (‘v’
for validity) coincide, which will be shown in subsection 1.9.2. For the time being
we may notice only the obvious consequence of our definitions: �t ϕ iff �v ϕ iff
�⇒ ϕ.

1.3.1 Constructing Proofs

In order to obtain a mastery in using SC we must try to construct proofs. But
how to do it? Let us analyse an example.

Example 1.2. A proof of Frege’s syllogism:

3In the appendix we will consider the problem of generalised theory of consequence relations
defined between sets of formulae.
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p → q, p ⇒ r, p

p ⇒ r, q, p q, p ⇒ r, q
(→⇒) p → q, p ⇒ r, q r, p → q, p ⇒ r

(→⇒)q → r, p → q, p ⇒ r
(→⇒)

p → (q → r), p → q, p ⇒ r
(⇒→)

p → (q → r), p → q ⇒ p → r
(⇒→)

p → (q → r) ⇒ (p → q) → (p → r)
(⇒→)⇒ (p → (q → r)) → ((p → q) → (p → r))

A tree displays a ready proof but the important issue is how to find it. As
with many things here too, there is a great difference between a process (here of
proving) and a result (here a proof). The great advantage of SC (K in particular)
over axiomatic systems is the possibility of easy proof search. One may start not
with the axioms but with a sequent to be proved and proceed in a root-first manner,
i.e. by applying all possible rules upside-down, from conclusion to premisses. We
will illustrate this with a proof of a thesis (p → q ∨ r) → (p → q) ∨ (p → r). If we
start a root-first proof search we first obtain:

p → q ∨ r ⇒ (p → q) ∨ (p → r)
(⇒→)⇒ (p → q ∨ r) → (p → q) ∨ (p → r)

Now we have a choice: either to apply (→⇒) or (⇒ ∨). In general, we should
first apply a nonbranching rule which leads to p → q∨r ⇒ p → q, p → r and three
choices of what to do next. Again we prefer the nonbranching rule (⇒→) which
after two applications gives p → q ∨ r, p ⇒ q, r, and nothing can save us from the
application of (→⇒). We get:

p ⇒ q, r, p q ∨ r, p ⇒ q, r
(→⇒)

p → q ∨ r, p ⇒ q, r
(⇒→)

p → q ∨ r, p ⇒ q, p → r
(⇒→)

p → q ∨ r ⇒ p → q, p → r
(⇒ ∨)

p → q ∨ r ⇒ (p → q) ∨ (p → r)
(⇒→)⇒ (p → q ∨ r) → (p → q) ∨ (p → r)

The leftmost sequent is an axiom so we must only apply (∨ ⇒) to the right
branch and obtain a proof:

p ⇒ q, r, p
q, p ⇒ q, r r, p ⇒ q, r

(∨ ⇒)
q ∨ r, p ⇒ q, r

(→⇒)
p → q ∨ r, p ⇒ q, r

(⇒→)
p → q ∨ r, p ⇒ q, p → r

(⇒→)
p → q ∨ r ⇒ p → q, p → r

(⇒ ∨)
p → q ∨ r ⇒ (p → q) ∨ (p → r)

(⇒→)⇒ (p → q ∨ r) → (p → q) ∨ (p → r)

Why do we not use branching rules first? Do we obtain a different result?
No – if something is provable it may be provable in many ways so we also will find
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a proof but more complicated one. Let us suppose that we apply the strategy of
always first applying a rule to the leftmost complex formula. Then we obtain the
following proof of the same thesis:

p ⇒q, p → r, p
(⇒→) ⇒ p → q, p → r, p

(⇒ ∨)
⇒ (p → q)∨ (p → r), p

q, p ⇒ q, p → r
(⇒→)

q ⇒p → q, p → r
(⇒ ∨)

q ⇒(p → q) ∨ (p → r)

r, p ⇒q, r
(⇒→)

r, p ⇒q, p → r
(⇒→)

r ⇒p → q, p → r
(⇒∨)

r ⇒ (p → q) ∨ (p → r)
(∨ ⇒)

q ∨ r⇒ (p → q) ∨ (p → r)
(∨ ⇒)

p → q ∨ r ⇒ (p → q) ∨ (p → r)
(⇒→)⇒ (p → q ∨ r) → (p → q) ∨ (p → r)

Not much bigger than the preceding one (13 sequents versus 9) but we may
easily find cases where the difference is really significant. Of course in this way we
can build proofs not only for theses but for any provable sequents.

Exercise 1.4. Construct proofs for the following sequents:

⇒ (p → q) ∨ (¬p → ¬q)
⇒ ¬(p ∧ q) → (q → ¬p)
¬p → q ∧ r, q → (r → s) ⇒ p ∨ s
p → q ∨ r, q → s ⇒ ¬(r → s), p → s

1.3.2 Disproofs

In fact we can use K not only for proving what is provable. The same method may
be applied for testing if a sequent is provable and showing its unprovability as well
as its provability. Let us consider a formula (p ∧ q → r ∧ s) → (p → r) ∧ (q → s).
It is not a thesis and after first two moves we obtain:

p ∧ q → r ∧ s ⇒ p → r p ∧ q → r ∧ s ⇒ q → s
(⇒ ∧)

p ∧ q → r ∧ s ⇒ (p → r) ∧ (q → s)
(⇒→)⇒ (p ∧ q → r ∧ s) → (p → r) ∧ (q → s)

Now, how to proceed in case of branching? We can apply one of the two basic
strategies: depth-first or breath-first. In the former approach we always choose
one branch (e.g. the leftmost one) and continue until it ends with an axiomatic or
atomic sequent, and then we return to the next unfinished branch. In the latter case
we apply successively the rules to all unfinished branches one by one, proceeding,
say, from the leftmost to the rightmost branch. Let us try a depth-first strategy.
Always selecting the leftmost branch we continue until we get:

p ⇒ r, p p ⇒ r, q
(⇒ ∧)

p ⇒ r, p ∧ q r ∧ s, p ⇒ r
(→⇒)

p ∧ q → r ∧ s, p ⇒ r
(⇒→)

p ∧ q → r ∧ s ⇒ p → r p ∧ q → r ∧ s ⇒ q → s
(⇒ ∧)

p ∧ q → r ∧ s ⇒ (p → r) ∧ (q → s)
(⇒→) ⇒ (p ∧ q → r ∧ s) → (p → r) ∧ (q → s)
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Note that the second top sequent is not axiomatic but atomic. It means
that if we are concerned only in testing if the input formula is a thesis, we are
done. We do not need to continue the proof search with r ∧ s, p ⇒ r, then with
p ∧ q → r ∧ s ⇒ q → s, since one branch beginning with a nonaxiomatic and
atomic sequent is enough to show that there is no proof. Moreover, we can easily
find a model falsifying our sequent. Take any one satisfying p but with false r and
q (the value of s is inessential), then an easy calculation shows that p ∧ q → r ∧ s
is satisfied but (p → r) ∧ (q → s) is not. In general, to falsify a root sequent we
define a model for some nonaxiomatic atomic sequent which satisfies all atomic
formulae in the antecedent, and falsifies all in the succedent.

It seems that a depth-first strategy of constructing a tree is better for proof
search since in case of unprovable sequents, we can finish the job earlier, if we are
lucky (e.g. there may be only one nonaxiomatic branch and it is just the rightmost
one). However, for some reasons we may still be interested in constructing a tree
where all rules were applied; let us call it a completed tree. In case of our example
a completed tree may look like that (other ones are possible):

D

q ⇒ s, p q ⇒ s, q
(⇒ ∧)

q ⇒ s, p ∧ q
r, s, q ⇒ s

(∧ ⇒)
r ∧ s, q ⇒ s

(→⇒)
p ∧ q → r ∧ s, q ⇒ s

(⇒→)
p ∧ q → r ∧ s ⇒ q → s

(⇒ ∧)
p ∧ q → r ∧ s ⇒ (p → r) ∧ (q → s)

(⇒→)⇒ (p ∧ q → r ∧ s) → (p → r) ∧ (q → s)
where D is a proof tree for the left coniunct provided above.

We may note that on the right side of this completed tree there is another
atomic and nonaxiomatic sequent which also falsifies the root sequent. The above
tree may be treated thus as providing us with the information that there are only
two different partial valuations which generate falsifying models for this unprovable
sequent. How do we know that there are only these two? We will get back to this
problem later but the reader is invited to construct another tree for this sequent
this time applying first (→⇒) to p ∧ q → r ∧ s in the second move. The tree will
be different but interestingly enough the only nonaxiomatic sequents will be the
same.

Exercise 1.5. Construct completed trees for the following sequents (try different
strategies of proof search):

⇒ (p → q) → (¬p → ¬q)
⇒ ¬(p ∧ q) → ¬(p ∨ q)
p → q, q ∨ r ⇒ ¬p ∨ (r ∧ q)
p ∨ q → (r → s) ⇒ p → r,¬q → s

Remark 1.5. Readers familiar with tableau methods may at this point notice some
similarities with K. Indeed one may treat tableaux as a simplified form of sequent
calculus, at least in the case of classical logic. In Hintikka-style tableaux one is
indirectly testing if a formula ϕ (or an argument Γ / ϕ) is valid by starting with
¬ϕ (with a set Γ ∪ {¬ϕ}) and developing a down-growing tree. We successively
apply rules to finite sets of formulae (nodes of a tableau) until we get a proof
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(every leaf-set containing contradictory formulae), if ϕ is valid (ϕ follows from Γ).
One could easily obtain all tableau-rules of this kind from rules of K by changing
sequents ψ1, ...., ψi ⇒ ϕ1, ..., ϕj into sets ψ1, ...., ψi,¬ϕ1, ...,¬ϕj and turning all
rules upside-down. Thus, e.g. from (⇒ ∨) we obtain a tableau rule which allows
to deduce Γ,¬ϕ,¬ψ from Γ,¬(ϕ ∨ ψ).

Notice that we can read all the trees displayed in this subsection not only in
terms of the unprovability of the root sequent but also in terms of its derivability
from nonaxiomatic sequents. It is because, formally, they are derivations in the
sense defined at the beginning of this section. Thus, e.g. the first tree shows that
⇒ (p ∧ q → r ∧ s) → (p → r) ∧ (q → s) is derivable from p ∧ q → r ∧ s ⇒ p → r
and p ∧ q → r ∧ s ⇒ q → s, whereas a completed tree (the last one) yields
the information that the same sequent is derivable also from the atomic sequents
p, r ⇒ q and q ⇒ p, s. However, in these examples (including the ones specified
in the exercise), the construction of derivations is not a primary task but rather a
byproduct of (failed) proof search. We can of course also treat derivations directly
and start with a task of the form: show that S1, ..., Sn � S, but note that in
general, in this case a proof search maybe not so easy to perform. What is more
important, even if S really follows from S1, ..., Sn it may be not possible to obtain a
tree demonstrating the derivability of S from S1, ..., Sn. In other ways K as stated
is not complete with respect to derivability, although it is complete with respect
to provability which will be shown in section 1.5. We postpone a discussion of the
problem of completeness with respect to derivability to section 1.11.

1.3.3 Analyticity

We have called K an ‘analytic’ system in the title of the chapter and after studying
the examples of proof search in the preceding subsection we may explain in what
sense we are using this term4. Roughly we will say that SC is analytic in the sense
that the root-first proof search is bounded, i.e. that there is always a finite number
of choices of what to do next. It is obvious that K is analytic in this sense due to the
subformula property of all its rules. Although this feature is primarily attributed
to rules we may also say that a proof (and a disproof) satisfies the subformula
property if all formulae occurring in it are subformulae of the root sequent. Finally
we may say that a system has the subformula property if all proofs in the system
have this feature. It is obvious that if all rules of the system have the subformula
property, then all proofs have it and consequently, the calculus has it. So why not
say that a system has the subformula property instead of saying that it is analytic?
In K it is the same, but in general we must keep these qualifications distinct. Notice,
e.g. that a proof in some SC may have the subformula property in the sense
specified above even if not all rules applied in this system have the subformula
property like in K. It is sufficient that all formulae occurring in the premisses of

4It is important since the term is ambiguous even in proof theory—see, e.g. remarks in Pog-
giolesi [198].
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some rule application are subformulae of the root sequent, not necessarily of the
conclusion of this rule application. Also a system may be analytic even if not all
proofs have the subformula property, e.g. some closure conditions may be specified
that restrict the number of formulae which may be used in proof construction even
if they are not subformulae of the root sequent. So in general, a system may be
analytic even if it does not satisfy a subformula property. In other words the
subformula property (of rules) is a sufficient (but not necessary) condition for the
analyticity of SC.

In what follows we will illustrate these phenomena (see in particular section
1.11) but first we derive important consequences of the subformula property. The
decidability of CPL will be the most important one, but this requires special
attention and will be presented in section 1.6. This section will be finished with a
result which is very important but extremely easy to prove.

Theorem 1.1. K is consistent

Proof: It is a straightforward consequence of the subformula property of all rules.
Every proof must be cumulative in the sense that nothing is lost when starting
from axioms and going down the tree. Hence ⇒ (which express ⊥—see section
1.2.1) cannot be provable by any rule. �

1.4 Additional Rules

The notion of additional rules for K, or any other SC, is a bit ambiguous. We may
think about rules for additional connectives enriching the basic language, or about
introduction of some rules serving for special purposes. Let us start with the first
issue.

1.4.1 Rules for Other Connectives

In section 1.1.1, we introduced as definitional shortcuts two propositional con-
stants �,⊥ and one binary connective ↔. In particular, ⊥ is very often used as a
primitive logical constant in proof-theoretic investigations (see e.g. Negri and von
Plato [185]). ⊥ may be characterised by means of the additional axiomatic sequent
⊥,Γ ⇒ Δ.

One can easily verify the correctness of this axiom syntactically on the basis
of the fact that ⊥ allows for a definition of ¬ in the following way: ¬ϕ := ϕ → ⊥.
Both rules for ¬ are easily derivable by means of the rules for → and the axiom
for ⊥. We will demonstrate the derivation of (⇒ ¬):

ϕ,Γ ⇒ Δ
(⇒ W )

ϕ,Γ ⇒ Δ,⊥
(⇒→)

Γ ⇒ Δ, ϕ → ⊥
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Note that in the second step we have used an additional rule of weakening
(⇒ W ) allowing for the addition of any formula to the succedent; its correctness
will be justified in the next paragraph.

Exercise 1.6. Provide a demonstration of (¬ ⇒) on the basis of the axiom for ⊥
and (→⇒).

Characterise �; remember that it may be defined as ¬⊥.

Note that we may also easily prove an axiomatic sequent for ⊥ if we define
it as ¬(ϕ → ϕ). Here is a proof:

ϕ,Γ ⇒ Δ, ϕ
(⇒→)

Γ ⇒ Δ, ϕ → ϕ
(¬ ⇒) ¬(ϕ → ϕ),Γ ⇒ Δ

One may introduce suitable rules also for other truth-functional connectives.
For example for ↔ we need the following pair of rules:

(⇒↔) ψ,Γ⇒ Δ, ϕ ϕ,Γ⇒ Δ, ψ
Γ⇒ Δ, ϕ↔ψ

(↔⇒) ϕ,ψ,Γ⇒ Δ Γ⇒ Δ, ϕ, ψ
ϕ↔ψ,Γ⇒ Δ

We consider three more interesting binary connectives:
1. Strong (exclusive) disjunction � (‘exor’) is true iff both arguments have

different values; hence it may be defined as negation of ↔.
2. Scheffer’s stroke ↑ is false iff both arguments are true; hence it may be

defined as negation of ∧ (‘nand’).
3. Peirce’s arrow ↓ is true iff both arguments are false; hence it may be defined

as negation of ∨ (‘neither ... nor’).

In particular, the last two are very important since each of them may be
used as the only primitive constant of CPL allowing for the definition of all other
connectives. Suitable rules for the last one are the following:

(⇒↓) Γ ⇒ Δ, ϕ, ψ
ϕ↓ψ,Γ ⇒ Δ (↓⇒) ϕ,Γ ⇒ Δ ψ,Γ ⇒ Δ

Γ ⇒ Δ, ϕ↓ψ

Their shape should be of no surprise if we realise that ↓ is just a negated ∨.

Exercise 1.7. Define a pair of rules for � and ↑ on the basis of the information
that the former is a negation of ↔ and the latter a negation of ∧.

There are exactly 16 binary extensional two-valued connectives. Find truth-
functional characterizations of the remaining ones and try to define pairs of rules
for each of them.

In the context of rules characterising other connectives we may consider more
general questions: Can we define (logical) constants by means of rules? What
conditions should such rules satisfy? The answer to the first question is quite
obvious. For example, we can systematically build normal rules for any connective
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on the basis of its truth table and our definition of satisfiability of a sequent (see
Beziau [29]). Each row of the truth table induces a single normal rule with one
premiss for each side formula. We just put side formulae (in the premisses) and
the principal formula (in the conclusion) in the antecedent if they are false, and
in the succedent if they are true. Thus for every binary connective we obtain four
two-premiss rules corresponding to every row of a truth table. For example, truth
table for ∧ gives us a rule (⇒ ∧) but instead of a single (∧ ⇒) we obtain three
different two-premiss rules with the principal formula in the antecedent of the
conclusion of the form:

(2∧ ⇒) ψ,Γ⇒ Δ ϕ,Γ⇒ Δ
ϕ ∧ ψ,Γ⇒ Δ

ψ,Γ⇒ Δ Γ⇒ Δ, ϕ
ϕ ∧ ψ,Γ⇒ Δ

Γ⇒ Δ, ψ ϕ,Γ⇒ Δ
ϕ ∧ ψ,Γ⇒ Δ

In a similar way we can produce three rules for (⇒ ∨) and (⇒→). Such
rules are called full by Avron and Lev [14] who provide a syntactical way for their
construction. The upshot of such a mechanical production of rules is obvious—we
obtain four rules instead of two, and if we apply such a procedure for example
to ternary connectives (like ‘if then else’) we will obtain eight three-premiss rules.
But we prefer to have a pair of rules and this may be treated as the first condition
which rules should obey. In fact, one may link this requirement with the strict
reading of the content of truth tables on the basis of the dual interpretation of
sequents. Now, (∧ ⇒) is intact and for (⇒ ∧) we have only one rule but with three
premisses corresponding to three cases when it is false:

(3 ⇒ ∧) ϕ,Γ⇒ Δ, ψ ψ,Γ⇒ Δ, ϕ Γ⇒ Δ, ϕ, ψ
Γ⇒ Δ, ϕ ∧ ψ

and similarly for (∨ ⇒) and (→⇒). Although this solution may be seen as
economic and perfectly matching the semantic conditions, it is rather redundant
and we prefer the solution with two premisses (with incomplete semantic infor-
mation). However, in section 4.8 we will see that the choice of these three-premiss
rules may have some advantages.

Exercise 1.8. Define for disjunction and implication the remaining 2− (six full
rules) and 3−style (only two) rules.

What other conditions are required for well-behaved rules? We will focus
more closely on these matters in chapter 3 and conclude this subsection with some
remarks on the approach which is now often called proof-theoretical semantics.

In fact, Gentzen may be treated as a father of this approach although he
tried to provide meaning postulates for logical constants in terms of natural de-
duction (introduction) rules. In the wider perspective proof-theoretical semantics
is closely related to the semantical program of inferentialism and other anti-realist
approaches to meaning. We do not attempt to provide a detailed treatment of
such an approach and its contemporary variants; a concise survey may be found in
Schroeder-Heister [229] but some remarks are in order. Popper [200, 201] seems to
have been the first who tried to provide definitional rules for connectives in terms
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of sequent calculus, however his approach was not successful (see Schroeder-Heister
[226]). Prior [206] has shown that we cannot use arbitrary rules as meaning postu-
lates since it may trivialise the system. His natural deduction rules for a constant
called ‘tonk’ may be expressed in SC as follows:

Γ ⇒ Δ, ϕ / Γ ⇒ Δ, ϕ tonk ψ
Γ ⇒ Δ, ϕ tonk ψ / Γ ⇒ Δ, ψ

A reader may easily ‘prove’ ϕ ⇒ ψ using these rules and this is not surpris-
ing. Prior’s rules do not satisfy even the most general conditions which should
be satisfied by definitions. Already Leśniewski [165] formulated two elementary
conditions for correct definitions: eliminability and conservativity. The latter may
be informally stated as follows: the definition of a new term is conservative iff it
does not change the truth values of sentences not containing this term. In the
framework of SC and definitional rules (see Poggiolesi [198]) this property may be
stated in the following way:

Definition 1.6. Let L� denote the language L with added � and SC� denote SC with
added rules for �, then SC� conservatively extends SC iff for every S in L, if SC�
� S, then SC � S.

Thus the new rules are conservative iff they allow for proving new theorems
only in the enriched language. It is obvious that if SC has the subformula property,
then it has also the property of conservativity.

Claim 1.4. (Conservative extensions). If SC� has subformula property, then it is a
conservative extension of SC.

Some advocates of proof-theoretical semantics (or more generally of inferen-
tialism), like e.g. Dummett [66], claim that conservativity is a necessary condition
for correct definitional rules. A debate on necessary and sufficient conditions for
such rules is still open; at present various proposals concerning a notion of harmony
are discussed (see e.g. Schroeder-Heister [230]). Anyway, one may easily check that
Prior’s rules are not conservative.

1.4.2 Derivability and Admissibility

Although K is complete for CPL (which will be shown in the next section), for
several purposes we may need to introduce additional rules. Such an example of
an additional rule called weakening and its application already occurred in the
previous paragraph. The notion of a proof and its generalisation to the notion
of a derivation allows for formal definitions of important notions concerning such
secondary rules in any SC.

• A rule
S1, ..., Sn

S
is derivable in SC iff there is a derivation of S from

S1, ..., Sn.
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• A rule
S1, ..., Sn

S
is admissible in SC iff if there are proofs of sequents

S1, ..., Sn, then � S.

It is rather obvious that:

Lemma 1.3. Every derivable rule in some SC is also admissible in it.

Proof: Consider an instance S1, ..., Sn/S of a derivable rule r, then we have a
derivation D of S with some leaves being not axioms but instances of Si, i ≤ n.
Assume that all Si, i ≤ n have proofs, then we may append these proofs to the
respective leaves of D. This way we get a proof of S. �

Note that the converse statement does not hold in general. One should also
notice that proofs of derivability of rules are rather simple whereas proofs of ad-
missibility are usually involved and need special techniques. We will illustrate the
point in many places of this book (see in particular section 1.8 on admissibility of
the cut rule, or several such proofs of the admissibility of structural rules in later
chapters).

A recursive definition of proofs allows for proofs by induction on proof trees
(in particular proofs of the admissibility of some rules)5. One of the most useful
measures is that of the height of a proof (or derivation):

• let D be a proof of an axiom, then hD = 0;

• let D be a proof of S with S deduced from S′ and D′ be a proof of S′, then
hD = hD′ + 1;

• let D be a proof of S with S deduced from S′ and S′′ and with D′ and D′′

being their proofs, then hD = Max(hD′, hD′′) + 1.

Sometimes we will write �n S if a proof of S is of height at most n. In case
D is a proof of S of height at most n we will write D �n S.

Another handy measure of a proof is its size denoted as ‖D‖. The definition
is like for the height with the only difference in the last clause which reads:

• let D be a proof of S with S deduced from S′ and S′′ and with D′ and D′′

being their proofs, then ‖D‖ = ‖D′‖ + ‖D′′‖ + 1.

As an example of the application of the above notions we will prove by
(strong, or complete) induction the admissibility of the rules of weakening of every
provable sequent. Incidentally, we will provide the result in a stronger form of
height-preserving admissibility. It means that if the premiss has a proof of some
height, then the conclusion has a proof which is not longer. The advantage of
having such rules was already shown in the previous paragraph. Both rules have
the form:

5A reader who is not accustomed to such proofs should perhaps first read the Appendix where
necessary information on inductive proofs is provided.
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(W ⇒) Γ⇒ Δ
ϕ,Γ⇒ Δ (⇒ W ) Γ⇒ Δ

Γ⇒ Δ, ϕ

In contrast to all primitive rules of K, both weakening rules are structural,
i.e. they do not display any logical constants. Such rules only allow for the ma-
nipulation of sequents in proofs. The name derives from the fact that a provable
sequent with fewer formulae is more informative than its extension either in the
antecedent or in the succedent. In what follows we will use W as a short name for
both rules or their multiple application.

Lemma 1.4. (Height-preserving admissibility of W for K). If �n Γ ⇒ Δ, then
�n Γ′ ⇒ Δ′ for Γ ⊆ Γ′,Δ ⊆ Δ′

Proof: By induction on the height of the premiss. In the basis, if Γ ⇒ Δ is
axiomatic, then the addition of any formula on the left or right of it is unable
to destroy its status. In other words, �0 Γ ⇒ Δ implies �0 Γ′ ⇒ Δ′. In the
inductive step we must consider all the 8 cases of rules as applied to Γ ⇒ Δ.
We take the case of (⇒ ∧) and leave the remaining ones as exercises. Now our
Γ ⇒ Δ := Γ ⇒ Π, ϕ∧ψ and the premisses are Γ ⇒ Π, ϕ and Γ ⇒ Π, ψ, respectively,
both with proofs having height < n. By the induction hypothesis both Γ′ ⇒ Π′, ϕ
and Γ′ ⇒ Π′, ψ, where Π′ = Δ′ −{ϕ∧ψ}, are provable with proofs of height < n,
hence Γ′ ⇒ Δ′ is provable with the height n. �

Note that we applied strong induction (see Appendix) since the proof of one
of the premisses may have the height < n−1. Although in case of strong induction
a separate proof of the basis is not necessary we will usually provide it for better
readability.

Admissibility of Weakening in K is in a sense a consequence of some important
features of rules which were analysed first by Curry [56]. We collectively call them:

1.4.2.1 Context independence of rules:

Validity-preservation of rules is intact by:

1. deletion of the same parameters in premisses and conclusion;

2. addition of the same parameters to premisses and conclusion6;

3. interchange of some parameter for a different one in all occurrences.

Note that the third point is just a consequence of the first and the second
but these two are independent and it is possible to have rules which satisfy the
first but not the second (see chapter 4 for examples).

Exercise 1.9. 1. Complete a proof of lemma 1.4

2. Check that rules of K are context-independent.

6This is called purity of rules by Avron [9] and closure under rule expansion by Beziau [29].
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3. Show that every derivable rule is normal.

4. Show that every admissible rule is validity-preserving.

As an example of the application of W we can prove that the usual (⇒ ∧)
of K is derivable in SC with (3 ⇒ ∧), introduced in the previous paragraph, as a
primitive rule:

Γ ⇒ Δ, ϕ
(W ⇒)

ψ,Γ ⇒ Δ, ϕ

Γ ⇒ Δ, ψ

ϕ,Γ ⇒ Δ, ψ

Γ ⇒ Δ, ϕ
(⇒ W )

Γ ⇒ Δ, ϕ, ψ
(3 ⇒ ∧)

Γ ⇒ Δ, ϕ ∧ ψ

Exercise 1.10. Prove derivability of (∨ ⇒) and (→⇒) by means of their 3−variants
and W.

Prove that each of the 2− (or full) rules is derivable in K from only a single
premiss by means of W and ordinary (∧ ⇒), (⇒ ∨), (⇒→).

To prove the derivability of 3− variants in K, or the standard rules (∧ ⇒),
(⇒ ∨), (⇒→) by means of 2−variants, we need another rule called cut which will
be introduced in section 1.8.

1.4.3 Invertibility of Rules

There is one more specific and very important feature of all rules of K. Let us say for
any rule S1, ..., Sn / S, that the inversions of this rule are rules: S / S1, ..., S / Sn.
In K all the rules are invertible in the sense that if the conclusion is valid, then
premiss(es) are valid as well. In other words, we can say that inversions of the
original rules are additional validity-preserving rules. We prove below this result
as it is essential for the proof of the completeness theorem in the next section.

Lemma 1.5. (Invertibility). All rules of K are invertible.

Proof: There are 8 cases to consider; we illustrate the proof with two, leaving
the remaining ones to the reader.

The case of (∧ ⇒): Assume that |= ϕ ∧ ψ,Γ ⇒ Δ but �|= ϕ,ψ,Γ ⇒ Δ. Then
there is an M which falsifies ϕ,ψ,Γ ⇒ Δ but it also falsifies ϕ ∧ ψ,Γ ⇒ Δ since
M � ϕ ∧ ψ, if M � ϕ and M � ψ – a contradiction.

The case of (→⇒): Assume that |= ϕ → ψ,Γ ⇒ Δ but neither |= Γ ⇒ Δ, ϕ
nor |= ψ,Γ ⇒ Δ. In the former case, in some model M � Γ and M � Δ, ϕ. But
then M � ϕ → ψ which yields M � ϕ → ψ,Γ ⇒ Δ – a contradiction. Analogously
for the second premiss ψ,Γ ⇒ Δ. �

Exercise 1.11. Provide proofs of the remaining 6 cases.

Again, we are concerned with the stronger notion of validity-preservation,
since this is what we need for the completeness proof in the next section. However,
one may easily demonstrate that any rule which is the inversion of a primitive rule
of K is also normal.
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Exercise 1.12. Show normality of the inversions of all primitive rules of K.

We can show that all rules and their inversions are normal also in a syntactical
way if we refer to the informal reading of sequents due to Gentzen. We can prove
the following 6 equivalences corresponding to our rules (we omit the cases of (∧ ⇒)
and (⇒ ∨) since these are trivial). In all the schemata below γ corresponds to (the
conjunction of) parameters from the antecent, δ to (the disjunction of) parameters
from the succedent and ϕ,ψ denote active formulae of respective rules.

Lemma 1.6. The following hold:

1. �⇒ γ → δ ∨ ϕ ↔ ¬ϕ ∧ γ → δ

2. �⇒ ϕ ∧ γ → δ ↔ γ → δ ∨ ¬ϕ

3. �⇒ (γ → δ ∨ ϕ) ∧ (γ → δ ∨ ψ) ↔ γ → δ ∨ ϕ ∧ ψ

4. �⇒ (ϕ ∧ γ → δ) ∧ (ψ ∧ γ → δ) ↔ (ϕ ∨ ψ) ∧ γ → δ

5. �⇒ ϕ ∧ γ → δ ∨ ψ ↔ γ → δ ∨ (ϕ → ψ)

6. �⇒ (γ → δ ∨ ϕ) ∧ (ψ ∧ γ → δ) ↔ (ϕ → ψ) ∧ γ → δ

Proof: We provide proofs of 5 and 6. As for 5 we obtain a proof by (⇒↔) from
the two proofs:

γ, ϕ ⇒ δ, ψ, ϕ γ, ϕ ⇒ δ, ψ, γ
(⇒ ∧)

γ, ϕ ⇒ δ, ψ, ϕ ∧ γ

δ, γ, ϕ ⇒ δ, ψ ψ, γ, ϕ ⇒ δ, ψ
(∨ ⇒)

δ ∨ ψ, γ, ϕ ⇒ δ, ψ
(→⇒)

ϕ ∧ γ → δ ∨ ψ, γ, ϕ ⇒ δ, ψ
(⇒→)

ϕ ∧ γ → δ ∨ ψ, γ ⇒ δ, ϕ → ψ
(⇒ ∨)

ϕ ∧ γ → δ ∨ ψ, γ ⇒ δ ∨ (ϕ → ψ)
(⇒→)

ϕ ∧ γ → δ ∨ ψ ⇒ γ → δ ∨ (ϕ → ψ)

and

ϕ, γ ⇒ δ, ψ, γ

δ, ϕ, γ ⇒ δ, ψ

ϕ, γ ⇒ δ, ψ, ϕ ψ, ϕ, γ ⇒ δ, ψ
(→⇒)

ϕ → ψ,ϕ, γ ⇒ δ, ψ
(∨ ⇒)

δ ∨ (ϕ → ψ), ϕ, γ ⇒ δ, ψ
(→⇒)

γ → δ ∨ (ϕ → ψ), ϕ, γ ⇒ δ, ψ
(∧ ⇒)

γ → δ ∨ (ϕ → ψ), ϕ ∧ γ ⇒ δ, ψ
(⇒ ∨)

γ → δ ∨ (ϕ → ψ), ϕ ∧ γ ⇒ δ ∨ ψ
(⇒→)

γ → δ ∨ (ϕ → ψ) ⇒ ϕ ∧ γ → δ ∨ ψ

In a similar way we divide the work for 6. To prove (ϕ → ψ)∧γ → δ ⇒ (γ →
δ ∨ ϕ) ∧ (ψ ∧ γ → δ) we provide two proofs:
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ϕ, γ ⇒ δ, ϕ, ψ
(⇒→)

γ ⇒ δ, ϕ, ϕ → ψ γ ⇒ δ, ϕ, γ
(⇒ ∧)

γ ⇒ δ, ϕ, (ϕ → ψ) ∧ γ δ, γ ⇒ δ, ϕ
(→⇒)

(ϕ → ψ) ∧ γ → δ, γ ⇒ δ, ϕ
(⇒ ∨)

(ϕ → ψ) ∧ γ → δ, γ ⇒ δ ∨ ϕ
(⇒→)

(ϕ → ψ) ∧ γ → δ ⇒ γ → δ ∨ ϕ

and

ϕ,ψ, γ ⇒ δ, ψ
(⇒→)

ψ, γ ⇒ δ, ϕ → ψ ψ, γ ⇒ δ, γ
(⇒ ∧)

ψ, γ ⇒ δ, (ϕ → ψ) ∧ γ δ, ψ, γ ⇒ δ
(→⇒)

(ϕ → ψ) ∧ γ → δ, ψ, γ ⇒ δ
(∧ ⇒)

(ϕ → ψ) ∧ γ → δ, ψ ∧ γ ⇒ δ
(⇒→)

(ϕ → ψ) ∧ γ → δ ⇒ ψ ∧ γ → δ

and apply (⇒ ∧).

To prove (γ → δ ∨ ϕ) ∧ (ψ ∧ γ → δ) ⇒ (ϕ → ψ) ∧ γ → δ we provide a proof:

ψ ∧ γ → δ, ϕ → ψ, γ ⇒ δ, γ

δ, ψ ∧ γ → δ, ϕ → ψ, γ ⇒ δ D
(∨ ⇒)

δ ∨ ϕ,ψ ∧ γ → δ, ϕ → ψ, γ ⇒ δ
(→⇒)

γ → δ ∨ ϕ,ψ ∧ γ → δ, ϕ → ψ, γ ⇒ δ
(∧ ⇒)

γ → δ ∨ ϕ,ψ ∧ γ → δ, (ϕ → ψ) ∧ γ ⇒ δ
(⇒→)

γ → δ ∨ ϕ,ψ ∧ γ → δ ⇒ (ϕ → ψ) ∧ γ → δ
(∧ ⇒)

(γ → δ ∨ ϕ) ∧ (ψ ∧ γ → δ) ⇒ (ϕ → ψ) ∧ γ → δ

where D is:

ϕ, γ ⇒ δ, ψ ∧ γ, ϕ

ψ, ϕ, γ ⇒ δ, ψ ψ, ϕ, γ ⇒ δ, γ
(⇒ ∧)

ψ, ϕ, γ ⇒ δ, ψ ∧ γ
(→⇒)

ϕ, ϕ → ψ, γ ⇒ δ, ψ ∧ γ δ, ϕ, ϕ → ψ, γ ⇒ δ
(→⇒)

ϕ, ψ ∧ γ → δ, ϕ → ψ, γ ⇒ δ

�

Exercise 1.13. Prove the remaining sequents.

1.5 The Adequacy of K

First of all we must check that K is sound, i.e. that everything we can prove in
it is correct. On the basis of validity-preservation lemma (lemma 1.2), one easily
obtains for K:

Lemma 1.7. (Soundness). If � S, then |= S.
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Proof: By induction on the height of a proof of S. The basis is trivial since
every axiomatic sequent must be valid. For the inductive step, we assume that the
claim holds for every sequent having a proof of the height < n, then by lemma 1.2
(validity-preservation) it holds for S having a proof of the height n. �

One may demonstrate the completeness of K in many ways (see e.g. section
1.7.). We will present here one of the simplest proofs based on an application of
the invertibility lemma (i.e. lemma 1.5.) which is due to Buss [43]. First we prove
some preliminary result. Let us call K’ a version of K with all axioms restricted to
those with atomic formulae as active. We must show that such a restriction does
not weaken the calculus, i.e.:

Lemma 1.8. (Atomic K). If S is provable in K, then it is provable in K’

Proof: It is enough to show in K’ that for any formula ϕ it is provable that
Γ, ϕ ⇒ ϕ,Δ. We do it by induction on the complexity of ϕ. The basis is trivial
since if ϕ is atomic we have an axiom of K’. So one must check 4 cases depending
on the shape of ϕ. Let it be a conjunction, then we may provide the following
proof schema:

Γ, ϕ, ψ ⇒ ϕ,Δ
(∧ ⇒)

Γ, ϕ ∧ ψ ⇒ ϕ,Δ
Γ, ϕ, ψ ⇒ ψ,Δ

(∧ ⇒)
Γ, ϕ ∧ ψ ⇒ ψ,Δ

(⇒ ∧)
Γ, ϕ ∧ ψ ⇒ ϕ ∧ ψ,Δ

where all leaves are provable by the induction hypothesis. �

Exercise 1.14. Provide proofs of the remaining 3 cases.

Since K’ is trivially included in K, we have that both systems are equivalent,
i.e. both yield the same provable sequents. We will provide a completeness proof
for K’. Moreover, this proof allows for the estimation of the size of a proof. In
fact, the following proof may be established also directly for K but lemma 1.8 is
of interest on its own right and will be needed later as well.

Theorem 1.2. (Completeness). If |= S and there are n occurrences of logical con-
stants in S, then � S with a proof D such that ‖D‖ < 2n.

Proof: By induction on n.
The basis: if n = 0, then S must be axiomatic in order to be valid, hence it

has a proof of the size 0.
The induction hypothesis states that the claim holds for any valid sequent

with occurrences of constants < n. We show that it holds for any valid sequent
with n occurrences of constants. Compound formulae in S are of 4 forms and we
must consider them as elements of the antecedent or the succedent. Let us take a
conjunction in both positions.

ϕ ∧ ψ in the antecedent. So S := ϕ ∧ ψ,Γ ⇒ Δ. By invertibility we have
|= ϕ,ψ,Γ ⇒ Δ. The latter has n − 1 occurrences of constants so by the induction
hypothesis � ϕ,ψ,Γ ⇒ Δ and ‖D‖ < 2n−1. Adding to D, ϕ ∧ ψ,Γ′ ⇒ Δ as
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the root deduced by (∧ ⇒) we get a proof D′ of this sequent such that ‖D′‖
< 2n−1 + 1 ≤ 2n.

ϕ ∧ ψ in the succedent. So S := Γ ⇒ Δ, ϕ ∧ ψ. By invertibility we have
|= Γ ⇒ Δ, ϕ and |= Γ ⇒ Δ, ψ. Each sequent has < n occurrences of constants so
by the induction hypothesis it has a proof ‖D‖ < 2n−1. We add to both proofs
Γ ⇒ Δ, ϕ ∧ ψ as the root deduced by (⇒ ∧) and get a proof D′ of this sequent
such that ‖D′‖ < 2n, since for any i, j < 2n−1, i + j + 1 < 2n. �

Exercise 1.15. Provide proofs of the remaining 3 cases.

1.6 Decidability

The proof of the completeness theorem is very simple but in some sense not very
informative. It is not constructive in the sense that it gives no hints how to obtain
a proof of any valid sequent. However, in section 1.3 we have shown informally
that the very construction of the rules of K, namely their subformula property,
allows for simple root-first proof search. In fact, such a method, when applied in
a systematic way, gives not only a constructive proof of completeness, but also a
proof of decidability. We examine the latter issue first.

1.6.1 Proof Trees

We have noted that root-first proof search may be performed in different ways but,
since sequents are finite, the number of choices is bounded at every step. In section
1.3. we have suggested that such a procedure always leads to the expected result,
i.e. gives a proof for provable sequent, and a falsifying model otherwise. Now we
will show why this is so. First we define precisely the notion of a proof tree which
was used informally in section 1.3.

Definition 1.7. (A proof tree for a sequent S).

1. A one-node tree which consists of S is a proof tree for S.

2. If S’ is nonatomic leaf in a proof tree for S, then a tree obtained by appending
a sequent T above S’ is a proof tree for S, provided that T is an instance of the
premiss, and S’ is an instance of the conclusion of some of the one-premiss
rules.

3. If S’ is nonatomic leaf in a proof tree for S, then a tree obtained by appending
sequents T and T’ above S’ is a proof tree for S, provided that T is an instance
of the left premiss, T’ is an instance of the right premiss, and S’ is an instance
of the conclusion of some of the two-premiss rules.

4. Nothing more is a proof tree for S.

This definition is different from the definition of a proof or derivation stated in
section 1.3 since it starts from the root, not from the leaves, in accordance with the
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actual proof search. Of course not every proof tree is a proof but we have admitted
such trees with nonaxiomatic leaves S1, ..., Sn as representing a derivation of S
from S1, ..., Sn. Despite the differences, both definitions are inductive definitions
of particular kinds of trees. The present one is more suitable for our purpose of
showing decidability since it allows for the application of reverse induction proofs
(from the root to the leaves)7. The relation between both notions may be stated
as follows:

Claim 1.5. D is a derivation of S from the set X of sequents iff D is a proof tree
for S in which X is a set of nonaxiomatic leaves.

Proof: By comparison of induction clauses—in both cases the same rules regulate
the generation of a tree. �

Particularly important are trees which cannot be extended:

Definition 1.8. (Completed proof tree). Any proof tree with only atomic sequents
as leaves is completed.

For proof trees we can prove:

Lemma 1.9. (Termination). Any proof tree may be extended to a completed proof
tree.

Proof: Take any proof tree which is not yet completed. Take the leftmost branch
with a nonatomic leaf and apply a suitable rule to some complex formula. Since
every sequent is finite and all rules satisfy the subformula property, every applica-
tion of a rule diminishes the number of complex formulae. Consequently, always
selecting the leftmost nonatomic sequent, after a finite time we must finish with
an atomic leaf. We move to the right, to the next nonatomic leaf, and repeat the
procedure. Since our trees are finitely branching, this procedure must terminate.
In particular, if we start with a sequent of complexity n, i.e. having n occurrences
of connectives, we obtain a tree having at most 2n+1 nodes and branches of height
at most n. �

Exercise 1.16. Provide a proof of the estimation of the size of a completed proof
tree by induction on n.

A simple consequence of this lemma is:

Lemma 1.10. Every completed proof tree for S is either a proof of S or a derivation
of S from a nonempty set of atomic nonaxiomatic sequents.

7One may find a rigorous treatment of both kinds of inductive sets based on trees and,
respectively, two variants of inductive proofs in Segerberg [235]. Here, for the sake of readability,
we decided to explain things in a less formal way, but it is possible to restate all the results in a
strict form.
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1.6.2 Confluency

But this is not enough for demonstrating decidability. Now we must consider if
every completed tree for S which is not a proof but a derivation, guarantees that
S is unprovable. In general this is not always so (see a proof of decidability for
LK in chapter 2), but fortunately for K it holds: every completed tree decides the
problem of provability of its root sequent. In other words K is confluent. We define
this property generally for any SC as follows:

Definition 1.9. SC is confluent iff for a provable sequent S, every completed proof
tree for S yields a proof of S.

This means that in a confluent SC it does not matter in which order the
application of rules are taken. The trees may be different but the result will be
always the same—a proof of a provable sequent. By contraposition, if we construct
a completed proof tree with at least one nonaxiomatic leaf, the root sequent is
unprovable. Confluent systems behave nicely from the standpoint of automated
deduction because they overload the memory of the program less and require
simpler algorithms. In particular, we are not forced to backtrack to earlier stages
if we made ‘wrong’ choices, since there are no wrong choices. Our choices may
have a significant impact on the size of a proof tree but not on the result.

Of course confluency is not necessary for proving decidability but it makes it
particularly easy (again check decidability proofs in chapters 2, 4 and 5). Hence
before proving decidability we will show:

Lemma 1.11. (Confluency). K is confluent.

Proof: Assume that despite the provability of S we have constructed a com-
pleted proof tree which is not a proof of S. Take a branch with some atomic and
nonaxiomatic leaf S′. Any model falsifying S′ must falsify also any other sequent
on this branch since all rules are invertible. Hence S is also falsified which—by
soundness – leads to contradiction. �

The above proof shows the close connection between confluency and invert-
ibility. In fact we can prove some more general result. Let us consider any logic
with an adequate formalisation in terms of some SC, then we have:

Theorem 1.3. An adequate SC for L is confluent iff all its rules are invertible.

Proof: Assume that SC is confluent but that some rule r is not invertible. Let
us consider a proof of S where r was applied. Consider the first (from the root)
instance S1, ..., Sn/S′ of this rule on some branch. By soundness |= S, also all rules
used on this branch below S′ are invertible, so |= S′ and by completeness � S′. By
confluency any proof tree for S′ yields a proof of S′, in particular, a tree where r

is applied first. Since every possible extension of
S1, ..., Sn

S′ yields a proof of S′,

then each Si is provable and—by soundness—valid, but this means that r is also
invertible, contrary to our assumption.
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Now assume that all rules are invertible but SC is not confluent. Hence for
some provable S there exists a completed proof tree with at least one atomic leaf
S′ which is nonaxiomatic and falsifiable. But, because of invertibility, it makes also
S invalid which is impossible. �

In fact we could show the confluency of K by referring not to invertibility
but to permutability of rules. One may check that for any two rules their order
of application may be reversed. This phenomenon will be examined in the next
chapter in the more demanding framework of the calculus LK. For now we will
illustrate this with the following example:

ϕ,ψ,Γ ⇒ Δ, χ
(∧ ⇒)

ϕ ∧ ψ,Γ ⇒ Δ, χ

ϕ, ψ,Γ ⇒ Δ, φ
(∧ ⇒)

ϕ ∧ ψ,Γ ⇒ Δ, φ
(⇒ ∧)

ϕ ∧ ψ,Γ ⇒ Δ, χ ∧ φ

may be changed into:

ϕ,ψ,Γ ⇒ Δ, χ ϕ, ψ,Γ ⇒ Δ, φ
(⇒ ∧)

ϕ,ψ,Γ ⇒ Δ, χ ∧ φ
(∧ ⇒)

ϕ ∧ ψ,Γ ⇒ Δ, χ ∧ φ

Since we can perform such permutations for all rules of K it is evident that
the order of the applications of rules in the root-first proof search cannot change
the result.

Exercise 1.17. Check permutability of at least 4 from 64 possible combinations of
two rules.

1.6.3 Decidability

Now we are in the position to strengthen lemma 1.10.

Theorem 1.4. (Decidability). For any S in finite time we can either provide a proof,
or find a countermodel.

Proof: It is enough to apply the procedure from a proof of lemma 1.9 which
produces a finite proof tree for any S. If it is not a proof, then at least one leaf S′

is atomic and nonaxiomatic. By invertibility, any model falsifying S′ falsifies also
S. �

We finish this section with slightly more formal description of our decision
procedure for K in pseudocode. Axiomatic sequents (not necessarily atomic) will
be labelled as closed and such branches are not extended further.

Input: a sequent S

Output: a completed proof tree for S (giving either a proof of S or a denial
of its provability).
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0. Start Take S as the root of a proof tree.
1. Select the leftmost leaf S′ which is not closed.
2. If S′ is not axiomatic, then

2.1. If S′ is atomic, then
stop: � S
else apply a rule to selected complex formula goto 1.

else close S′.
3. If S′ is the rightmost leaf, then

stop: � S
else goto 1.

That the procedure is fair and terminating should be obvious from previous
results. In this book we are not going to investigate in detail issues of automatiza-
tion or implementation but it is worthwhile to comment on a few features of this
procedure:

1. a depth-first strategy;

2. quick branch-closure test;

3. bounded indeterminism;

4. no strategy of preference.

There are different strategies of building (or searching through) trees. The
most popular are breadth-first and depth-first strategies. In the former type we
would append a new sequent to each leaf in one stage, say from left to right
instead of extending just one branch until the end. The examples of breadth-first
algorithms for SC may be found in Gallier [93], Buss [43], or Kleene [150]; they
are more appropriate for undecidable logics.

The choice of depth-first strategy may lead to earlier termination of search
in case of unprovable sequents since we extend one branch until the end, and if
the leaf is nonaxiomatic we do not consider any remaining branches. Also the fact
that after every rule application we test the leftmost leaf and go to the right if it is
axiomatic, reduces the time and size of the tree. On the other hand in automated
search it is better to extend every branch to atomic leaf and eventually check if it
is axiomatic or not, since such test are less memory-consuming.

Bounded indeterminism means that in case of a nonatomic leaf we select
which complex formula is attacked first. Such a weak form of indeterminism may
be avoided by introducing some order of selecting complex formulas, e.g. from
the left to right. Clearly in case of automatization, it is better to use sequents
built from lists of formulas not sets (see e.g. Gallier [93]). On the other hand,
we could apply some strategies of optimalization, for example, the obvious one of
always choosing first those formulae which do not lead to branching. We did not
apply any strategy of preference in order to avoid a complication in describing the
algorithm.

Exercise 1.18. 1. Show that the procedure described above must terminate.
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2. Modify the algorithm introducing a strategy of preference for nonbranching
rules.

3. Put axiom checking at the end of extending a branch or a whole tree.

4. (For computer science students) Rewrite the procedure in your favourite pro-
gramming language and implement.

1.7 An Analytic Proof of Completeness

The automated procedure of proof search presented in the preceding section for
the needs of a decidability proof may be also applied for proving the completeness
of K. Such a proof is constructive in the sense that for every nonprovable sequent
we receive a recipe for the construction of a falsifying model. In contrast to the
proof based on the invertibility of rules, this approach is more general and can be
applied to SC of different kinds and for different logics.

1.7.1 Hintikka’s Tuples

The key notion used in such a kind of completeness proofs is that of a downward
saturated set, originally introduced by Hintikka. Here we specify this notion for
sequents, hence it will be better to define it not for sets (like it is commonly defined
in the context of tableau methods), but for ordered pairs of sets of formulae. It
can be done in at least two ways:

a. directly, by providing a definition of the downward saturated pair of sets;

b. indirectly (e.g. Goré [103]) by introducing first the notion of closure for rules.

We start with the first method:

Definition 1.10. (Γ,Δ) is downward saturated iff it satisfies the following condi-
tions:

1. if ¬ϕ ∈ Γ, then ϕ ∈ Δ

2. if ¬ϕ ∈ Δ, then ϕ ∈ Γ

3. if ϕ ∧ ψ ∈ Γ, then ϕ ∈ Γ and ψ ∈ Γ

4. if ϕ ∧ ψ ∈ Δ, then ϕ ∈ Δ or ψ ∈ Δ

5. if ϕ ∨ ψ ∈ Γ, then ϕ ∈ Γ or ψ ∈ Γ

6. if ϕ ∨ ψ ∈ Δ, then ϕ ∈ Δ and ψ ∈ Δ

7. if ϕ → ψ ∈ Γ, then ϕ ∈ Δ or ψ ∈ Γ

8. if ϕ → ψ ∈ Δ, then ϕ ∈ Γ and ψ ∈ Δ
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Note that there is an obvious relationship between these conditions and the
rules of K (applied root-first). It is also clear that any pair of sets of atomic formulae
(even empty) is saturated. The close relationship of saturation conditions to rules
enables an alternative solution (see e.g. Goré [103]) based on the notion of the
closure of a sequent under (the application of) a rule, which may be defined in the
following way:

Definition 1.11. Γ ⇒ Δ is closed under the application of:
a) a one-premiss rule, if whenever the principal formula of this rule (appli-

cation) belongs to this sequent, then also side formulae belong to it;
b) a two-premiss rule, if whenever the principal formula of this rule (appli-

cation) belongs to this sequent, then the side formulae from at least one premiss
belong to it.

One may check by inspection that Γ ⇒ Δ is closed under every rule iff the
pair (Γ,Δ) is downward saturated. Let us say that a pair (Γ,Δ) is consistent iff
Γ ∩ Δ = ∅; otherwise it is inconsistent. We will call every saturated pair which is
a consistent Hintikka tuple. The key lemma says:

Lemma 1.12. (Truth lemma). If (Γ,Δ) is a Hintikka tuple (i.e. saturated and con-
sistent), then there is a model M, such that:

• if ϕ ∈ Γ, then M � ϕ;

• if ϕ ∈ Δ, then M � ϕ.

Proof: We define a model assuming that for any p, V (p) = 1 iff p ∈ Γ and prove
by induction on the complexity of formulae that it satisfies the conditions. The
basis holds by the definition of V and consistency. For the inductive step let us
consider ϕ := ¬ψ:

If ¬ψ ∈ Γ, then—by condition 1 of the definition—ψ ∈ Δ. By the induction
hypothesis M � ψ but then M � ¬ψ. The case of ¬ψ ∈ Δ is proved symmetrically.

�

Exercise 1.19. Prove the remaining cases.

1.7.2 Completeness

Now we may show the crucial lemma:

Lemma 1.13. (Completed tree). For any Γ ⇒ Δ, either � Γ ⇒ Δ or there is a
Hintikka tuple (Π,Σ) of finite sets, such that Π ∪ Σ ⊆ SF (Γ ∪ Δ);

Recall that SF (Γ ∪ Δ) denotes the set of all subformulae of formulae from
Γ ∪ Δ.

Proof: is simple since we can use the procedure of proof search defined in the
previous section. We know that for each sequent we obtain either a proof or not a
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proof. We must examine the latter. If � Γ ⇒ Δ, then in a completed tree there is
at least one branch with an atomic and nonaxiomatic leaf Γn ⇒ Δn. Going from
the root to the leaf we obtain a finite list of sequents: Γ ⇒ Δ, ...,Γn ⇒ Δn.

Let us define: Π =
⋃

Γi, Σ =
⋃

Δi, where i ≤ n (i.e. Γi ⇒ Δi is a sequent
occurring somewhere on this branch). It is sufficient to show that this pair is a
Hintikka tuple. Now, consistency is satisfied by definition (the branch is open) so
we must show that (Π,Σ) is saturated. Saturation follows from the fact that the
conditions defining saturation are just the converses of the rules applied in the
branch and we know that all of them were applied during the application of the
proof search procedure. �

This strategy of proving the existence of Hintikka tuples for nonprovable
sequents is called a tree strategy by Hodges [118]. The characteristic feature of it
is that we consider all possibilities of building a Hintikka tuple and forget about
consistency until the last step. This works well in connection with some proof
search algorithms which allows for the systematic construction of the whole tree
of possible choices. We can alternatively apply a direct strategy. The difference
is that we start not with any sequent but with an unprovable sequent and we
build a Hintikka tuple from it piecemeal. Now it is essential that we must check
the unprovability of our construction at every step. Such a strategy is applied e.g.
by Fitting [81] and by Goré [103], but to tableau system and apparently without
using the notion of Hintikka set (by application of the notion of closure of a set
under (the application of) a rule).

This time we just define a procedure of saturation for any unprovable se-
quent instead of a procedure for proof search for any sequent. It is a finite chain
of sequents each one extending the previous element by the addition of suitable
formulae to the antecedent or the succedent. What we must show is that every
sequent in the list is unprovable.

Now we must show that for any nonprovable sequent there exists its saturated
and consistent extension:

Lemma 1.14. (Saturation). If � Γ ⇒ Δ, then there is a saturated pair (Π,Σ) of
finite sets, such that:

(a) Π ∪ Σ ⊆ SF (Γ ∪ Δ);

(b) � Π ⇒ Σ

Note that the unprovability of Π ⇒ Σ implies that (Π,Σ) is consistent.

Proof: Again we build a finite list of sequents: Γ ⇒ Δ, ...,Γn ⇒ Δn = Π ⇒ Σ but
now with the property that for each i < n, Γi ⊆ Γi+1 and Δi ⊆ Δi+1. Moreover,
at each stage we must check if the result is unprovable.

Let Γi ⇒ Δi be not saturated, then some of the conditions 1–8 of the defini-
tion of Hintikka tuple do not hold. As an example we consider the cases of ∧—we
proceed as follows:
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Assume that ϕ ∧ ψ ∈ Γi but either ϕ /∈ Γi or ψ /∈ Γi. Then add the lacking
formula to Γi. The resulting sequent Γi+1 ⇒ Δi+1 = ϕ,ψ,Γi ⇒ Δi cannot be
provable, otherwise by (∧⇒) Γi ⇒ Δi would be provable as well.

Assume that ϕ ∧ ψ ∈ Δi but neither ϕ ∈ Δi nor ψ ∈ Δi. Then add to Δi,
one of the lacking formula, namely this one which yields an unprovable sequent.
At least one of them must be unprovable because if both � Γi ⇒ Δi, ϕ and
� Γi ⇒ Δi, ψ, then by (⇒∧) also Γi ⇒ Δi would be provable.

By the subformula property this procedure must terminate. The last pair is
a Hintikka tuple. �

Exercise 1.20. Demonstrate the remaining cases.

Notice one important difference with the preceding proof—here the sequents
are saturated, not the branches. One may obtain the result directly on the level of
the calculus by applying what is called Kleene’s trick. It consists in replacing all
rules with variants that have their principal formula present also in the premisses.
Thus, e.g. the modified rules for conjunction look like this:

(∧⇒) ϕ,ψ, ϕ∧ψ,Γ⇒ Δ
ϕ∧ψ,Γ⇒ Δ (⇒∧) Γ⇒ Δ, ϕ∧ψ,ϕ Γ⇒ Δ, ϕ∧ψ,ψ

Γ⇒ Δ, ϕ∧ψ

Such rules are derivable in K due to the fact that we define sequents as built
from sets. The usual rules are easily derivable from these rules by W. So this
refined calculus—let us call it KK—is equivalent to K. It is worth noting that in
KK we have all subformulae of a proved sequent already present in axioms, and
the application of rules is in fact a process of elimination of the principal formulae
from the premisses.

Notice also that Goré’s proof is based on the invertibility of rules but this is
in fact not necessary for a proof to go through.

Both strategies of proof lead to the demonstration of:

Theorem 1.5. (Completeness:) If |= Γ ⇒ Δ, then � Γ ⇒ Δ.

Proof:
1. � Γ ⇒ Δ (assumption),
2. there exists saturated and consistent (Π,Σ) (Saturation lemma),
3. there exists a model falsifying (Π,Σ) (Truth lemma),
4. there exists a model falsifying (Γ,Δ) since Γ ⊆ Π and Δ ⊆ Σ,
5. �|= Γ ⇒ Δ. �

We can easily prove also the converse of truth lemma.

Lemma 1.15. If Γ ⇒ Δ has a falsifying model, then it may be extended to a Hintikka
tuple (Π,Σ).

Proof: Let M be a falsifying model for Γ ⇒ Δ. Assume that Π = {ϕ : M � ϕ},
and Σ = {ϕ : M � ϕ}. It is obvious that Π ∩ Σ = ∅, and Γ ⊆ Π and Δ ⊆ Σ.
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By comparison of the conditions of saturation with the definition of satisfaction
� we see that (Π,Σ) must satisfy these conditions, therefore it is saturated and
consistent. �

Hence we get:

Theorem 1.6. Γ ⇒ Δ is falsifiable iff it can be extended to a Hintikka tuple.

1.8 The Cut Rule

Now we introduce one of the most famous rules of any SC, which is called cut. It
is often included in the set of primitive rules of SC (e.g. in the original system of
Gentzen described in the next chapter). Here we have chosen to introduce it as an
admissible rule. In fact, in the approaches with primitive cut, one later tends to
demonstrate that it is eliminable, which has the same effect. We will explain later
why this rule is important, and in particular, why it is good not to have it as a
primitive rule. The most popular version of this rule is the following:

(Cut) Γ ⇒ Δ, ϕ ϕ,Π ⇒ Σ
Γ,Π ⇒ Δ,Σ

ϕ in the schema will be called cut-formula of this application of the rule. In
contrast to other two-premiss rules of K it is not necessary to have the same sets of
parameters in both premisses. In the conclusion we have the unions of parameters
from premisses. We may introduce (and prove admissible) also a variant of cut
with the same sets of parameters but the proof of admissibility is a bit more
complicated in this case.

An examination of the shape of this rule should make obvious why we do not
want to have it as a primitive (or have a proof of its elimination). Cut rule does not
satisfy the subformula property; an arbitrary formula ϕ is present in the premisses
but not in the conclusion. Thus if we have SC with primitive cut which cannot be
eliminable, a proof search cannot be carried out reasonably in a root-first manner,
since we do not know in advance if at some stage cut should be used with some
arbitrary ϕ introduced. Also decidability cannot be proved in the way as we did,
even if the logic in question is decidable.

On the other hand, the cut rule may be very useful—we will illustrate some
of its technical advantages in the forthcoming sections. Here we only want to point
out some possible informal readings of this rule which show its importance. If we
interpret ⇒ as a kind of consequence relation, then cut expresses its transitivity
which is an essential feature of every such relation. Also, if Γ,Δ,Π are empty (and
Σ a singleton), then we can see cut as a kind of (generalised) modus ponens. This
case may be also understood as expressing the application of lemmata in a proof;
ϕ is the result that has already been proven and we just use it to shorten a proof
we are currently constructing.
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Cut may also be interpreted in a semantical manner. If we consider a version
of cut with the same sets of parameters in both premisses, and we read this rule
in a root-first manner, it can be treated as expressing the principle of bivalence.
Specifically, let us say that the conclusion Γ ⇒ Δ is falsified, i.e. all formulae in
Γ are true and all in Δ false in some model. Then, any ϕ is either true or false in
this model, which means that either ϕ,Γ ⇒ Δ or Γ ⇒ Δ, ϕ is falsified. The same
reading applies if we interpret Γ ⇒ Δ dually, as verified, then both premisses are
verified.

1.8.1 Admissibility versus Eliminability

Going back to technical matters, a novice in the field may wonder why the theorem
on the elimination of cut is often formulated as a theorem on the admissibility of
cut. Essentially it is the same result since admissibility is the converse of elim-
inability in the following sense: let SC be a calculus with cut as primitive rule and
SC’ its cut-free version, then cut is eliminable in SC iff cut is admissible in SC’.
However, there are some differences. First, the theorem is formulated in different
terms:

Eliminability: If �SC S, then �SC′ S

Admissibility: If �SC′ Γ ⇒ Δ, ϕ and �SC′ ϕ,Π ⇒ Σ, then �SC′ Γ,Π ⇒ Δ,Σ

Moreover, there are some differences in the general strategy. In particular,
proofs of admissibility do not have to take care of the multiplicity of cut ap-
plications in the proofs of premisses of cut. In general this simplifies the proof
but on the other hand, (some) proofs of cut elimination allow for estimation of
complexity bounds of the resulting (transformed) proofs. In fact, the structure of
Gentzen’s proof shows that it is a proof of admissibility embedded into a proof of
elimination—see section 2.4.

Proofs of cut admissibility may be divided in the first instance into direct
and indirect (= semantical). In the latter case we get admissibility of cut by first
proving directly the completeness of a cut-free calculus, as we did in section 1.5.
Now we can prove the admissibility of both variants of cut very simply on the
basis of the adequacy of K and the fact that both rules are validity-preserving. It
is a consequence of the general result concerning the admissibility of any validity-
preserving rule in any SC that has an adequate semantics.

Lemma 1.16. If SC has an adequate semantics and a rule (r) is validity-preserving
in this semantics, then (r) is admissible in SC.

Proof: Assume that all premisses of (r) are provable in SC. By the soundness
lemma, they are all valid. By validity-preservation of (r), the conclusion is also
valid. Hence, by completeness, it is also provable in SC. �

In the light of this lemma we only have to show that cut is validity-preserving.
It is straightforward and we leave it to the reader.
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Exercise 1.21. Prove that cut is validity-preserving.

1.8.2 Admissibility of Cut

However, much more interesting and valuable are direct, syntactical proofs of this
result. They are based on performing some transformations of proofs involving cuts
(or proofs of its premisses in case of proving admissibility) into cut-free proofs (or
proofs of the conclusion). Basically, we must consider all the ways in which the
premisses of cut were proved in K and show how to prove the conclusion in K. We
successively transform a proof D into a proof D′ such that all applications of cut
are replaced with combinations of other rules using two kinds of steps:

(a) direct elimination of an application of cut;

(b) reduction steps which transform an application of cut into other applications
of cut of “simpler” character.

What “simpler” means is stated precisely in terms of parameters used for
inductive proofs. Here we need two parameters hence we provide a proof by means
of a double induction: (1) on the complexity of the cut-formula c and (2) on the
sum of heights of proofs of both premisses h. It is usually organised in such a way
that the first parameter is main, the second induction is subsidiary. It is as if for
each value of c we perform an induction on h, so the second induction is performed
twice: both inside the basis of the first induction and inside the induction step.
Often it is stated as induction on the weight of cut w = 〈c, h〉 where there is a
lexicographical order of c and h. So the general schema is:

I. Induction on the complexity of the cut-formula
1. Basis: cut on atomic cut-formulae is admissible; proven by:

II. Induction on the height of the left (right) premiss of cut
1.1. Basis: cut with at least one premiss of height 0 is admissible
1.2. Inductive step: if cut with the height < n is admissible,
then cut with the height n is admissible too.
Conclusion of 1.1, 1.2: cut on atomic cut-formulae is admissible.

2. Inductive step: if cut on cut-formulae of length < n is admissible,
then cut on cut-formula of complexity n is admissible; proven by:

II. Induction on the height of the left (right) premiss of cut
2.1. Basis: cut with the left premiss of height 0 is admissible
2.2. Inductive step: if cut with the left height < n is admissible,
then cut with the height n is admissible too.
Conclusion of 2.1, 2.2: cut on every non-atomic formula is admissible.

Conclusion of 1 and 2: cut on every formula is admissible.

Summarising a bit we have to show that there is a proof of the conclusion of
any application of cut using no cuts at all or only cuts where either the cut-formula
is of lower complexity or of the same complexity but the sum of the heights of the
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premisses is decreased. In practice to avoid inessential repetitions, we divide the
cases according to the height of a proof of the one premiss, and a character of the
cut-formula, into three exhaustive classes:

1. at least one premiss is axiomatic;

2. the cut-formula is principal in both premisses;

3. the cut-formula is not principal in at least one premiss.

It may easily be verified that these cover all the possibilities. Indeed, if the
first does not hold, then no premiss of cut is axiomatic and both are of height > 0.
In the latter case either in both premisses the cut-formula is principal or not, i.e.
at least one occurrence is not principal.

Theorem 1.7. (Admissibility of cut in K). If � Γ ⇒ Δ, ϕ and � ϕ,Π ⇒ Σ, then
� Γ,Π ⇒ Δ,Σ

Proof:
Case 1. Let us consider the left premiss of the application of cut being ax-

iomatic. There are two possibilities:

(i) the cut-formula is active (i.e. it is on both sides of the left premiss);

(ii) the cut-formula is parametric.

Subcase (i). Let Γ := ϕ,Γ′, we have the following:

ϕ,Γ′ ⇒ Δ, ϕ ϕ,Π ⇒ Σ
(Cut)

ϕ,Γ′,Π ⇒ Δ,Σ

In this case we get the conclusion from the right premiss by the application
of W.

In subcase (ii) we have:

ψ,Γ′ ⇒ Δ′, ψ, ϕ ϕ,Π ⇒ Σ
(Cut)

ψ,Γ′,Π ⇒ Δ′,Σ, ψ

where Γ := ψ,Γ′ and Δ := Δ′, ψ. Then the conclusion is already provable as
an axiom.

If the right premiss is axiomatic the situation is analogous and we also get
the conclusion as provable in K (i.e. without application of cut). Note that the
above cases cover the bases of both inductions. In other cases one cannot in gen-
eral eliminate the application of cut in one step. Instead we must perform some
reduction steps of different sorts. There are two main kinds of reduction:

1. complexity reduction—we replace cuts on compound formulae with cuts on
their subformulae;

2. height reduction—we push up applications of cut in a proof.
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They correspond to inductive steps of induction on the complexity and on
the height, respectively. Intuitively, performing both types of steps we must finish
with the case of at least one premiss being axiomatic.

Case 2. The cut-formula is principal in both premisses. We have 4 cases to
consider.

Subcase 2.1: the cut-formula is a negation:

ϕ,Γ ⇒ Δ
(⇒ ¬)

Γ ⇒ Δ,¬ϕ

Π ⇒ Σ, ϕ
(¬ ⇒)¬ϕ,Π ⇒ Σ

(Cut)
Γ,Π ⇒ Δ,Σ

We replace it with:

Π ⇒ Σ, ϕ ϕ,Γ ⇒ Δ
(Cut)

Γ,Π ⇒ Δ,Σ

Now the original proof with the application of cut is not replaced with a proof
of the conclusion in K without cut. However, in the new proof cut is performed
on a formula of lesser complexity, hence it is eliminable by the first induction
hypothesis.

Subcase 2.2: the cut-formula is a disjunction:

Γ ⇒ Δ, ϕ, ψ
(⇒ ∨)

Γ ⇒ Δ, ϕ ∨ ψ

ϕ,Π ⇒ Σ ψ,Π ⇒ Σ
(∨ ⇒)

ϕ ∨ ψ,Π ⇒ Σ
(Cut)

Γ,Π ⇒ Δ,Σ

is replaced with:

Γ ⇒ Δ, ϕ, ψ ψ,Π ⇒ Σ
(Cut)

Γ,Π ⇒ Δ,Σ, ϕ ϕ,Π ⇒ Σ
(Cut)

Γ,Π ⇒ Δ,Σ

In this case we even introduced two cuts instead of one but still both are
eliminable by the induction hypothesis since both are performed on formulae of
lesser complexity.

Exercise 1.22. Prove subcases 2.3. (conjunction) and 2.4. (implication).

Case 3. The cut-formula is not principal in at least one premiss. Let it be the
right premiss. There are 8 subcases according to which rule is applied to the right
premiss. We illustrate the procedure with two of them, one with the application
of a one-premiss rule and the other with the application of a two-premiss rule.

Subcase 3.1: The right premiss is deduced by (⇒ ∨):

Γ ⇒ Δ, ϕ

ϕ,Π ⇒ Σ′, ψ, χ
(⇒ ∨)

ϕ,Π ⇒ Σ′, ψ ∨ χ
(Cut)

Γ,Π ⇒ Δ,Σ′, ψ ∨ χ

is replaced with:
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Γ ⇒ Δ, ϕ ϕ,Π ⇒ Σ′, ψ, χ
(Cut)

Γ,Π ⇒ Δ,Σ′, ψ, χ
(⇒ ∨)

Γ,Π ⇒ Δ,Σ′, ψ ∨ χ

Now we did not reduce the complexity of the cut-formula, but we made a
permutation of the application of rules after which the new cut is of the lesser
height, and hence it is eliminable by the induction hypothesis of the subsidiary
induction on the sum of the heights of the premisses.

Subcase 3.2: The right premiss deduced by (→⇒):

Γ ⇒ Δ, ϕ

ϕ,Π′ ⇒ Σ, ψ χ, ϕ,Π′ ⇒ Σ
(→⇒)

ψ → χ,ϕ,Π′ ⇒ Σ
(Cut)

ψ → χ,Γ,Π′ ⇒ Δ,Σ
it is replaced with:

Γ ⇒ Δ, ϕ ϕ,Π′ ⇒ Σ, ψ
(Cut)

Γ,Π′ ⇒ Δ,Σ, ψ

Γ ⇒ Δ, ϕ χ, ϕ,Π′ ⇒ Σ
(Cut)

χ,Γ,Π′ ⇒ Δ,Σ
(→⇒)

ψ → χ,Γ,Π′ ⇒ Δ,Σ
Now we have introduced two cuts instead of one but both of lower height

hence eliminable by the induction hypothesis. �

Exercise 1.23. Prove the remaining 6 subcases for the right premiss and then all 8
subcases for the left premiss.

Note that we can apply admissible rules (like W) but we do not need to con-
sider them as introducing one of the premisses of cut. We should also observe that
a realisation of case 3., i.e. height reduction steps, is in fact a simple consequence
of the context independency of all rules, described in subsection 1.4.2.

Remark 1.6. In fact, we can change the order of inductions and even simplify the
general structure of the proof. Namely, if we take the height as the main induction
parameter we do not need to prove the basis by means of subsidiary induction
on the complexity of the cut-formula. This is necessary only once, for proving the
induction step. So the general schema will be: 1 basis of induction on h, 2 inductive
step (by subsidiary induction on c). A reader should check that such changes in
the organisation of the structure of the induction are still in accordance with
the division of cases, in the sense that inductive hypotheses are correctly placed
for the proof to go through. We presented the above version because it is closer
to the organisation of Gentzen’s original proof (see section 2.4). Note, however,
that in the case of Gentzen’s proof, the complexity of the cut-formula must be
the main parameter, since instead of the height of the proof he used another
parameter which is sensitive to the reduction of the complexity of cut-formula.
With height the situation is different; neither the reduction of the complexity can
affect the height, nor can the reduction of height change the complexity. Hence
both parameters are independent in this sense and as such the re-organisation of
the structure of the induction is possible.
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1.9 Applications of Cut

Having cut at our disposal significantly strengthens K both in the sense of practi-
cal applications and theoretical utility. Concerning practice, one may find shorter
proofs and derivations of the same results, as we noted in the preceding section
when comparing applications of cut to applications of lemmata. But the search
for these shorter proof trees may be not so easy as in cut-free SC; we will say
more about this in section 1.11. We can also demonstrate derivability of several
useful rules. As an example, we show that (3 ⇒ ∧) introduced in paragraph 1.4.1
is derivable in K with cut:

Γ ⇒ Δ, ϕ, ψ ψ,Γ ⇒ Δ, ϕ
(Cut)

Γ ⇒ Δ, ϕ

Γ ⇒ Δ, ϕ, ψ ϕ,Γ ⇒ Δ, ψ
(Cut)

Γ ⇒ Δ, ψ
(⇒ ∧)

Γ ⇒ Δ, ϕ ∧ ψ

Exercise 1.24. Prove derivability of (3∨ ⇒) and (3 →⇒) in K using cut.
Prove that each of (∧ ⇒), (⇒ ∨), (⇒→) is derivable from full 2−variants

with cut.

Now we will show a few theoretical applications of cut.

1.9.1 Equivalence with Axiomatic Formulation of CPL

As an immediate consequence of the admissibility of cut we can demonstrate the
correctness of K in a purely syntactic way, by showing that provability in K equals
provability in the system H introduced in subsection 1.1.3. It was the way of
Gentzen who did not provide any semantical proofs of adequacy for his SC.

Theorem 1.8. (Equivalence of H and K). �H ϕ iff �K⇒ ϕ

We have added subscripts to � since we talk about two different consequence
relations in one section. We prove first:

Lemma 1.17. If �H ϕ, then �K⇒ ϕ

Proof: of this lemma is not very complicated. It requires a construction of K-
proofs for all schemata of axioms and showing that every application of MP in any
H-proof may be simulated in K. In section 1.3 we provided a proof of an instance
of axiom 2; it is sufficient to replace in it every occurrence of p with ϕ, q with
ψ and r with χ and we get a general schema of a proof of every instance of this
axiom. Additionally we demonstrate a schema of a proof for axiom 6:

ϕ, ψ → χ ⇒ χ, ϕ χ, ϕ, ψ → χ ⇒ χ
(→⇒)

ϕ, ψ → χ, ϕ → χ ⇒ χ

ψ, ϕ → χ ⇒ χ, ψ χ, ψ, ϕ → χ ⇒ χ
(→⇒)

ψ, ψ → χ, ϕ → χ ⇒ χ
(∨ ⇒)

ϕ ∨ ψ, ψ → χ, ϕ → χ ⇒ χ
(⇒→)

ψ → χ, ϕ → χ ⇒ ϕ ∨ ψ → χ
(⇒→)

ϕ → χ ⇒ (ψ → χ) → (ϕ ∨ ψ → χ)
(⇒→) ⇒ (ϕ → χ) → ((ψ → χ) → (ϕ ∨ ψ → χ))
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As for the simulation of MP, in K this is obtained in the following way:

D2

⇒ ϕ

D1

⇒ ϕ → ψ

ϕ ⇒ ϕ ψ ⇒ ψ
(→⇒)

ϕ → ψ,ϕ ⇒ ψ
(Cut)

ϕ ⇒ ψ
(Cut)⇒ ψ

where D1 and D2 are simulations (in K) of H-proofs of the two theses that are
the premisses of the application of MP. Now it is clear why we need to prove the
admissibility of cut first. �

Exercise 1.25. Prove the remaining axiom schemata in K.

To prove that �K⇒ ϕ implies �H ϕ Gentzen has shown that his translation
(see section 1.2) of every primitive rule of K yields a rule which is derivable in H.
We omit Gentzen’s original proof, as it is a rather involved exercise in constructing
proofs in an axiomatic system and we are not concerned with this issue in this work.
Instead we provide a much simpler proof due to Kleene [149] which yields the same
result. It is based on the interpretation of ⇒ as a kind of a consequence relation
which was also briefly introduced in section 1.2. Here the specific consequence
relation we are interested in is the derivability relation �H . To avoid problems
with multiplicity of formulae in the succedent (note that �H admits at most one
formula in this position) we apply a simple trick of putting the denials of all
succedent formulae in the antecedent and using ⊥ instead of an empty set to the
right of �H . So we will prove the following apparently more general result.

Lemma 1.18. If �K Γ ⇒ Δ, then Γ,¬Δ �H ⊥
Proof: By induction on the height of a proof in K. It is sufficient to use properties
of � from lemma 1.1. The proof of the basis is trivial since we have ϕ �H ϕ, and
therefore ϕ,¬ϕ �H ⊥ by point 9.

For the induction hypothesis we assume that the lemma holds for any proof
of the height < n and show that it holds also for n by consideration of all possible
applications of rules. We present one example:

(⇒ ∧) was applied to obtain �n Γ ⇒ Δ′, ϕ∧ψ. Both premisses have proofs of lesser
height so they fall under the induction hypothesis and we have Γ,¬Δ′,¬ϕ �H ⊥
and Γ,¬Δ′,¬ψ �H ⊥. By lemma 1.1, point 9, we have Γ,¬Δ′ �H ϕ and Γ,¬Δ′ �H

ψ. By axiom 4 and point 6 of lemma 1.1 we obtain ϕ,ψ �H ϕ ∧ ψ which, after
double application of point 4, yields Γ,¬Δ′ �H ϕ ∧ ψ, therefore (by point 9)
Γ,¬Δ′,¬(ϕ ∧ ψ) �H ⊥. �

Exercise 1.26. Prove the remaining cases using lemma 1.1 and axioms.

From lemma 1.18 with empty Γ and Δ := {ϕ} we obtain, by lemma 1.1, the
converse of lemma 1.17, and this yields a proof of theorem 1.8.
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1.9.2 Equivalence of Tarskian Consequence Relations

In Remark 1.4 we have claimed that two different notions of Tarski-style con-
sequence relations are equivalent. Now we prove this claim. Let us recall both
definitions:

• Γ �t ϕ iff � Γ′ ⇒ ϕ for some finite Γ′ ⊆ Γ;

• Γ �v ϕ iff ⇒ ψ1, ...,⇒ ψk �⇒ ϕ, for {ψ1, ..., ψk} ⊆ Γ.

� is of course a derivability relation between sequents.

Claim 1.6. Γ �t ϕ iff Γ �v ϕ.

Proof: In both directions we assume that we deal with the same finite subset
of Γ, i.e. that Γ′ = {ψ1, ..., ψk}. This is not a restriction since if these finite sets
are different then we can always in case of �t add the lacking formulae to the
antecedent Γ′ and in case of �v add vacuously ⇒ φ for any φ ∈ Γ′ not being one
of ψi.

=⇒: If we assume that � ψ1, ..., ψk ⇒ ϕ and that �⇒ ψi for 1 � i � k, then
by k applications of cut we obtain �⇒ ϕ.

⇐=: Let D be a derivation of ⇒ ϕ from ⇒ ψ1, ...,⇒ ψk. Change it into a
proof tree D′ of ψ1, ..., ψk ⇒ ϕ from ψ1, ..., ψk ⇒ ψ1, ... , ψ1, ..., ψk ⇒ ψk by
adding ψ1, ..., ψk to all antecedents. Since all rules of K are context-independent
and each ψ1, ..., ψk ⇒ ψi is axiomatic, D′ is a proof of ψ1, ..., ψk ⇒ ϕ. �

1.10 Completeness Again

It should be obvious by now that having cut at our disposal makes it possible to
use SC (K in particular) for any task which is ordinarily performed by means of
axiomatic systems with MP as a primitive rule. Moreover, it seems that in many
cases the well-known results in the setting of SC may be formulated in a simpler
and more elegant way than for Hilbert systems. To illustrate this remark we will
show some standard results reformulated suitably for K.

In this section we focus on the Lindenbaum/Henkin-style proof of the com-
pleteness theorem. There are a lot of variants of this kind of proof designed for
Hilbert systems. However all of them are based on the idea that any consistent set
may be extended in such a way that it is maximal in some sense. Such maximal
consistent sets allow for direct construction of a model in which the input con-
sistent set is satisfied. Since unprovability is interdefinable with consistency then
this model is used for the falsification of unprovable sequents. There is a notable
difference between this type of proof and the Hintikka-style proof presented in
section 1.7. In the latter we have shown that for each unprovable sequent we can
construct a specific and finite countermodel. Now we will construct one infinite
model falsifying all unprovable sequents. Below we provide some variants of this
kind of proof but at first we will show how to generalise some notions introduced
earlier for Hilbert systems to apply also to SC.
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1.10.1 Consistency

Definition 1.12. (Consequence, Consistency).

1. Γ �s Δ iff � Γ′ ⇒ Δ′ for some finite Γ′ ⊆ Γ and Δ′ ⊆ Δ.

2. Γ �
s Δ iff � Γ′ ⇒ Δ′ for any finite Γ′ ⊆ Γ and Δ′ ⊆ Δ.

3. (Γ,Δ) is consistent iff Γ �
s Δ.

4. (Γ,Δ) is inconsistent iff Γ �s Δ.

These definitions are based on Scott’s interpretation of ⇒ as �s (here in
K for CPL but they work for other systems and logics as well) and extended to
the infinite case. Let us comment on the rationale for such a form of defining
(in)consistency. It is in fact a very natural generalisation of the notion of the
(in)consistency of a set defined by means of a provability relation in H-system. Let
us recall that, according to the standard definition, Γ is inconsistent iff Γ′ �H ⊥
for some finite Γ′ ⊆ Γ, but on the basis of the equivalence of �H and �K for CPL
(theorem 1.8) we have �K Γ′ ⇒ which means that (Γ, ∅) is inconsistent. Let us
note that if (Γ,Δ) is inconsistent, then we can add to Δ any formula by (⇒ W )
which is in accordance with another standard characterisation of inconsistency of
Γ as Cn(Γ) = FOR (Cn(Γ) = {ϕ : Γ � ϕ}).

A simple consequence is:

Lemma 1.19. If (Γ,Δ) is consistent, then:

• Γ ∩ Δ = ∅

• (Γ′,Δ′) is consistent for any Γ′ ⊆ Γ and Δ′ ⊆ Δ

Proof: In the first case if Γ ∩ Δ �= ∅, then � ϕ ⇒ ϕ for some ϕ ∈ Γ ∩ Δ, hence
there is finite Γ′ ⊆ Γ, Δ′ ⊆ Δ such that � Γ′ ⇒ Δ′—contradiction.

Similarly in the second case, if some (Γ′,Δ′) were inconsistent, then � Γ′ ⇒
Δ′ which yields � Γ ⇒ Δ and contradiction. �

Lemma 1.20. If (Γ,Δ) is consistent, then:

1. if ϕ ∈ Γ, then ϕ /∈ Δ

2. if ϕ ∈ Δ, then ϕ /∈ Γ

3. if ¬ϕ ∈ Γ, then ϕ /∈ Γ

4. if ¬ϕ ∈ Δ, then ϕ /∈ Δ

5. if ϕ ∧ ψ ∈ Γ, then ϕ /∈ Δ and ψ /∈ Δ

6. if ϕ ∧ ψ ∈ Δ, then ϕ /∈ Γ or ψ /∈ Γ

7. if ϕ ∨ ψ ∈ Γ, then ϕ /∈ Δ or ψ /∈ Δ

8. if ϕ ∨ ψ ∈ Δ, then ϕ /∈ Γ and ψ /∈ Γ
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9. if ϕ → ψ ∈ Γ, then ϕ /∈ Γ or ψ /∈ Δ

10. if ϕ → ψ ∈ Δ, then ϕ /∈ Δ and ψ /∈ Γ

Proof: The first two cases are direct consequences of the previous lemma. We
prove cases 9 and 10.

For 9. Assume that ϕ → ψ ∈ Γ but ϕ ∈ Γ and ψ ∈ Δ. However � ϕ →
ψ,ϕ ⇒ ψ, so we have Γ � Δ which contradicts the assumption of the lemma.

For 10. Assume that ϕ ∈ Δ or ψ ∈ Γ but ϕ → ψ ∈ Δ. Let us note that both
⇒ ϕ → ψ,ϕ and ψ ⇒ ϕ → ψ are provable, so in each case we have Γ � Δ—a
contradiction. �
Exercise 1.27. Prove the remaining cases.

We have underlined that the application of the Lindenbaum–Henkin method
for SC requires the application of cut. Here is the first such situation:

Lemma 1.21. If (Γ,Δ) is consistent, then (Γ∪{ϕ},Δ) is consistent or (Γ,Δ∪{ϕ})
is consistent for any ϕ.

Proof: Assume that both pairs of sets are inconsistent, then � Γ′, ϕ ⇒ Δ′ and
� Γ′′ ⇒ Δ′′, ϕ, for some finite Γ′ ∪ Γ′′ ⊆ Γ and Δ′ ∪ Δ′′ ⊆ Δ. By the application
of (Cut) we obtain � Γ′,Γ′′ ⇒ Δ′,Δ′′, hence (Γ,Δ) is not consistent. �

1.10.2 Maximality

In the setting of Hilbert systems we are using the notion of maximal (consistent)
set. In a similar way as we did with Hintikka sets (exchanging them into Hintikka
tuples in section 1.7) we also generalise the notion of a maximal set, changing it
into maximal tuples of sets of formulae:

Definition 1.13. (Maximality). (Γ,Δ) is maximal iff Γ ∪ Δ =FOR.

Some obvious consequences of this definition are displayed below. One may
compare them with the first four conditions from lemma 1.20 characterising con-
sistent pairs.

Lemma 1.22. If (Γ,Δ) is consistent and maximal, then:

1. if ϕ /∈ Γ, then ϕ ∈ Δ

2. if ϕ /∈ Δ, then ϕ ∈ Γ

3. if ¬ϕ /∈ Γ, then ϕ ∈ Γ

4. if ¬ϕ /∈ Δ, then ϕ ∈ Δ

Proof: Case 3. If both ¬ϕ /∈ Γ and ϕ /∈ Γ, then, by maximality, {¬ϕ,ϕ} ⊆ Δ.
But �⇒ ¬ϕ,ϕ which contradicts the consistency of (Γ,Δ). �



1.10. Completeness Again 47

Exercise 1.28. Prove the remaining cases.

The next lemma is a counterpart of the standard Lindenbaum lemma but
stated for pairs of sets.

Lemma 1.23. (Lindenbaum). If (Γ,Δ) is consistent, then there exists consistent
and maximal pair (Γ′,Δ′) such that Γ ⊆ Γ′ and Δ ⊆ Δ′.

Proof: Since FOR is denumerable we may order this set and add successive
formulae one by one either to Γ or to Δ. More precisely, let ϕ1, ϕ2, .... be an infinite
list of all formulae. We define an infinite list of sequents Γ0 ⇒ Δ0, Γ2 ⇒ Δ2, ....
such that Γ0 ⇒ Δ0 := Γ ⇒ Δ, and for each i ≥ 0:

Γi+1 ⇒ Δi+1 :=

{
Γi ⇒ Δi, ϕi+1 if (Γi,Δi ∪ {ϕi+1}) is consistent
Γi, ϕi+1 ⇒ Δi otherwise

By construction and lemma 1.21 we know that at each stage at least one pair
of sequents is consistent, hence every subsequent pair of sequents is consistent and
all must be consistent.

Let Γ′ =
⋃

Γi, and Δ′ =
⋃

Δi, for i < ω. It is clear that Γ′ ∪ Δ′ = FOR,
hence (Γ′,Δ′) is maximal. Assume that (Γ′,Δ′) is inconsistent. Since every proof
is finite, there must be some finite pair (Π,Σ) such that Π ⊆ Γ′,Σ ⊆ Δ′ and
� Π ⇒ Σ. By finiteness of (Π,Σ) there must be a stage i in the construction of our
infinite list such that Π ⊆ Γi and Σ ⊆ Δi which means that � Γi ⇒ Δi and this
pair is inconsistent, contrary to our assumption. By definition we also have that
Γ ⊆ Γ′ and Δ ⊆ Δ′. Therefore (Γ,Δ) can be extended to maximal and consistent
pair. �

1.10.3 Completeness

Lemma 1.24. (Truth lemma). If (Γ,Δ) is maximal, then there is a model M such
that: for any ϕ, ϕ ∈ Γ iff M � ϕ.

Proof: We define a model M taking as true all atomic formulae from PROP (Γ)
and prove that it satisfies the claim by induction on the complexity of ϕ. The basis
follows by definition.

a. Let ϕ := ¬ψ:
If ¬ψ ∈ Γ, then, by lemma 1.20, point 3, ψ /∈ Γ, and by lemma 1.22, point 1,

ψ ∈ Δ. By the induction hypothesis M � ψ, so M � ¬ψ.
Similarly if M � ¬ψ which means that M � ψ, then by the induction hy-

pothesis ψ ∈ Δ. By lemma 1.20, point 4, ¬ψ /∈ Δ, hence, by lemma 1.22, point 2,
¬ψ ∈ Γ.
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b. Let ϕ := ψ ∧ χ:
If ϕ ∈ Γ, then ψ /∈ Δ and χ /∈ Δ (lemma 1.20, point 5). Hence, by lemma

1.22, point 2, ψ ∈ Γ and χ ∈ Γ. By the induction hypothesis M � ψ and M � χ,
so M � ϕ.

If ϕ /∈ Γ, then by lemma 1.22, point 1, ϕ ∈ Δ, so by lemmata 1.20 and 1.22,
ψ /∈ Γ or χ /∈ Γ (ψ ∈ Δ or χ ∈ Δ). By the induction hypothesis M � ψ or M � χ;
in any case we have M � ϕ. �

Exercise 1.29. Prove the remaining 2 cases.

Theorem 1.9. (Completeness). If |= Γ ⇒ Δ, then � Γ ⇒ Δ.

Proof: Assume that � Γ ⇒ Δ, hence (Γ,Δ) is consistent. By lemma 1.23 there is
a maximal consistent extension (Γ′,Δ′) of it, and by lemma 1.24, there is a model
such that all elements of Γ′ (and so of Γ) are satisfied and all elements of Δ′ (hence
Δ) are falsified in it. But this means that it is not true that |= Γ ⇒ Δ. �

1.10.4 Some Variant Proofs

Henkin-like proofs of completeness may be carried out also in a different way. We
sketch here some variations. First of all instead of proving separately some features
of consistent (lemma 1.20) and maximal pairs (lemma 1.22), we can directly prove
a lemma about important features of maximal consistent pairs:

Lemma 1.25. If (Γ,Δ) is consistent and maximal, then it has the following prop-
erties:

1. ¬ϕ ∈ Γ iff ϕ ∈ Δ

2. ¬ϕ ∈ Δ iff ϕ ∈ Γ

3. ϕ ∧ ψ ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ

4. ϕ ∧ ψ ∈ Δ iff ϕ ∈ Δ or ψ ∈ Δ

5. ϕ ∨ ψ ∈ Γ iff ϕ ∈ Γ or ψ ∈ Γ

6. ϕ ∨ ψ ∈ Δ iff ϕ ∈ Δ and ψ ∈ Δ

7. ϕ → ψ ∈ Γ iff ϕ ∈ Δ or ψ ∈ Γ

8. ϕ → ψ ∈ Δ iff ϕ ∈ Γ and ψ ∈ Δ

Proof: We consider cases 1 and 7.
If ¬ϕ ∈ Γ, then, by consistency of (Γ,Δ), ϕ /∈ Γ since � ϕ,¬ϕ ⇒ which yields

Γ � Δ. By maximality ϕ ∈ Δ since ϕ ∈ Γ ∪ Δ. The converse follows similarly.
If ϕ → ψ ∈ Γ, then clearly ϕ /∈ Γ or ψ /∈ Δ; otherwise Γ � Δ since � ϕ →

ψ,ϕ ⇒ ψ. Hence by maximality ϕ ∈ Δ or ψ ∈ Γ. In the other direction assume
that ϕ ∈ Δ or ψ ∈ Γ, and that ϕ → ψ /∈ Γ. Hence ϕ → ψ ∈ Δ by maximality. In
both cases we obtain that Γ � Δ because in the first case �⇒ ϕ → ψ,ϕ, and in
the second � ψ ⇒ ϕ → ψ. �
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Exercise 1.30. Prove the remaining cases.

The above lemma makes the proof of the truth lemma even easier since
the properties naturally correspond to truth clauses. For example the proof for
conjunction goes as follows:

ϕ ∧ ψ ∈ Γ iff (by lemma 1.25) ϕ ∈ Γ and ψ ∈ Γ iff (by the induction
hypothesis) M � ϕ and M � ψ iff M � ϕ ∧ ψ.

Exercise 1.31. It is also possible to define directly the notion of a maximal and
consistent pair as a pair satisfying the 8 conditions of lemma 1.25. In this approach
we do not need to prove them but the proof of lemma 1.23 is different. We do not
need to change the construction but now we must prove that the resulting infinite
pair satisfies all 8 conditions. The reader is encouraged to do it.

Remark 1.7. The approach realised above (as well as in section 1.7) deviates from
more standard solutions by treating both sides of a sequent as equally important
for the construction of suitable models. However, for those who are accustomed
to the standard Lindenbaum–Henkin proof for Hilbert systems we point out that
one may dispense with the notion of a consistent (and maximal or downward
saturated) pair of sets and apply the more traditional solution based on the use of
sets. The main difference with the present approach is that such constructions are
based rather on the antecedents of unprovable sequents. For example Maehara [169]
defines the notion of a complete consistent system directly in terms of unprovable
sequents in the following way: Π is a Complete Consistent System iff for all finite
Γ ⊆ Π and Δ ∩ Π = ∅ the sequent Γ ⇒ Δ is not provable. Using this notion we
can provide a counterpart of Lindenbaum’s lemma for unprovable sequents, i.e.
we can prove that if � Γ ⇒ Δ, then there exists a complete consistent system
Π such that Γ ⊆ Π and Δ ∩ Π = ∅. The proof goes by maximalisation, and the
construction of a model is standard. Beziau [29] provides an even more general
construction working for some class of SC and based on the more general notion
of a relatively maximal consistent set due to Asser [6]. However in the case of
classical logic this notion coincides with the notion of a maximal consistent set.
Another general construction of Consistency Properties introduced by Smullyann
[245] and developed by Fitting [85] may be applied to SC. One such application is
provided by Boolos, Jeffrey and Burgess [38].

1.11 Restricted Cut

We have shown that cut may be useful, especially when we are interested in the
transfer of results obtained for Hilbert systems to SC setting. But the list of profits
is longer and we demonstrate some of them in this section and in the next chapters.
One advantage of using cut in proofs is connected with the problem of the size of
proofs. We have mentioned in section 1.8 that cut may simulate the applications
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of lemmata in proofs. This way we can use already proved results to obtain quickly
the new ones instead of proving everything in isolation. It was shown that clever
applications of cut may decrease proofs even exponentially; one may find examples
(formulated in the setting of tableau systems) in Boolos [37] and Fitting [85].
Investigations on the relative complexity of different proof systems, carried out
in terms of a simulation of proofs in one system by proofs in another, showed
that SC with cut behaves much better than SC without cut. Loosely speaking,
Hilbert systems, natural deduction and SC with cut may simulate their proofs with
polynomial increase of the size of proofs only, whereas SC without cut provides
exponential increase for many classes of proofs8.

However, one cannot overlook that there is also a price to be paid for having
cut — the subformula property and all its nice consequences exploited so far are
lost. Uncontrolled applications of cut in a root-first proof search introduce full
indeterminism in the sense that we do not have a bound space of choices—any
formula ϕ may be used as a cut-formula. That is why we are interested in showing
that cut may be treated as an admissible rule not a primitive one, or that we can
eliminate it if it is introduced as primitive.

On the other hand, we have mentioned in subsection 1.3.3 that the subformula
property of all rules is not necessary for analyticity of SC. In particular, we can
think about some restricted applications of cut in proof search. We have mentioned
above the computational benefits of the applications of cut. If it is possible to
combine them with reasonable restrictions on indeterminism introduced by cut,
then we can get an interesting and practically more efficient alternative to cut-free
SC. In fact, resolution systems are based on this idea since resolution (at least
in the propositional setting—see Avron [9]) is nothing more than (analytically
restricted) cut, applied to atomic sequents (i.e. clauses).

Hence, even in case of logics which, like CPL, have a cut-free SC, admissibility
of restricted forms of cut may lead to some unexpected advantages. Moreover, as
we will see in chapter 4, for some non-classical logics one cannot get rid of cut but
may be able to restrict its applications to some analytic version. In this section we
will take up the question of taming cut.

Let us call an application of cut analytic iff its cut-formula is a subfor-
mula of the root sequent. If we restrict all applications of cut in this way in
proofs/derivations, then we retain the subformula property for the system. We can
go even further and introduce an analytical version of the rule of cut which satisfies
the subformula property by addition of a side condition that the cut-formula must
be a subformula of the conclusion sequent. As we will see we can strengthen even
this side condition by demanding that the cut-formula is an atomic subformula of
the conclusion sequent. Such solutions are stronger since we retain the subformula
property of rules not only of proofs. However, the former notion is more general,

8We restrict considerations of these issues only to very general remarks. There are many subtle
questions connected with how exactly we define the size of a proof or whether we are dealing
with trees or direct acyclic graphs as representing proofs. A readable introduction to this field
may be found in Urquhart [267].
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and consequently more useful in proof search, so it is easier to prove results about
it. Let K+AC denote K with cut so restricted. Note that restricting applications of
cut to analytic ones only allow for root-first proof search and proving decidability
by means of K+AC. However, we also show that atomically restricted analytic cut
has some special, interesting applications.

1.11.1 Completeness with Analytic Cut

First we will show that one can combine some features of the Lindenbaum/Henkin
proof with the constructive approach of Hintikka to obtain another adequacy re-
sult. Basically, the proof shows that for any consistent pair (Γ,Δ) we can build a
relatively maximal pair from elements of SF (Γ ∪ Δ) (lemma 1.26) and show that
it is downward saturated (lemma 1.27).

The next definition shows how to change Lindenbaum’s construction to work
for finite sets.

Definition 1.14. (Relative maximality). A pair (Γ,Δ) is relatively maximal in the
set Π ⊆ FOR iff for any ϕ ∈ Π, ϕ ∈ Γ or ϕ ∈ Δ (i.e. Γ ∪ Δ = Π).

This definition is in fact a generalisation of the definition of maximality since
Π may be also FOR, but for us it is more interesting if Π is some finite and suitably
defined subset of FOR. At first we consider a case of SF (Γ ∪ Δ).

Here we have a counterpart of Lindenbaum’s lemma.

Lemma 1.26. If (Γ,Δ) is consistent, then there exists a pair (Γn,Δn) such that
Γ ⊆ Γn and Δ ⊆ Δn, and it is consistent and relatively maximal in SF (Γ ∪ Δ).

Proof: Analogous to the proof of Lindenbaum lemma.
Assume that (Γ,Δ) is consistent. We make a finite list of all formulae from

SF (Γ∪Δ): ϕ1, ϕ2, . . . , ϕn. Next we define a list of sequents Γ0 ⇒ Δ0, . . . ,Γn ⇒ Δn

such that Γ0 ⇒ Δ0 := Γ ⇒ Δ, and for any n ≥ i ≥ 0: Γi+1 ⇒ Δi+1 := Γi ⇒
Δi, ϕi+1 if (Γi,Δi∪{ϕi+1}) is consistent, otherwise Γi+1 ⇒ Δi+1 := Γi, ϕi+1 ⇒ Δi.

The relative maximality of (Γn,Δn) follows from the fact that every element
of SF (Γ ∪ Δ) was considered at some stage of the construction.

By construction and lemma 1.21 it follows that each element of the list, and
in particular (Γn,Δn), is consistent. Note however that all applications of cut
required for showing its consistency were analytic. �

It is sufficient to prove that the so constructed finite pair (Γn,Δn) is satu-
rated. This guarantees the existence of a model falsifying also Γ ⇒ Δ, and yields
a completeness proof for K+AC.

Lemma 1.27. (Γn,Δn) is downward saturated.

Proof: To show that Γn ⇒ Δn is saturated we may refer to its consistency and
to suitable conditions from lemma 1.20. For example:
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a) Assume that ϕ∧ψ ∈ Γn, then, by lemma 1.20, condition 5—we have that
ϕ /∈ Δn and ψ /∈ Δn, but both ϕ and ψ, being subformulae of Γ∪Δ, must belong
to Γn ⇒ Δn. Hence both belong to Γn. �

Exercise 1.32. Prove the remaining cases.

Then completeness of K+AC follows exactly as for K (see theorem 1.5), i.e.
by lemma 1.12 which shows how to build a falsifying model for Γ ⇒ Δ from
Hintikka tuple.

For the sake of variety we will show how to demonstrate the weak complete-
ness of K+AC by means of Kalmar’s method (see e.g. Mendelson [175]). In fact,
we need for this proof only the most strongly restricted version of cut, namely
where the cut-formulae are atomic subformulae of the conclusion sequent. More-
over, formulation of this proof strategy in the setting of SC is much simpler than
for Hilbert systems. In particular, it does not require proving additional theses.

Lemma 1.28. Let PROP (ϕ) = Γ ∪ Δ such that for some M we have M � Γ and
M � ∨Δ, then:

1. if M � ϕ, then � Γ ⇒ Δ, ϕ;

2. if M � ϕ, then � ϕ,Γ ⇒ Δ.

Proof: By induction on the complexity of ϕ. The basis is trivial since ϕ is just
an atom and in both cases we have � ϕ ⇒ ϕ.

Let ϕ = ψ∧χ. If M � ϕ, then M � ψ and M � χ. By the induction hypothesis
� Γ′ ⇒ Δ′, ψ and � Γ′′ ⇒ Δ′′, χ for Γ′∪Δ′ = PROP (ψ) and Γ′′∪Δ′′ = PROP (χ).
By applications of W and (⇒ ∧) we have � Γ ⇒ Δ, ϕ. Similarly if M � ϕ,
then M � ψ or M � χ. In the former case, by the induction hypothesis we have
� ψ,Γ′ ⇒ Δ′ and by W and (∧ ⇒) we obtain � ϕ,Γ ⇒ Δ. The second case is
analogous. �

Exercise 1.33. Prove the lemma for the remaining cases.

A direct consequence of this lemma is the following:

Claim 1.7. If |= ϕ, then � Γ ⇒ Δ, ϕ for all partitions of PROP (ϕ) into disjoint
sets Γ,Δ.

Now we can prove:

Theorem 1.10. If |= ϕ, then �⇒ ϕ.

Proof: By induction on the number of elements of PROP (ϕ). For every n we
have just 2n partitions corresponding to every possible valuation of PROP (ϕ).
We systematically apply cut on these atoms decreasing their number until we get
Γ ∪ Δ = ∅. Instead of a rigorous inductive proof we simply illustrate the case of
n = 2:
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⇒ ϕ, p, q q ⇒ ϕ, p
(Cut) ⇒ ϕ, p

p ⇒ ϕ, q q, p ⇒ ϕ
(Cut)p ⇒ ϕ

(Cut)⇒ ϕ

�

Exercise 1.34. Provide inductive proof of this theorem.

1.11.2 Constructive Proof of Analytic Cut Admissibility

In the preceding subsection we treated the case of completeness of K+AC seman-
tically but it is possible to do it also syntactically. We can constructively prove
that in K with cut we can replace all applications of cut with analytic ones. A
proof is basically the same as in section 1.8, i.e. by induction on the complexity of
the cut-formula and the height of the proofs of the premisses. The only difference
is that we do not want to eliminate all cuts; we admit analytic cuts.

Theorem 1.11. A proof in K+Cut may be replaced with a proof in K+AC

Proof: In the basis a cut-formula is a propositional symbol and we perform a
subinduction on the height. In case of an axiom an application of a cut is eliminable
as in the proof from section 1.8, and the same transformations are applied in case
of height reduction (i.e. if at least one cut-formula is not principal).

The case where the cut-formula is principal in both premisses is treated ex-
actly as in the proof of theorem 1.7. Cuts on smaller formulae are either acceptable
if analytic or eliminable by the induction hypothesis.

The only difference is that the last rule introducing a premiss of cut may be
another cut, which by assumption is analytic. Let us consider such a case with ψ
being an analytic and ϕ a non-analytic cut-formula:

Γ ⇒ Δ, ϕ, ψ ψ,Π ⇒ Σ
(Cut)

Γ,Π ⇒ Δ,Σ, ϕ ϕ,Λ ⇒ Θ
(Cut)

Γ,Π,Λ ⇒ Δ,Σ,Θ

We permute both applications of cut:

Γ ⇒ Δ, ψ, ϕ ϕ,Λ ⇒ Θ
(Cut)

Γ,Λ ⇒ Δ,Θ, ψ ψ,Π ⇒ Σ
(Cut)

Γ,Π,Λ ⇒ Δ,Σ,Θ

Now, the non-analytic cut is eliminable by the induction hypothesis (the
height is reduced). In case ϕ is in the right premiss of the input schema, the reduc-
tion is similar. In case ϕ is in both premisses of the first cut, the transformation
is slightly more complex since we must apply cut on ϕ twice, on both premisses
of the cut on ψ. �

Exercise 1.35. The reader is invited to demonstrate the cases mentioned above.
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1.11.3 Proof Search

Since the restriction of cut to analytic applications makes the proof search finite
it provides also a possibility of defining an alternative decision procedure for CPL.
However, it opens a room for specific solutions which may optimise proof search
and restrict the size of proof trees. Let us mention briefly two possible strategies
which may be borrowed from other approaches9.

Mondadori [184] (see in particular DeAgostini [1]) introduced a system KE
which is a variant of Smullyan’s tableaux which has cut (called the PB rule there) as
the only branching rule (i.e. two-premiss rule in SC framework). All other branch-
ing rules are replaced with non-branching ones but requiring additional (minor)
premiss. For example, having ϕ ∨ ψ we additionally need ¬ϕ (or ¬ψ) to derive
ψ (or ϕ) on the branch, instead of adding ϕ and ψ on independent extensions
of this branch. KE allows for exponentially shorter proofs which is not surprising
in the light of remarks from the beginning of this section. Moreover, cut in KE
may be restricted not only to analytic applications but even to some selected ones.
Constructive completeness proof for KE shows that cut is only necessary when
we have some disjunction, implication or negated conjunction on the branch, but
with no additional premiss allowing for the application of a suitable rule. In the
setting of K+AC this suggests the strategy of selecting as cut-formulae only im-
mediate subformulae of disjunctions and implications occurring in the antecedent,
or conjunctions from the succedent.

Quine [208] introduced quite efficient decision method for CPL called resolu-
tion by him. Although semantical, in fact it is strictly connected with resolution
introduced later by Robinson [219]. Also the method of binary decision diagrams,
popular in automated deduction, is essentially based on the same idea. The method
works by always selecting one propositional symbol and replacing it with � and
⊥, respectively. This is the resolution move. Several rewriting rules based on the
truth-functional definitions of connectives allow for the systematic reduction of in-
put formula to � or ⊥. Of course we can select another propositional formula and
repeat the resolution move if we stop at some branch with no definitive solution.
This method may suggest another strategy for the application of analytic cuts in
proof search. Restrict the selection of cut-formulae only to propositional symbols
occurring in the input sequent. From Kalmar’s completeness proof recorded above
we know that this is sufficient. As for the strategy it seems that it is better to
choose an atom which has more occurrences than others.

We provided only informal hints concerning possible candidates for cut-
formulae. One should remember that they are taken from systems considerably
different from SC. If we would like to simulate suitable procedures from [1] or
[208] in an exact way we should show how to simulate other rules and the effect
may be not wholly satisfying. For example, if we want to provide a formal analogue
of KE in SC framework, we must replace the two-premiss rules with suitable pairs
of one-premiss rules. For example instead of (∨ ⇒) we must introduce:

9They are discussed in more detail in Indrzejczak [130] in the framework of natural deduction.
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ϕ,ϕ ∨ ψ,Γ⇒ Δ, ψ
ϕ ∨ ψ,Γ⇒ Δ, ψ

ψ, ϕ ∨ ψ,Γ⇒ Δ, ϕ
ϕ ∨ ψ,Γ⇒ Δ, ϕ

And similarly for (→⇒) and (⇒ ∧). Note that rules like:

ϕ,Γ⇒ Δ
ϕ ∨ ψ,Γ⇒ Δ, ψ

ψ,Γ⇒ Δ
ϕ ∨ ψ,Γ⇒ Δ, ϕ

although more similar to ordinary SC rules, do not work. It is necessary
to apply what is called Kleene’s trick, i.e. to rewrite the principal formula and
(minor) premiss from the conclusion since they may be used many times during
the proof search process. Similar remarks apply to the effect of simulating Quine
rewriting rules. Hence, from the standpoint of SC architecture it is rather pointless.
Anyway, both approaches may be useful as the sources for a strategy of selecting
cut-formulae in proof search. We conclude with the remark that it is possible to
construct also other kinds of SC with primitive analytic cut which are adequate
for CPL. One such system, due to Smullyan, will be described in section 3.6

Exercise 1.36. Define suitable one-premiss rules being analogues to the other KE
rules.

Try to develop procedures of proof search for K+AC on the basis of KE or
Quine’s strategy.

1.11.4 Strong Completeness

The techniques presented so far in this section may seem of modest use since they
do not yield essentially new results for CPL. Now we will show that something
essentially new may be obtained on this basis. In general, another application of cut
is connected with the possibility of obtaining a stronger version of completeness for
SC; not only for provable sequents but also for the derivability relation between
sequents. This way we open the door for proving adequacy results for theories
formulated as collections of sequents added to some basic SC10. We have already
mentioned by the end of subsection 1.3.2 that K (without cut) is not strong enough
for such a result. To do this we need cut but fortunately, as we will see, the
applications of cut may be limited in a satisfactory way also in this case.

First, we provide a simple proof based on theorem 1.5 and the syntacti-
cal interpretation I of sequents as formulae, described in subsection 1.2.1. Let
S1, ..., Sn � S denote a derivability relation in K+Cut. We will show:

Theorem 1.12. (Strong Adequacy). S1, ..., Sn � S iff S1, ..., Sn |= S

where |= between sequents is understood as in section 1.3, i.e. that all models
of S1, ..., Sn are models of S.

10This topic will be treated in more detail in the second volume where SC for First-Order
Logic will be investigated.
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Proof: Soundness is not difficult to prove and it follows from the fact that all
rules of K (including cut) are not only validity-preserving but also normal, i.e.
hereditary with respect to models (see subsection 1.2.2).

Exercise 1.37. Prove that if S1, ..., Sn � S, then S1, ..., Sn |= S

As for the completeness, we assume that S1, ..., Sn |= S with S := Γ ⇒ Δ. It
follows that |= I(S1), ..., I(Sn),Γ ⇒ Δ, for otherwise there is a model M such that
M � Γ and M � I(Si) for every i � n but M � ψ for every ψ ∈ Δ. Such a model
however validates every Si and falsifies S which contradicts our assumption. It
follows by (weak) completeness that � I(S1), ..., I(Sn),Γ ⇒ Δ. Now it is easy to
prove Si �⇒ I(Si) by successive applications of (∧ ⇒), (⇒ ∨) and (⇒→) to each
Si. Finally, n applications of cut to I(S1), ..., I(Sn),Γ ⇒ Δ and every ⇒ I(Si)
yields the result. �

As we may notice all applications of cut were already somewhat restricted in
this proof but we can sharpen the result in a way which was first stated in the more
specific form by Takeuti [261] and then independently, and under different names,
proved in general form by Girard [99], Avron [9] and Buss [43]. Below we present
two proofs: the first syntactical (although still dependent on weak completeness)
and the second semantical, both following Avron’s presentations.

Let S1, ..., Sn �C S denote a derivability relation in K+Cut but with all
applications of cut restricted to cut-formulae occurring as formulae in S1, ..., Sn.
Such cuts, and proofs containing only such cuts, may be called anchored after Buss
[43]. We will show:

Theorem 1.13. (Strong Completeness). If S1, ..., Sn |= S, then S1, ..., Sn �C S

Proof 1: By induction on n. The basis is just the weak completeness theorem.
As the induction hypothesis, we assume that the result holds for any derivation
with n− 1 nonaxiomatic sequents used as leaves. Now consider Sn := ϕ1, ..., ϕk ⇒
ψ1, ..., ψl and assume that S1, ..., Sn |= S. By (unrestricted) strong completeness
proved in Theorem 1.12 we have S1, ..., Sn � S but we must prove that S1, ..., Sn �C

S. First note that for each i ≤ k, l we have �C ϕ1, ..., ϕk ⇒ ψ1, ..., ψl, ϕi and
�C ψi, ϕ1, ..., ϕk ⇒ ψ1, ..., ψl since they are just instances of axioms. Due to the
context independence of all rules we can transform a derivation D of S1, ..., Sn � S
into k + l derivations with added ϕi, i ≤ k to the succedent of every sequent or
ψi ≤ l to the antecedent. Hence we get k derivations D′

i of S′
1, ..., S

′
n � Γ ⇒ Δ, ϕi

and l derivations D′′
i of S′′

1 , ..., S′′
n � ψi,Γ ⇒ Δ where each sequent has added ϕi in

the succedent or ψi in the antecedent. In particular, every leaf decorated with Sn in
D obtains in the resulting derivations an axiomatic form ϕ1, ..., ϕk ⇒ ψ1, ..., ψl, ϕi

or ψi, ϕ1, ..., ϕk ⇒ ψ1, ..., ψl. Hence by the inductive hypothesis we have that
S′
1, ..., S

′
n−1 �C Γ ⇒ Δ, ϕi and S′′

1 , ..., S′′
n−1 �C ψi,Γ ⇒ Δ for each i ≤ k, l.

Addition of Sj , j ≤ n − 1 over each leaf of the form S′
j or S′′

j change these k + l
derivations into derivations of Γ ⇒ Δ, ϕi or ψi,Γ ⇒ Δ from S1, ..., Sn−1; new
steps are justified by applications of W. Finally we apply cut to Sn and every root
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sequent of the form Γ ⇒ Δ, ϕi and ψi,Γ ⇒ Δ. We can do this for instance in the
following order:

D′
k

Γ ⇒ Δ, ϕk

D′
2

Γ ⇒ Δ, ϕ2

D′
1

Γ ⇒ Δ, ϕ1 ϕ1, . . . , ϕk ⇒ ψ1, . . . , ψl

ϕ2, . . . , ϕk,Γ ⇒ Δ, ψ1, . . . , ψl

ϕ3, . . . , ϕk,Γ ⇒ Δ, ψ1, . . . , ψl

...
ϕk,Γ ⇒ Δ, ψ1, . . . , ψl

Γ ⇒ Δ, ψ1, . . . , ψl

Then we repeat this process to each sequent ψi,Γ ⇒ Δ until we obtain a
derivation of S1, ..., Sn �C S. �

Proof 2: In order to prove (strong) completeness semantically we first slightly
modify a definition of downward saturation and demonstrate an analogon of lemma
1.14.

Let Θ denote the set of all formulae occurring in S1, ..., Sn and S := Γ ⇒ Δ.
Then in addition to usual conditions for a saturated pair (Π,Σ) we require:

(0) If ϕ ∈ Θ, then ϕ ∈ Π ∪ Σ.

We can prove the following

Lemma 1.29. (Saturation). If S1, ..., Sn �
C Γ ⇒ Δ, then there is a saturated pair

(Π,Σ) of finite sets, such that:

(a) Π ∪ Σ ⊆ SF (Γ ∪ Δ ∪ Θ);

(b) S1, ..., Sn �
C Π ⇒ Σ

Proof: We combine the proofs of lemma 1.26 and lemma 1.14. Let Θ = {ϕ1, ϕ2, ...,
ϕn} We first systematically add elements of Θ either to Γ or to Δ according to the
recipe described in the proof of lemma 1.26. After n steps we obtain a consistent
(not necessarily saturated) pair (Γ′,Δ′) where all elements of Θ occur either in Γ′

or in Δ′. Notice that S1, ..., Sn �
C Γ′ ⇒ Δ′ since for each ϕ ∈ Θ it is not possible

that both S1, ..., Sn �C Γ ⇒ Δ, ϕ and S1, ..., Sn �C ϕ,Γ ⇒ Δ. Otherwise, by (Cut)
on ϕ (which is admitted by �C) we obtain S1, ..., Sn �C Γ ⇒ Δ—a contradiction.

Then we continue with (Γ′,Δ′) as in the proof of lemma 1.14 until we obtain
(Π,Σ). By construction it is guaranteed that (a) and (b) of the lemma hold. �

The construction of a model and suitable truth lemma is proved in an analo-
gous way as in section 1.7. However now we must additionally show that the model
in question satisfies also every Si, i ≤ n.

Proof: For every such Γi ⇒ Δi we have Γi ∪ Δi ⊆ Π ∪ Σ due to saturation. If
Γi ⊆ Π and Δi ⊆ Σ, then S1, ..., Sn �C Π ⇒ Σ trivially by W on Si. Hence there
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must be some ϕ ∈ Γi such that ϕ ∈ Σ or ϕ ∈ Δi such that ϕ ∈ Π. In the first
case M � ϕ, hence M is a model of Γi ⇒ Δi since there is a false formula in the
antecedent. In the second case M � ϕ hence M is a model of Γi ⇒ Δi since there
is a true formula in the succedent. �

From the above result strong completeness follows for � (since �C⊆�).

It is worth noticing that from the strong completeness theorem we obtain the
following result.

Theorem 1.14. (Generalised Cut Admissibility). If S1, ..., Sn � Γ ⇒ Δ, ϕ and
S1, ..., Sn � ϕ,Π ⇒ Σ, then S1, ..., Sn �C Γ,Π ⇒ Δ,Σ.

Exercise 1.38. Derive this result from theorem 1.13.

Remark 1.8. In Buss [43] such a result is described as an elimination of free cuts (as
opposed to anchored cuts). Avron calls this result simply strong cut elimination
but we do not follow his custom since such a name is by many authors used
for a different result proved first by Dragalin [64] and then extended by many
authors. Roughly speaking this is a demonstration that any sequence of suitable
transformations performed on an input proof terminates with a cut-free proof. We
will postpone a presentation of this result to the second volume. That the above
result is a generalisation of the ordinary theorem follows from the fact that if
n = 0 we obtain ordinary cut admissibility, i.e. no cuts are required for the proof
of Γ,Π ⇒ Δ,Σ.

1.11.5 Interpolation Theorem

As the last application of analytic cut we provide a simple proof of Craig’s in-
terpolation theorem for CPL. Here is a semantic formulation of Craig’s theorem:

Theorem 1.15. (Interpolation). If |= ϕ → ψ and PROP (ϕ)∩PROP (ψ) �= ∅, then
for some χ:

• PROP (χ) ⊆ PROP (ϕ) ∩ PROP (ψ)

• |= ϕ → χ

• |= χ → ψ

χ is called an interpolant. Note that the following holds:

Lemma 1.30. If |= ϕ → ψ and PROP (ϕ)∩PROP (ψ) = ∅, then ϕ is unsatisfiable
or ψ is a tautology.

Proof: Assume to the contrary, that ϕ is satisfiable and ψ is not a tautology. So
there is a model M1 � ϕ based on V1 and M2 � ψ based on V2. Now define M3

by postulating that its valuation V3(p) = V1(p) for all p ∈ PROP (ϕ), otherwise
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V3(p) = V2(p). Since PROP (ϕ) ∩ PROP (ψ) = ∅ it follows that M3 � ϕ and
M3 � ψ but this contradicts the hypothesis that |= ϕ → ψ. �

Clearly in case ϕ is unsatisfiable or ψ is a tautology they have an interpolant
even if they have no common atoms; it is ⊥ in the first case and � in the second.
Note that we cannot avoid addition of these constants by using ¬p∧ p and ¬p∨ p,
respectively, for arbitrary p since the condition concerning common atoms may
fail whereas in case of ⊥ and � it is trivially satisfied.

The proof we will provide is similar to the semantical proof of Chagrov and
Zakharyashev [48] based on the application of the tableau method. It is noncon-
structive in the sense that no recipe for obtaining an interpolant for concrete
example is provided; in chapter 2 we provide a constructive proof. However, this
proof is relatively simple and yields another application of analytic cut. In fact,
for the needs of the proof we introduce two symmetrical forms of cut of the shape:

(R-cut) Γ⇒ Δ, ϕ Γ⇒ Δ,¬ϕ
Γ⇒ Δ (L-cut) ϕ,Γ⇒ Δ ¬ϕ,Γ⇒ Δ

Γ⇒ Δ

Both are easily interderivable with ordinary cut by means of negation rules.
Note also that in both we have the same sets of parametric formulae in both
premisses, so W is also needed to show that ordinary cut is derivable. In what
follows we will extend the notion of interpolation for sequents in an obvious way.
We will say that Γ ⇒ Δ has an interpolant iff I(Γ ⇒ Δ) has.

We will prove the contrapositive of Craig’s theorem, i.e. we prove that if there
is no interpolant for ϕ → ψ, then it is not valid.

To this aim let us consider a proof tree for ϕ ⇒ ψ but constructed only
by means of analytic symmetric cut applications. Let χ1, ..., χk be an arbitrary
enumeration all elements of SF ({ϕ}) and γ1, ..., γn of all elements of SF ({ψ}).
We build a tree in a root-first manner, starting with ϕ ⇒ ψ and at each stage
branching with symmetric cut on some χi or γj . In the former case we add χi

to the antecedent of the left, and ¬χi to the antecedent of the right premiss of
(L-cut), whereas in the latter we add γj and ¬γj to the succedents of premisses of
(R-cut) made on the active sequent. Hence we obtain a tree of height k+n+1 and
size 2k+n where for each leaf Γ ⇒ Δ, Γ is maximal in SF ({ϕ}) and Δ in SF ({ψ})
in the sense that for all χi either it or its negation is in Γ and similarly for every
γj and Δ. For such a construction it holds:

Claim 1.8. For each m ≤ k + n, if Γm ⇒ Δm has no interpolant, then at least one
of the premisses, i.e. χi,Γm ⇒ Δm and ¬χi,Γm ⇒ Δm, or Γm ⇒ Δm, γj and
Γm ⇒ Δm,¬γj, has no interpolant.

Proof: Assume on the contrary that both premisses have interpolants. So there
are α and β such that PROP ({α}) ⊆ PROP (Γm ∩ Δm) and similarly for β.
Moreover, in the first case: � χi,Γm ⇒ α, � α ⇒ Δm, � ¬χi,Γm ⇒ β and
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� β ⇒ Δm. In the second case � Γm ⇒ α, � α ⇒ Δm, γj , � Γm ⇒ β and
� β ⇒ Δm,¬γj .

Now, in the first case:

α ⇒ Δm β ⇒ Δm(∨ ⇒)
α ∨ β ⇒ Δm

and

χi,Γm ⇒ α
(⇒ W )

χi,Γm ⇒ α, β

¬χi,Γm ⇒ β
(⇒ W )¬χi,Γm ⇒ α, β

(Cut)
Γm ⇒ α, β

(⇒ ∨)
Γm ⇒ α ∨ β

Hence α ∨ β is an interpolant for Γm ⇒ Δm, contrary to our assumption.
�

Exercise 1.39. Show that in the second case α ∧ β is an interpolant.

The claim implies that, since, by assumption, ϕ ⇒ ψ has no interpolant, then
at least one of the leaves, say Γ ⇒ Δ, has no interpolant either. We will prove now
for any Γ ⇒ Δ being such a leaf:

Lemma 1.31. There is a model M such that:

• for every χ ∈ SF (ϕ), χ ∈ Γ iff M � χ

• for every χ ∈ SF (ψ), χ ∈ Δ iff M � χ.

Proof: Note that Γ ∩ Δ = ∅; otherwise any formula which occurs on both sides
is trivially an interpolant for Γ ⇒ Δ. Also there are no contradictory formulae in
Γ and Δ since then ⊥ would be an interpolant. Hence the set of atomic formulae
in Γ and Δ is disjoint, and the set of literals in both Γ and Δ does not contain any
contradictory pair, so we can define a model by postulating V (p) = 1 iff p ∈ Γ or
¬p ∈ Δ.

The basis: Take any p ∈ SF (ϕ). If p ∈ Γ, then p ∈ Γ or ¬p ∈ Δ and M � p. If
M � p, then p ∈ Γ or ¬p ∈ Δ, but since p ∈ SF (ϕ) it follows that p ∈ Γ.

Take any p ∈ SF (ψ) and assume that p ∈ Δ and M � p. So p ∈ Γ or ¬p ∈ Δ
but, as we noticed above, both are impossible, hence M � p. If M � p but p /∈ Δ,
then ¬p ∈ Δ. Hence p ∈ Γ or ¬p ∈ Δ which implies M � p.

For inductive step we check as an example χ := α ∧ β.
Assume that χ ∈ SF (ϕ) and χ ∈ Γ but M � χ. So M � α or M � β. By the

induction hypothesis α /∈ Γ or β /∈ Γ which implies by maximality that ¬α ∈ Γ
or ¬β ∈ Γ. But both {α ∧ β,¬α} and {α ∧ β,¬β} are inconsistent hence ⊥ is an
interpolant for Γ ⇒ Δ. If for the same χ ∈ SF (ϕ), M � χ but χ /∈ Γ, then ¬χ ∈ Γ.
Since M � α and M � β we have α ∈ Γ and β ∈ Γ by the induction hypothesis.
But {¬(α ∧ β), α, β} is inconsistent, hence again ⊥ is an interpolant.
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Now assume that χ ∈ SF (ψ) and χ ∈ Δ but M � χ. So M � α and M � β.
By the induction hypothesis α /∈ Δ and β /∈ Δ which implies by maximality that
¬α ∈ Δ and ¬β ∈ Δ. But (α∧β)∨¬α∨¬β is a tautology hence � is an interpolant
for Γ ⇒ Δ. If for the same χ ∈ SF (ψ) we have M � χ and χ /∈ Δ, then ¬χ ∈ Δ
follows by maximality. M � α or M � β so we have α ∈ Δ or β ∈ Δ by the
induction hypothesis. But both |= ¬(α ∧ β) ∨ α and |= ¬(α ∧ β) ∨ β, hence again
� is an interpolant. �

Exercise 1.40. Check the cases where χ is a negation, disjunction and implication.

Craig’s interpolation theorem follows directly from these two results. For, if
we construct such a tree for ϕ ⇒ ψ that has no interpolant, then at least one leaf
Γ ⇒ Δ has no interpolant either but has a falsifying model. But ϕ ∈ Γ and ψ ∈ Δ,
so ϕ → ψ is not a tautology.

Remark 1.9. The reader may wonder why we did not simply apply cut instead of
these two variants, and why we take care of the strict separation of the subformulae
of ϕ and ψ in the course of the proof. We will show that these apparently superficial
complications were essential, analysing again the example from the proof. First if
we just apply cut, in the first case we could derive only α ∨ β ⇒ Δm, χi (or in
the second case γj ,Γm ⇒ α∧ β), so we do not have an interpolant for Γm ⇒ Δm.
Similarly, if we do not care about the separation of subformulae, and, for example,
we use symmetric cut with some γj ∈ SF (ψ) but added to Γm not to Δm, we fail
with the claim if PROP (γj)∩PROP (Γm) = ∅. Let PROP (α)∩PROP (Γm) = ∅

but included in PROP (γj) and similarly for PROP (β). In such a case of course
it is still true that α and β are interpolants for premisses but α ∨ β is not an
interpolant for Γm ⇒ Δm.



Chapter 2

Gentzen’s Sequent Calculus LK

This chapter introduces the original sequent calculus of Gentzen, called LK (der
Logistische Kalkül). There are considerable differences with the calculus K from
chapter 1. A sequent is defined as an ordered pair of finite (including empty) lists
of formulae, and the set of primitive rules is significantly different. LK is in many
respects harder to deal with than K, however the subtleties of its construction
are important for further development. After introducing the calculus in section
2.1 we investigate some applications of cut concerning the equivalence of some
forms of sequents and sequent rules in section 2.2. Next some invertibility results
for LK are established in section 2.3. Then we will focus on different strategies of
proving the cut-elimination/admissibility theorem, dividing them into local and
global proofs. The former are based on small transformations of particular steps
of a proof, similarly as it was done in the proof from chapter 1. The latter are
based on transformations of the whole proofs of the premisses of cut. We start in
section 2.4 with local proofs, in particular we present in detail the original proof
of Gentzen. Three other local proofs are also described in this section; all of them
allow for avoiding some difficulties of Gentzen’s proof. In section 2.5 we present
two global proofs due to Curry and Buss. Concerning proof search, LK seems to
be a less friendly tool than K, however we can still provide a decidability result
although on the basis of a different strategy. This will be discussed in section
2.6. Section 2.7 contains a discussion of Kleene’s result concerning permutability
of rules, which is essentially a generalisation of (some steps) of cut-elimination
procedure present in local proofs.

2.1 The System LK

The first version of SC for classical (and intuitionistic) logic was introduced by
Gentzen [95] under the name LK (der Logistische Kalkül), in contrast to his natural
deduction system NK (der Natürliche Kalkül). Whereas the latter was provided
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as a formal representation of ‘natural reasoning’ made on formulae, the former
used artificial items called sequents, axioms instead of assumptions, and his role
was mainly (at least in this paper) technical. Below we will present the restricted
part of LK limited to the formalisation of CPL. The basic difference between
Gentzen’s LK and K is connected with the very notion of a sequent. We continue
the use of Γ,Δ,Θ,Λ,Ξ,Π,Σ for antecedents and succedents of sequents but we
must remember that in this chapter they denote not sets but finite, possibly empty,
lists of formulae. Also in the contexts like Γ ⇒ Δ,Π, we have a concatenation of
lists Δ,Π (in this order) not a union of two sets.

2.1.1 Rules

Further differences are in the number and shape of the rules. It is a characteristic
feature of LK that apart from logical rules we have a set of structural rules which
specify some general operations on elements of sequents without displaying any
formulae of a specific kind. In fact, some such rules were already introduced in the
preceding chapter, namely the rules of weakening and cut. These rules, and some
other, now belong to the set of primitive rules of the system. It may be said that
the structural rules form a theory of ⇒, whereas the logical rules define a specific
logic. LK for CPL consists of the following rules:

Structural rules

(AX) ϕ ⇒ ϕ

(Cut) Γ⇒ Δ, ϕ ϕ,Π⇒ Σ
Γ,Π⇒ Δ,Σ

(W⇒) Γ⇒ Δ
ϕ,Γ⇒ Δ (⇒W ) Γ⇒ Δ

Γ⇒ Δ, ϕ

(C⇒) ϕ,ϕ,Γ⇒ Δ
ϕ,Γ⇒ Δ (⇒C) Γ⇒ Δ, ϕ, ϕ

Γ⇒ Δ, ϕ

(P⇒) Π, ϕ, ψ,Γ⇒ Δ
Π, ψ, ϕ,Γ⇒ Δ (⇒P ) Γ⇒ Δ, ψ, ϕ,Π

Γ⇒ Δ, ϕ, ψ,Π

Logical rules

(¬⇒) Γ⇒ Δ, ϕ
¬ϕ,Γ⇒ Δ (⇒¬) ϕ,Γ⇒ Δ

Γ⇒ Δ,¬ϕ

(∧⇒) ϕ,Γ⇒ Δ
ϕ∧ψ,Γ⇒ Δ (∧⇒) ψ,Γ⇒ Δ

ϕ∧ψ,Γ⇒ Δ

(⇒∧) Γ⇒ Δ, ϕ Γ⇒ Δ, ψ
Γ⇒ Δ, ϕ∧ψ

(∨⇒) ϕ,Γ⇒ Δ ψ,Γ⇒ Δ
ϕ∨ψ,Γ⇒ Δ
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(⇒∨) Γ⇒ Δ, ϕ
Γ⇒ Δ, ϕ∨ψ

(⇒∨) Γ⇒ Δ, ψ
Γ⇒ Δ, ϕ∨ψ

(→⇒) Γ⇒ Δ, ϕ ψ,Π⇒ Σ
ϕ→ψ,Γ,Π⇒ Δ,Σ (⇒→) ϕ,Γ⇒ Δ, ψ

Γ⇒ Δ, ϕ→ψ

The names of structural rules mean, respectively: W—weakening,
C—contraction, and P—permutation. In what follows if we refer to structural
rules without specifying which part of a sequent is dealt with we will either use
their full names or, especially in proof figures, names (W ), (C), (P ), or even sim-
pler W, C, P.

Note also that some of the logical rules are different than suitable rules in K.
(∧ ⇒) and (⇒ ∨) now display in the premiss only one component of the principal
formula, and that is why we need a pair of such rules. The two-premiss rule (→⇒)
has possibly different lists of parameters in premisses which are concatenated in
the conclusion.
The example of the application of (→⇒):

p ∧ q, q → r ⇒ ¬q, p → r,¬r p ∨ q, q → r, q ∧ r ⇒ ¬(p ∨ r),¬s

¬r → p ∨ q, p ∧ q, q → r, q → r, q ∧ r ⇒ ¬q, p → r,¬(p ∨ r),¬s

We may say that (→⇒) is an example of a context-free rule, in contrast
to other two-premiss rules which are context-sharing. In chapter 5 we will see
that these differences may lead to important consequences. However it is useful to
introduce a special terminology right now. Let us compare the rules for ∧,∨, and
for →. The differences between them led many logicians (see in particular Girard
[98]) to introduce a general distinction between:

• multiplicative (context-free, intensional, internal) rules;

• additive (context-sharing, extensional, combining) rules.

For example, multiplicative rules (M-rules) for ∧ look like that:

(⇒∧) Γ⇒ Δ, ϕ Π⇒ Σ, ψ
Γ,Π⇒ Δ,Σ, ϕ∧ψ

(∧⇒) ϕ,ψ,Γ⇒ Δ
ϕ∧ψ,Γ⇒ Δ

whereas the rules for ∧ in LK provide an example of additive rules (A-rules).
In particular, cut may be also multiplicative or additive:

(M -cut) Γ⇒ Δ, ϕ ϕ,Π⇒ Σ
Γ,Π⇒ Δ,Σ (A-cut) Γ⇒ Δ, ϕ ϕ,Γ⇒ Δ

Γ⇒ Δ

Note that we can also use some combined form of cut where the same pa-
rameters in both premisses are treated as in A-cut, whereas different premisses are
combined as in M-cut (see Herbelin [110]); it looks like that:

Γ,Λ⇒ Δ,Θ, ϕ ϕ,Γ,Π⇒ Δ,Σ
Γ,Λ,Π⇒ Δ,Θ,Σ

In what follows we will be using simply the name ‘cut’ either for M-cut or
for both forms if the difference between them is not important.
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One can easily show the equivalence of all M- and A-rules by means of C and
W (see section 5.2). However, as we shall see, their properties and behaviour in
proofs is different and sometimes it matters which ones are taken as primitive.

2.1.2 Proofs

All terminologies concerning proofs, proof trees, elements of sequents, etc. remain
unchanged. In addition to the application of height as a parameter of inductive
proofs we may introduce the notion of the length of a proof (proof tree). It is
defined similarly as height but only applications of logical rules are counted (note
that in K it is just the same measure).

Example 2.1. Once again we present a proof of Frege’s syllogism, for comparison
with a proof in K.

p ⇒ p

p ⇒ p q ⇒ q
(→⇒) p → q, p ⇒ q r ⇒ r

(→⇒)q → r, p → q, p ⇒ r
(→⇒)

p → (q → r), p, p → q, p ⇒ r
(P ⇒)

p, p → (q → r), p → q, p ⇒ r
(P ⇒)

p, p → (q → r), p, p → q ⇒ r
(P ⇒)

p, p, p → (q → r), p → q ⇒ r
(C ⇒)

p, p → (q → r), p → q ⇒ r
(⇒→)

p → (q → r), p → q ⇒ p → r
(P ⇒)

p → q, p → (q → r) ⇒ p → r
(⇒→)

p → (q → r) ⇒ (p → q) → (p → r)
(⇒→)⇒ (p → (q → r)) → ((p → q) → (p → r))

One may easily notice the relatively large number of applications of structural
rules. The height of this proof is 11 whereas its length is only 6. In what follows
we will usually omit such “obvious” steps in proof figures and use double line for
pointing out such condensations.

Notice that although cut is not necessarily needed as a primitive rule of LK
(we will prove this formally in sections 2.4 and 2.5) we cannot get rid of the other
structural rules. Since the axioms are in simple form (no context), one cannot prove
admissibility of weakening for LK, and this in turn is necessary as a preprocessing
step for the unification of contexts in the premisses of context-sharing rules like
(⇒ ∧) and (∨ ⇒). Permutation is indispensable since we are dealing with lists and
the active formulae must be placed in concrete, leftmost or rightmost, position1.
Also contraction must be used in the proofs of many theorems.

1However one may redefine the rules in such a way that the result of permutation is already
absorbed—see Gallier [93] and remark 2.4 in section 2.6.
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Example 2.2. Here we display two examples of proofs of characteristic theses of
CPL: LEM and Peirce law, essentially based on the application of C:

p ⇒ p
(⇒ ¬) ⇒ p,¬p

(⇒ ∨) ⇒ p, p ∨ ¬p
(⇒ P ) ⇒ p ∨ ¬p, p

(⇒ ∨) ⇒ p ∨ ¬p, p ∨ ¬p
(⇒ C) ⇒ p ∨ ¬p

p ⇒ p
(⇒ W ) p ⇒ p, q
(⇒→) ⇒ p, p → q p ⇒ p
(→⇒)

(p → q) → p ⇒ p, p
(⇒ C)

(p → q) → p ⇒ p
(⇒→) ⇒ ((p → q) → p) → p

In the first example (⇒ ∨) with only one side formula was applied; in the
second (→⇒) with independent contexts. The reader may easily check (by ex-
hausting all possibilities of backward proof search) that without cut we cannot
provide contraction-free proofs for them. Moreover, we must apply A-cut if we
want to avoid contraction in proofs of the above sequents.

Example 2.3. A contraction-free proof of the Peirce law in LK with A-cut:

p ⇒ p
(⇒ W ) p ⇒ p, q
(⇒→) ⇒ p, p → q p ⇒ p
(→⇒)

(p → q) → p ⇒ p, p
(⇒→) ⇒ p, ((p → q) → p) → p
(⇒ P ) ⇒ ((p → q) → p) → p, p

p ⇒ p
(W ⇒)

(p → q) → p, p ⇒ p
(⇒→)

p ⇒ ((p → q) → p) → p
(A-Cut) ⇒ ((p → q) → p) → p

Notice two things. The A-cut applied in the proof is analytic and we have
used Quine’s strategy of taking atomic cut-formulae in proof search (see remarks
in subsection 1.11.3). In the original LK with M-cut such a contraction-free proof
is not possible. Moreover, if we introduce A-cut as a derivable rule of LK we can
see that contraction is necessary for proving this.

Exercise 2.1. Construct a contraction-free proof of LEM in LK with A-cut.

The fact that contraction is practically indispensable in LK is of importance
also for proof search in LK and for devising decision procedures. We will point out
the difficulties and possible solutions in section 2.6.



68 Chapter 2. Gentzen’s Sequent Calculus LK

2.2 Applications of Cut

In the remaining parts of this chapter we will show how to eliminate cut in LK and
then consider some applications of cut elimination. However, first we will illustrate
some further advantages of having it in addition to those which were discussed in
chapter 1. Let us recall that one important application was shown in section 1.9—a
proof of the equivalence of K with Hilbert’s system for CPL. This may be done
also for LK and is left to the reader.

Exercise 2.2. Prove the equivalence of LK with H (be sensitive to differences be-
tween LK and K)

In section 1.11 we discussed also additional profits of having cut. Here we
will consider some more advantages connected with the provability of equivalents
and the generation of extra rules.

2.2.1 Equivalent Sequents

Below we formally prove some intuitively obvious relations between formulae in
antecedents and succedents of any (provable) sequent.

Lemma 2.1. For any sequent ϕ1, ..., ϕi ⇒ ψ1, ..., ψk, (i, k > 0) the following forms
are equivalent:

1. � ϕ1, ..., ϕi ⇒ ψ1, ..., ψk

2. � ϕ1 ∧ .... ∧ ϕi ⇒ ψ1 ∨ ... ∨ ψk

3. � ϕ1, ..., ϕi,¬ψ1, ...,¬ψk ⇒
4. �⇒ ¬ϕ1, ...,¬ϕi, ψ1, ..., ψk

Proof:

1. =⇒ 2. We perform the following deduction:

ϕ1, ..., ϕi ⇒ ψ1, ..., ψk (∧ ⇒)
ϕ1 ∧ ϕ2, ϕ2, ..., ϕi ⇒ ψ1, ..., ψk (P ⇒)

ϕ2, ϕ1 ∧ ϕ2, ϕ3, ..., ϕi ⇒ ψ1, ..., ψk (∧ ⇒)
ϕ1 ∧ ϕ2, ϕ1 ∧ ϕ2, ϕ3, ..., ϕi ⇒ ψ1, ..., ψk (C ⇒)

ϕ1 ∧ ϕ2, ϕ3, ..., ϕi ⇒ ψ1, ..., ψk

and continue until we get ϕ1∧, ...,∧ϕi ⇒ ψ1, ..., ψk. Next we provide an
analogous deduction by means of (⇒ ∨), (⇒ P ) and (⇒ C) on the succedent until
we obtain 2.

2. =⇒ 1. First note that for any k ≥ 2 it holds � ψ1 ∨ ... ∨ ψk ⇒ ψ1, ..., ψk,
here is the beginning of the proof:
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ψ1 ⇒ ψ1
(⇒ W )

ψ1 ⇒ ψ1, ψ2

ψ2 ⇒ ψ2
(⇒ W ), (⇒ P )

ψ2 ⇒ ψ1, ψ2
(∨ ⇒)

ψ1 ∨ ψ2 ⇒ ψ1, ψ2
(⇒ W )

ψ1 ∨ ψ2 ⇒ ψ1, ψ2, ψ3

ψ3 ⇒ ψ3
(⇒ W ), (⇒ P )

ψ3 ⇒ ψ1, ψ2, ψ3
(∨ ⇒)

ψ1 ∨ ψ2 ∨ ψ3 ⇒ ψ1, ψ2, ψ3

In a similar way we prove for i ≥ 2 that � ϕ1, ...., ϕi ⇒ ϕ1∧ ....∧ϕi. Applying
(Cut) twice to 2. and to the obtained sequents we get 1.

1. =⇒ 3. From 1. we get � ¬ψ1, ...,¬ψk, ϕ1, ..., ϕi,⇒ by k applications of
(¬ ⇒) which yields 3. by permutation.

3. =⇒ 1. First note that for every i ≤ k by (⇒ ¬) we get �⇒ ψi,¬ψi. From 3.
by permutation we get � ¬ψ1, ...,¬ψk, ϕ1, ..., ϕi,⇒, then by (Cut) on �⇒ ψ1,¬ψ1

we get � ¬ψ2, ...,¬ψk, ϕ1, ..., ϕi,⇒ ψ1. We repeat such deductions k− 1 times and
finally by permutation we obtain 1. �

Exercise 2.3. Prove 1. ⇐⇒ 4.

If we limit our attention to sequents with one formula in the succedent only
we can additionally show the relation between ⇒ and → in the following lemma:

Lemma 2.2. For any sequent ϕ1, ..., ϕi ⇒ ψ (i > 0), the following forms are equiv-
alent:

1. � ϕ1, ..., ϕi ⇒ ψ

2. �⇒ ϕ1 → (ϕ2 → ..., (ϕi → ψ)...)

3. �⇒ ϕ1 ∧ .... ∧ ϕi → ψ

Proof:
1. =⇒ 2. From 1. by means of (P ⇒) we get � ϕi, ..., ϕ1 ⇒ ψ, and by i

applications of (⇒→) we obtain 2.
2. =⇒ 1. Note that for any ϕ,ψ it holds � ϕ → ψ,ϕ ⇒ ψ, in particular

� ϕ1 → (ϕ2 → ..., (ϕi → ψ)...), ϕ1 ⇒ ϕ2 → (ϕ3 → ..., (ϕi → ψ)...). Hence by
2. and (Cut) we get � ϕ1 ⇒ ϕ2 → (ϕ3 → ..., (ϕi → ψ)...). We repeat such a
deduction i− 1 times (with successive instances of � ϕk → χ,ϕk ⇒ χ, k ≤ i) until
we get 1.

1. =⇒ 3. By lemma 2.1 and (⇒→)
3. =⇒ 1. Since � ϕ1 ∧ .... ∧ ϕi → ψ,ϕ1 ∧ .... ∧ ϕi ⇒ ψ, so by (Cut) on 3. we

have � ϕ1 ∧ .... ∧ ϕi ⇒ ψ which, by lemma 2.1 implies 1. �

Clearly both lemmata imply that if some sequent which is an instance of some
of the considered schemata is not provable, then its equivalents are not provable
either.

2.2.2 Equivalent Rules

Both in K and LK logical rules have specific forms which we will analyse in detail
at the end of chapter 3. On the other hand in section 1.11 we have opened the
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door for making possible extensions of SC with additional axiomatic sequents. This
solution makes necessary the application of (restricted) cut in proofs and one can
ask if it is possible to use some specific rules instead of axiomatic sequents and
in this way to avoid the applications of cut. In the second volume this question
will be treated in detail but now in a preliminary way we will present two results
concerning the possible shape of rules replacing sequents in SC. The first lemma is
rather concrete and is concerned with the generation of rules equivalent to sequents
of the form ϕ ⇒ ψ, ϕ, ψ ⇒ χ or ϕ ⇒ ψ, χ. Taking into account that quite often
we deal with sequents or axioms (with → instead of ⇒ and ∧ or ∨ added) of
this form this lemma is practically sufficient for most cases. It allows to establish
the equivalence of different SC formalizations of some logics/theories quickly, and
for the generation of new variants with desirable properties. Despite the practical
sufficiency of this result we will formulate and prove also a generalised version
of this lemma providing equivalent rules for any finite sequent. For unification of
results and simplification of proofs we do not mention applications of structural
rules and formulate all rules with more than one premiss in the multiplicative
versions, but they may be proved also for additive versions.

Lemma 2.3. The following schemata of sequents and rules collected in three groups
are interderivable in LK:

A: for (1) ϕ ⇒ ψ:

(2) ψ,Γ⇒ Δ
ϕ,Γ⇒ Δ (3) Γ⇒ Δ, ϕ

Γ⇒ Δ, ψ
(4) Γ⇒ Δ, ϕ ψ,Π⇒ Σ

Γ,Π⇒ Δ,Σ

B: for (1) ϕ,ψ ⇒ χ:

(2) χ,Γ⇒ Δ
ϕ,ψ,Γ⇒ Δ (3) Γ⇒ Δ, ϕ

ψ,Γ⇒ Δ, χ
(4) Γ⇒ Δ, ψ

ϕ,Γ⇒ Δ, χ

(5) Γ⇒ Δ, ϕ Π⇒ Σ, ψ
Γ,Π⇒ Δ,Σ, χ (6) Γ⇒ Δ, ϕ χ,Π⇒ Σ

ψ,Γ,Π⇒ Δ,Σ

(7) Γ⇒ Δ, ψ χ,Π ⇒ Σ
ϕ,Γ,Π⇒ Δ,Σ (8) Γ⇒ Δ, ϕ Π⇒ Σ, ψ χ,Λ⇒ Θ

Γ,Π,Λ⇒ Δ,Σ,Θ

C: for (1) ϕ ⇒ ψ, χ:

(2) Γ⇒ Δ, ϕ
Γ⇒ Δ, ψ, χ

(3) ψ,Γ⇒ Δ
ϕ,Γ⇒ Δ, χ (4) χ,Γ⇒ Δ

ϕ,Γ⇒ Δ, ψ

(5) ψ,Γ⇒ Δ χ,Π⇒ Σ
ϕ,Γ,Π⇒ Δ,Σ (6) Γ⇒ Δ, ϕ χ,Π⇒ Σ

Γ,Π⇒ Δ,Σ, ψ

(7) Γ⇒ Δ, ϕ ψ,Π ⇒ Σ
Γ,Π⇒ Δ,Σ, χ (8) Γ⇒ Δ, ϕ ψ,Π⇒ Σ χ,Λ⇒ Θ

Γ,Π,Λ⇒ Δ,Σ,Θ

Proof: For A.
1. =⇒ 2.: It is sufficient to apply (Cut) to 1 and to the premiss of 2.
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2. =⇒ 3.: From axiom ψ ⇒ ψ by 2 we obtain ϕ ⇒ ψ which by (Cut) with
the premiss of 3 yields the conclusion.

3. =⇒ 4.: the following schema shows its derivability:

Γ ⇒ Δ, ϕ

ϕ ⇒ ϕ
(3.)

ϕ ⇒ ψ ψ, Π ⇒ Σ
(Cut)

ϕ,Π ⇒ Σ
(Cut)

Γ,Π ⇒ Δ,Σ

4. =⇒ 1.: From ϕ ⇒ ϕ and ψ ⇒ ψ by 4 we get 1.

For B.
1. =⇒ 2.: It is enough to apply (Cut) to 1 and the premiss of 2 to obtain the

conclusion.
2. =⇒ 3.: From χ ⇒ χ by 2 we get ϕ,ψ ⇒ χ which by (Cut) with the premiss

of 3 yields the conclusion.
3. =⇒ 4.: analogous, with 3 applied to ϕ ⇒ ϕ.
4. =⇒ 5.: analogous, but 4 is applied not to an axiom but to the premiss of

5 of the shape Π ⇒ Σ, ψ in order to get the conclusion by (Cut) on the second
premiss.

5. =⇒ 6.: the following schema shows derivability:

Γ ⇒ Δ, ϕ ψ ⇒ ψ
(5.)

ψ,Γ ⇒ Δ, χ χ,Π ⇒ Σ
(Cut)

ψ,Γ,Π ⇒ Δ,Σ

6. =⇒ 7.: the following schema shows derivability:

Γ ⇒ Δ, ψ

ϕ ⇒ ϕ χ,Π ⇒ Σ
(6.)

ψ,ϕ,Π ⇒ Σ
(Cut)

ϕ,Γ,Π ⇒ Δ,Σ

7. =⇒ 8.: the following schema shows derivability:

Γ ⇒ Δ, ϕ

Π ⇒ Σ, ψ χ,Λ ⇒ Θ
(7.)

ϕ,Π,Λ ⇒ Σ,Θ
(Cut)

Γ,Π,Λ ⇒ Δ,Σ,Θ

8. =⇒ 1.: From ϕ ⇒ ϕ, ψ ⇒ ψ and χ ⇒ χ by 8 we deduce 1. �

Exercise 2.4. Prove part C.
Prove an analogue of this lemma but for context-sharing rules.

Let us illustrate with the case of formalising ∨ the possible applications of
this lemma. One rule (⇒ ∨) for (additive) disjunction is captured by schema (A3),
hence we can use the following equivalents:

(A1) ϕ ⇒ ϕ ∨ ψ
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(A2) ϕ ∨ ψ,Γ⇒ Δ
ϕ,Γ⇒ Δ (A4) Γ⇒ Δ, ϕ ϕ ∨ ψ,Π⇒ Σ

Γ,Π⇒ Δ,Σ

On the other hand (∨ ⇒) is captured by schema (C5) (with ϕ := ψ ∨ χ)
which generates the following equivalents:

(C1) ψ ∨ χ ⇒ ψ, χ

(C2) Γ⇒ Δ, ψ ∨ χ
Γ⇒ Δ, ψ, χ

(C3) ψ,Γ⇒ Δ
ψ ∨ χ,Γ⇒ Δ, χ

(C4) χ,Γ⇒ Δ
ψ ∨ χ,Γ⇒ Δ, ψ

(C6) Γ⇒ Δ, ψ ∨ χ χ,Π⇒ Σ
Γ,Π⇒ Δ,Σ, ψ

(C7) Γ⇒ Δ, ψ ∨ χ ψ,Π ⇒ Σ
Γ,Π⇒ Δ,Σ, χ

(C8) Γ⇒ Δ, ψ ∨ χ ψ,Π⇒ Σ χ,Λ⇒ Θ
Γ,Π,Λ⇒ Δ,Σ,Θ

Some of the rules in both lists may seem ‘unnatural’ when compared with
LK rules for ∨ (the same remark applies to other connectives and possible rules
for them). In particular, (A2), (A4), (C2), (C6), (C7) and (C8) do not satisfy the
subformula property, and (A4), (C8) look like some special versions of cut. Re-
member that the possibility of the generation of all these rules is not so important
for defining logical rules in standard SC for propositional logics but rather for
obtaining systems of rules working for nonlogical theories. This topic will be dealt
with in the second volume and the importance of this result, as well as of strong
completeness from subsection 1.11.4, will be appreciated better in this place. Yet
even rules for connectives which are of different characters than Gentzen’s rules
may find interesting applications. For example, one can easily recognise in (C3)
and (C4), rules which were introduced in subsection 1.11.3 as possible SC coun-
terparts of suitable KE rules. Recall that such a system has all logical rules with
one premiss only but the price is that cut must be taken as primitive (fortunately
in its analytic version). As a result a branching factor of KE is smaller and one
may obtain for many sequents even exponentially smaller proofs than in cut-free
K.

Exercise 2.5. Provide the equivalents for (∧ ⇒) using part A, and for (⇒ ∧) using
part B.

Lemma 2.3 deals only with three possible cases. We can generalise this result
in the following way:

Lemma 2.4. For any sequent Γ ⇒ Δ with Γ = {ϕ1, ..., ϕk} and Δ = {ψ1, ..., ψn},
k ≥ 0, n ≥ 0, k + n ≥ 1 there are 2k+n − 1 equivalent rules captured by the general
schema:

Π1,⇒ Σ1, ϕ1, ... Πi ⇒ Σi, ϕi ψ1,Πi+1 ⇒ Σi+1, ... ψj ,Πi+j ⇒ Σi+j

Γ−i,Π1, ...,Πi,Πi+1, ...,Πi+j ⇒ Σ1, ...,Σi,Σi+1, ...,Σi+jΔ−j

where Γ−i = Γ−{ϕ1, ..., ϕi} and Δ−j = Δ−{ψ1, ..., ψj} for 0 ≤ i ≤ k, 0 ≤ j ≤ n.
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A comment on the schema may be helpful before we provide a proof. In gen-
eral we define rules by taking an arbitrary number of formulae from the antecedent
or succedent, and for every such formula we create a premiss sequent where an item
from the antecedent (ϕi) is put in the succedent, and an element of the succedent
(ψj) is put in the antecedent of premiss sequent. The remaining formulae from
the input sequent are collected into sets Γ−i and Δ−j of the conclusion sequent.
Extreme cases are empty sets Γ−k and Δ−n. A rule has k + n premisses, one for
every formula from the input sequent, and the conclusion contains only the unions
of the parameters from the premisses. On the other hand, if we consider a situation
with Γ−0 and Δ−0, then our schema captures also a case with no premisses at all,
i.e. our input sequent.

Proof: The proof goes by induction on k + n. For basic cases with k = 1, n = 0
or k = 0, n = 1 (sequents of the form ϕ ⇒ and ⇒ ψ) there is only one equivalent
rule: Γ ⇒ Δ, ϕ / Γ ⇒ Δ and ψ,Γ ⇒ Δ / Γ ⇒ Δ, i.e. we have 21 − 1 rules. Also
the case of n = k = 1 (as well as two cases for k + n = 3) was shown above to
satisfy the claim.

For the inductive step we assume that for some S = ϕ1, ..., ϕk ⇒ ψ1, ..., ψn

the claim holds and we will show that it holds if we add some χ to the an-
tecedent or succedent of S. First consider the addition of χ to the antecedent
which we schematize as χ, S. Let i = 2k+n, so we have S and i − 1 equivalent
rules by assumption. From each rule we generate 2 new rules in the following way:
(a) either add χ to the antecedent of the conclusion or (b) add the additional
premiss Π ⇒ Σ, χ with arbitrary Π,Σ. So if the rule equivalent to S has the
shape: S1, ..., Sj / Sj+1 for i ≥ j ≥ 1 we get either: (a) S1, ..., Sj / χ, Sj+1 or (b)
Π ⇒ Σ, χ, S1, ..., Sj / Π, Sj+1,Σ. In case of S we do the same so we obtain (a) a
sequent χ, S and (b) a rule Π ⇒ Σ, χ / S. In total we obtain 2i − 1 rules and a
sequent χ, S, i.e. 2k+n+1 − 1 rules.

It is easy to show that the new rules are interderivable with χ, S in the way
illustrated in the proof of the preceding lemma. First, if we take χ, S, then by j
applications of (Cut) to all premisses of (a) we will get χ, Sj+1. This is because j
elements of S are distributed as active formulae in the premisses in the following
way: all active formulae from antecedents of premisses are in the succedent of S
and all from the succedents are in the antecedent. After j applications of (Cut) the
remaining elements of S (if any, i.e. if k + n > j) with the union of all parameters
from j premisses are in χ, Sj+1. This way we demonstrate the provability of (a)
on the basis of χ, S.

(b) is derivable from (a) by one application of (Cut) in the following way:

Π ⇒ Σ, χ

S1, ..., Sj (a)
χ, Sj+1 (Cut)

Π, Sj+1,Σ

Eventually, we derive χ, S by means of (b) from axiom χ ⇒ χ and j axioms
of the form ϕl ⇒ ϕl, ψm ⇒ ψm, for l ≤ k,m ≤ n.
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If we add χ to the succedent, i.e. we consider a sequent S, χ, the procedure
is symmetric: (a) either addition of χ to the succedent of the conclusion or (b)
addition of the extra premiss χ,Π ⇒ Σ. �

Exercise 2.6. Write down all 15 schemata of rules which may be generated from a
sequent of the form ϕ1, ϕ2 ⇒ ψ1, ψ2.

2.3 Syntactical Invertibility

In chapter 1 we have shown that invertibility of rules is a very important feature,
at least in K. In case of LK the situation is worse. One may easily check that in
contrast to K not all rules of LK are invertible. We can prove:

Lemma 2.5. In LK the following rules are not invertible: (W ⇒), (⇒ W ),
(→⇒), (∧ ⇒), (⇒ ∨), (Cut).

Proof: We demonstrate two cases:
(∧ ⇒): To show that |= ϕ ∧ ψ,Γ ⇒ Δ but 
|= ϕ,Γ ⇒ Δ, it is enough to

consider a M falsifying ϕ,Γ ⇒ Δ and assume that M � ψ. But then M � ϕ ∧ ψ
and M � ϕ ∧ ϕ,Γ ⇒ Δ. Analogously for ψ,Γ ⇒ Δ.

(→⇒): Similarly let M � Γ ⇒ Δ, ϕ, hence M � Γ and M � Δ, ϕ. It is
sufficient to assume that some element of Π is false in M or some element of Σ
is true for having M � ϕ → ψ,Γ,Π ⇒ Δ,Σ. Analogously for the second premiss
ψ,Π ⇒ Σ. �

Exercise 2.7. Show the failure of invertibility for the remaining 4 rules.

So far we were talking about invertibility of rules (or its failure) in the se-
mantical sense. However, we can consider it also in the syntactical sense and, as
we will see in the next chapter, this may be very helpful. Similarly as in the case
of semantical invertibility we may consider it in a stronger or a weaker form. Thus
syntactical invertibility may mean not only that the inversion of a primitive rule
is an admissible rule (i.e. leading from provable sequents to provable sequents) but
also its derivability (i.e. that the premisses are deducible from the conclusion).
Clearly, if SC is proved adequate with respect to some semantical characterisation
of the respective logic, then we may easily prove that every semantically invertible
rule is also invertible in syntactical sense.

Claim 2.1. If SC is an adequate formalisation of some semantically characterised
logic, then a rule (r) is semantically invertible iff it is syntactically invertible.

Proof: We may show it even in the weaker sense of normality and derivability. If a
rule (r) is not syntactically invertible, then for some premiss S1 and the conclusion
S2 we have S2 � S1. By strong completeness S2 
|= S1, so there is a model satisfying
S2 but falsifying S1 which means that (r) is not normal, hence not semantically
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invertible. If (r) is syntactically invertible, then S2 � Si, for any premiss Si. Hence,
by soundness S2 |= Si which means that (r) is semantically invertible. �

What about a direct syntactical proof of these results? Having cut as a prim-
itive rule one may easily prove derivability of invertible rules in LK, or any other
version of SC with cut, in a direct way. In fact, the first such proof was provided
by Ketonen for SC where all logical rules are like in K. Here we will demonstrate
this result for LK:

Theorem 2.1. The inversion of every semantically invertible rule of LK is derivable
in LK.

Proof: Inverses of (P) are trivial and inverses of (C) are derivable by (W) so we
are left with only logical rules. We will demonstrate one example: Γ ⇒ Δ, ϕ∧ψ �
Γ ⇒ Δ, ϕ. First of all if ϕ∧ψ ∈ Δ, then we obtain the result by (⇒ C) and (⇒ W )
(note that this applies to all considered cases). Otherwise we proceed as follows:

Γ ⇒ Δ, ϕ ∧ ψ

ϕ ⇒ ϕ
(∧ ⇒)

ϕ ∧ ψ ⇒ ϕ
(Cut)

Γ ⇒ Δ, ϕ

�

Exercise 2.8. Prove derivability of the inverses of (¬ ⇒), (⇒ ¬), (∨ ⇒) and (⇒→).

Moreover, one may show for LK that also in the case of primitive non-
invertible rules we may prove the derivability of inverses of suitable rules from K.
For example, although (∧ ⇒) in LK is not invertible (it is a one-premiss A-rule)

one may prove for LK that
ϕ ∧ ψ,Γ ⇒ Δ
ϕ,ψ,Γ ⇒ Δ

is a derivable rule.

Theorem 2.2. The following derivability results hold in LK:

• ϕ ∧ ψ,Γ ⇒ Δ � ϕ,ψ,Γ ⇒ Δ

• Γ ⇒ Δ, ϕ ∨ ψ � Γ ⇒ Δ, ϕ, ψ

• ϕ → ψ,Γ ⇒ Δ � ψ,Γ ⇒ Δ

• ϕ → ψ,Γ ⇒ Δ � Γ ⇒ Δ, ϕ

Proof: We demonstrate the first case. Again if ϕ∧ψ ∈ Γ we obtain the result by
contraction and weakening, otherwise:

ϕ ⇒ ϕ
(W ⇒)

ϕ,ψ ⇒ ϕ

ψ ⇒ ψ
(W ⇒)

ϕ,ψ ⇒ ψ
(⇒ ∧)

ϕ,ψ ⇒ ϕ ∧ ψ ϕ ∧ ψ,Γ ⇒ Δ
(Cut)

ϕ,ψ,Γ ⇒ Δ

�
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Exercise 2.9. Prove the remaining cases. Prove lemma 2.1 and 2.2 by the above
invertibility lemma.

Notice that invertibility of A-cut is derivable in LK by applications of W.

Clearly, derivability implies admissibility (see subsection 1.4.2) but we can
consider also the problem of direct proof of admissibility of inverted rules. As we
will see in subsections 2.4.4, 2.5.2 and in chapter 3 such a proof may be useful as
a preliminary result for proving admissibility of cut. Below we provide two proofs
of essentially the same result. The first is based on the global transformation of
a proof and was originally provided by Curry [56] for his version of LK with an
additive rule for implication; a similar proof may be also found in Negri and von
Plato [185] for SC with all rules multiplicative. Here we apply it to LK and prove
in this way the admissibility of all rules which were shown derivable in subsection
1.4.3 (including inverses of K rules).

Theorem 2.3. The following admissibility results hold in LK:

1. If � Γ ⇒ Δ,¬ϕ, then � ϕ,Γ ⇒ Δ

2. If � ¬ϕ,Γ ⇒ Δ, then � Γ ⇒ Δ, ϕ

3. If � ϕ ∧ ψ,Γ ⇒ Δ, then � ϕ,ψ,Γ ⇒ Δ

4. If � Γ ⇒ Δ, ϕ ∧ ψ, then � Γ ⇒ Δ, ϕ

5. If � Γ ⇒ Δ, ϕ ∧ ψ, then � Γ ⇒ Δ, ψ

6. If � ϕ ∨ ψ,Γ ⇒ Δ, then � ϕ,Γ ⇒ Δ

7. If � ϕ ∨ ψ,Γ ⇒ Δ, then � ψ,Γ ⇒ Δ

8. If � Γ ⇒ Δ, ϕ ∨ ψ, then � Γ ⇒ Δ, ϕ, ψ

9. If � ϕ → ψ,Γ ⇒ Δ, then � Γ ⇒ Δ, ϕ

10. If � ϕ → ψ,Γ ⇒ Δ, then � ψ,Γ ⇒ Δ

11. If � Γ ⇒ Δ, ϕ → ψ, then � ϕ,Γ ⇒ Δ, ψ

Proof: We consider two cases:

Case 3: If � ϕ ∧ ψ,Γ ⇒ Δ, then � ϕ,ψ,Γ ⇒ Δ.

Consider a proof D of ϕ ∧ ψ,Γ ⇒ Δ. We consider one by one in a root-first
manner all sequents above ϕ∧ψ,Γ ⇒ Δ in D which contain the occurrence of ϕ∧ψ
in the antecedent and successively replace it with ϕ,ψ. Of course we track only
these occurrences of ϕ∧ψ which are ancestors of our formula under consideration;
this means in particular that we leave intact such occurrences of ϕ ∧ ψ which are
cut-formulae or ancestors of cut-formula, and ancestors of other occurrences of ϕ∧ψ
(if any) in Γ. Due to the context independency of all rules all such replacements
keep the application of rules correct. If (C ⇒) was applied to ϕ ∧ ψ on some
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branch we do the same with both occurrences and obtain ϕ,ψ, ϕ, ψ,Γ′ ⇒ Δ′, then
apply (P ⇒) and (C ⇒) twice. We repeat this procedure until we find all first
occurrences of ϕ ∧ ψ in D and we make the following changes:

1. If ϕ ∧ ψ was introduced by (W ⇒) we apply (W ⇒) twice introducing ϕ,ψ
instead.

2. If ϕ ∧ ψ is active in the axiom, then it has the form ϕ ∧ ψ ⇒ ϕ ∧ ψ. We change
it into ϕ,ψ ⇒ ϕ ∧ ψ deduced from ϕ ⇒ ϕ and ψ ⇒ ψ by (W ⇒) and (⇒ ∧).

3. If ϕ ∧ ψ was deduced by (∧ ⇒) from, say ϕ, we instead apply (W ⇒) and add
ψ.

This way we obtain a proof D′ of ϕ,ψ,Γ ⇒ Δ.

We proceed in such a way in all other cases. Let us consider

Case 10: If � ϕ → ψ,Γ ⇒ Δ, then � ψ,Γ ⇒ Δ.

This time we replace all occurrences of ϕ → ψ which are ancestors of the
formula under consideration with ψ. The way of proceeding with contraction on
ϕ → ψ and introduction of it by (W ⇒) are the same. In the case of an axiom
ϕ → ψ ⇒ ϕ → ψ we add a proof of ψ ⇒ ϕ → ψ from ψ ⇒ ψ by (W ⇒) and (⇒→).
Finally if ϕ → ψ was introduced by (→⇒) then we have ϕ → ψ,Π,Λ ⇒ Σ,Θ
deduced from Π ⇒ Σ, ϕ and ψ,Λ ⇒ Θ. In this case we delete the left premiss
(and the whole proof of it) and obtain ψ,Π,Λ ⇒ Σ,Θ from the right premiss by
successive applications of W and P. �

Exercise 2.10. Prove the remaining cases, including inverses of K rules.

The second proof is based on local transformations and was originally pro-
vided by Schütte [232] for some related form of the calculus with one-sided se-
quents, which are finite sets of formulae. It goes by induction on the height and
in essence it is similar to a proof of Dragalin [64] of a somewhat stronger result
presented in the next chapter. The main difference is that in case of LK we are not
able to prove height-preserving admissibility whereas Dragalin’s proof preserves
height. In order to deal with contraction we formulate the result in a somewhat
more general manner. Let Γϕ denote Γ with all occurrences of ϕ (if any) deleted.

Theorem 2.4. The following admissibility results hold in LK:

1. If � Γ ⇒ Δ, then � ϕ,Γ ⇒ Δ¬ϕ

2. If � Γ ⇒ Δ, then � Γ¬ϕ ⇒ Δ, ϕ

3. If � Γ ⇒ Δ, then � ϕ,ψ,Γϕ∧ψ ⇒ Δ

4. If � Γ ⇒ Δ, then � Γ ⇒ Δϕ∧ψ, ϕ

5. If � Γ ⇒ Δ, then � Γ ⇒ Δϕ∧ψ, ψ
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6. If � Γ ⇒ Δ, then � ϕ,Γϕ∨ψ ⇒ Δ

7. If � Γ ⇒ Δ, then � ψ,Γϕ∨ψ ⇒ Δ

8. If � Γ ⇒ Δ, then � Γ ⇒ Δϕ∨ψ, ϕ, ψ

9. If � Γ ⇒ Δ, then � Γϕ→ψ ⇒ Δ, ϕ

10. If � Γ ⇒ Δ, then � ψ,Γϕ→ψ ⇒ Δ

11. If � Γ ⇒ Δ, then � ϕ,Γ ⇒ Δϕ→ψ, ψ

Proof: We begin with two remarks: 1) In all cases if there is no occurrence
of a formula which is supposed to be deleted, then the results follow trivially
by weakening. Hence for the rest of a proof we assume that there is at least one
occurrence of the deleted formula in the antecedent or succedent of sequent Γ ⇒ Δ
and accordingly we will write it explicitly with superscript denoting the number
of occurrences. 2) Each case corresponds strictly to respective case in theorem 2.3
only if there is exactly one occurrence of a compound formula in Γ (Δ) and this
one occurrence is deleted in the resulting sequent. If there are more occurrences,
we must restore them by applications of W to get a case which really expresses
admissibility.

This time we make an induction on the height of a proof. Consider again a
proof D of ϕ ∧ ψ,Γ ⇒ Δ. In the basis we have two subcases: 1. If an axiom is of
the form ϕ ∧ ψ ⇒ ϕ ∧ ψ, then (similarly as in the previous proof) we change it
into a proof of ϕ,ψ ⇒ ϕ ∧ ψ from ϕ ⇒ ϕ and ψ ⇒ ψ. 2. If we have χ ⇒ χ with χ
different from ϕ ∧ ψ, then we just apply (W ⇒) twice.

For the induction step we assume that the claim holds for any ϕ∧ψk,Γ′ ⇒ Δ′

with a proof of height lower than n and consider a case with D having the height
n. Again the context independence of all rules does the work if all occurrences of
ϕ∧ψ are parametric. For example, suppose we have our sequent deduced by some
two-premiss rule—let it be (⇒ ∧):

ϕ ∧ ψk,Γ ⇒ Δ′, δ ϕ ∧ ψk,Γ ⇒ Δ′, γ
ϕ ∧ ψk,Γ ⇒ Δ

where Δ is Δ′, δ ∧ γ.

By the induction hypothesis the claim holds for both premisses and we obtain:

ϕ,ψ,Γϕ∧ψ ⇒ Δ′, δ ϕ, ψ,Γϕ∧ψ ⇒ Δ′, γ
ϕ, ψ,Γϕ∧ψ ⇒ Δ

If one occurrence of ϕ ∧ ψ is a side formula of a rule application leading to
the conclusion we must restore it by W to obtain the result. Consider the following
application of (∨ ⇒):

ϕ ∧ ψk,Γ ⇒ Δ χ,ϕ ∧ ψk−1,Γ ⇒ Δ
(ϕ ∧ ψ) ∨ χ,ϕ ∧ ψk−1,Γ ⇒ Δ
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By the induction hypothesis the claim holds for both premisses and we obtain:

ϕ,ψ,Γϕ∧ψ ⇒ Δ
(W ⇒)

ϕ ∧ ψ,ϕ, ψ,Γϕ∧ψ ⇒ Δ
ϕ,ψ, χ,Γϕ∧ψ ⇒ Δ

(P ⇒)
χ,ϕ, ψ,Γϕ∧ψ ⇒ Δ

(ϕ ∧ ψ) ∨ χ,ϕ, ψ,Γϕ∧ψ ⇒ Δ

In case of ϕ ∧ ψ introduced by (W ⇒) or (∧ ⇒) we apply (W ⇒) twice or
once. Finally, in case the last rule was (C ⇒) on our ϕ ∧ ψ the result is already
present in the premiss by the induction hypothesis. �

Exercise 2.11. Prove the remaining cases.

Remark 2.1. Note that a difference between the two proofs is not only connected
with the fact that the former is based on global transformations whereas the
latter is based on local ones. Notice also that in the first case we are dealing
only with those occurrences of a formula in transformed proof which are ancestors
of its occurrences in the last sequent of the tree. In consequence only necessary
replacements are made in the analysed proof. On the other hand, the second proof
is based on brute force; we delete all occurrences of a formula in question which
causes more global transformations, in particular a lot of applications of W and
P. However the kind of transformations we have applied is not connected with
global/local manner of proof. Notice also that both lemmata may also be proved
for LK without cut.

Exercise 2.12. Prove theorem 2.3 by induction on the height of proofs and theorem
2.4 by global transformation.

2.4 Local Proofs of Cut Elimination

In the previous chapter we have shown that cut is an admissible rule of K. Gentzen,
on the contrary, introduced cut as a primitive rule of LK and demonstrated how
to eliminate it from every proof. His proof, although essentially similar to the
proof exhibited in subsection 1.8.2 is considerably more complicated. It is not
surprising that many logicians were trying to simplify his proof. We present a
number of proofs in this chapter (in particular Gentzen’s original proof) which
apply to LK or some similar SC with primitive structural rules including cut.
The greater complexity of these proofs follows from the fact that they must deal
somehow with the applications of structural rules. In particular, two things must
be taken into consideration:

1. How to take care of the number of cut applications in analysed proofs?

2. How to deal with applications of contraction?

Concerning the former question there are two strategies in proofs of elim-
inability:
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1. Gentzen [95]: eliminability of the topmost cut (induction on the number of
cut applications);

2. Tait [257]: eliminability of the maximal cut (induction on the cut-degree).

The last notion, i.e. the cut-degree of the proof, is the maximal complexity of
the cut-formulae present in the proof. The strategy of Gentzen is simpler but the
strategy of Tait allows for proving additional complexity results concerning cut-
free proofs. Note that Tait’s strategy was originally introduced for an infinitary
version of SC and in this case the strategy of Gentzen simply does not work.

As for the latter question we start with an explanation of why contraction is
troublesome in proving cut elimination, and how Gentzen solved the problem by
introduction of a generalised form of cut called mix (or multicut) which allows for
the deletion of all occurrences of the same formula in one step.

Example 2.4. Here is an example of an application of mix.

(Mix) r ∧ t, q ⇒ p,¬s, q ∨ r,¬s, t ¬s, q → r,¬s,¬s ⇒ ¬q, t
r ∧ t, q, q → r ⇒ p, q ∨ r, t,¬q, t

In the example two occurrences of ¬s in the succedent of the left premiss and
three occurrences in the antecedent of the right premiss were deleted in one step.
Note that the exact place of the deleted occurrences of a formula does not matter.
We will show the application of mix either by the following schema:

(Mix) Γ⇒ Δ[ϕ] Π[ϕ]⇒ Σ
Γ,Πϕ⇒ Δϕ,Σ

where Π[ϕ] denotes that ϕ has at least one occurrence in Π, and Πϕ denotes the
result of deleting all occurrences (if any) of ϕ from Π. Sometimes we will be using
a notation like this:

(Mix) Γ⇒ Δ, ϕi ϕk,Π⇒ Σ
Γ,Π⇒ Δ,Σ

where ϕk means that ϕ occurs k times and we assume that Π and Δ do not contain
any occurrences of ϕ. Note that this is just a schema and it does not mean that we
have all occurrences of the cut-formula in the left or the rightmost position—they
may be placed everywhere in the list.

In order to understand why mix is proposed instead of cut consider the fol-
lowing schema:

Γ ⇒ Δ, ϕ

ϕ, ϕ, Π ⇒ Σ
(C ⇒)

ϕ, Π ⇒ Σ
(Cut)

Γ, Π ⇒ Δ, Σ

after reduction of the height we get:

Γ ⇒ Δ, ϕ

Γ ⇒ Δ, ϕ ϕ, ϕ, Π ⇒ Σ
(Cut)

ϕ, Γ, Π ⇒ Δ, Σ
(Cut)

Γ, Γ, Π ⇒ Δ, Δ, Σ
(C)(P )

Γ, Π,⇒ Δ, Σ
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Notice that only the first cut has lower height so the induction hypothesis
does not apply to the second cut.

In what follows we will use LK’ to denote LK with mix instead of cut. It is
easy to show that LK with mix (LK’) is equivalent to LK, i.e. �LK S iff �LK′ S. It
is sufficient to show that cut is derivable in LK’ and mix in LK. Any application
of cut:

Γ ⇒ Δ, ϕ ϕ,Π ⇒ Σ
(Cut)

Γ,Π ⇒ Δ,Σ
is replaced with:

Γ ⇒ Δ, ϕ ϕ,Π ⇒ Σ
(Mix)

Γ,Πϕ ⇒ Δϕ,Σ
(W )(P )

Γ,Π ⇒ Δ,Σ
where W is possibly used to restore some other occurrences of ϕ in Π,Δ.
On the contrary, any application of mix:

Γ ⇒ Δ, ϕi ϕk,Π ⇒ Σ
(Mix)

Γ,Π ⇒ Δ,Σ
is replaced with:

Γ ⇒ Δ, ϕi

(C), (P )
Γ ⇒ Δ, ϕ

ϕk,Π ⇒ Σ
(C), (P )

ϕ,Π ⇒ Σ
(Cut)

Γ,Π ⇒ Δ,Σ
However, introduction of mix forced Gentzen to apply a more complicated

measure for induction; cut-rank instead of cut-height. Consider the following:

Γ ⇒ ϕ ∧ ψ

ϕ,ψ ⇒ Σ
(∧ ⇒)

ϕ ∧ ψ,ψ ⇒ Σ
(P ⇒)(∧ ⇒)

ϕ ∧ ψ,ϕ ∧ ψ ⇒ Σ
(Mix)

Γ ⇒ Σ
After the standard transformation we get:

Γ ⇒ ϕ ∧ ψ

Γ ⇒ ϕ ∧ ψ

ϕ,ψ ⇒ Σ
(∧ ⇒)

ϕ ∧ ψ,ψ ⇒ Σ
(Mix)

ψ,Γ ⇒ Σ
(∧ ⇒)

ϕ ∧ ψ,Γ ⇒ Σ
(Mix)

Γ,Γϕ∧ψ ⇒ Σ
(C)(P )

Γ ⇒ Σ
where the height of the proof of the right premiss of the second mix is even

bigger than before. But note that in the second mix the cut-formula is introduced
for the first time. So why not count occurrences of cut-formula above (called rank
by Gentzen) instead of the height? It is natural but has a drawback since a defi-
nition of the rank of a mix is more complicated. We can put it as follows:
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Definition 2.1. Let Dl denote a proof of the left premiss of an application of mix
and B denote any branch terminating in this left premiss. Let lB be the number of
sequents on this branch containing a cut-formula in the succedent counting upwards
from the left premiss of mix.

The rank of Dl (or l-rank) is the maximum of lB, where B is any branch
terminating in the left premiss of mix.

The rank of Dr (or r-rank) is defined analogously but for the right premiss
of an application of mix and counting the occurrences of cut-formulae in the an-
tecedent.

The rank of an application of mix is the sum of l-rank and r-rank of that mix.

Note that the minimal rank of a mix is 2, in the case when both cut-formulae
are principal and there are no other occurrences of cut-formula in the succedent
(resp. antecedent) of the left (right) premiss.

2.4.1 Gentzen’s Proof

The original version of the proof goes by triple induction:

1. the number of applications of mix in a proof;

2. the complexity of cut-formula;

3. the rank of mix.

Since it is a triple induction requiring a number of combinatorial moves it is
worth to analyse its structure in detail. This way we can avoid a situation where
the number of cases obscures the purpose of its consideration. What is even more
important, we can assure ourselves that all cases were dealt with and that there
is no flaw in the proof.

Here is a general schema of Gentzen’s proof:

I. Induction on the number of applications of mix
1.1. Basis: proofs with one application of mix; eliminability proved by:

II. Induction on the complexity of cut-formula
2.1. Basis: mix on atomic formulae is eliminable; proved by:

III. Induction on the rank of mix
3.1. Basis: mix with rank = 2 on atomic cut-formula is eliminable
3.2. Ind. step: if mix on an atomic cut-formula has rank n > 2,
then it may be substituted with mix of lesser rank.
Conclusion of 3.1., 3.2: mix on atomic cut-formulae is eliminable.

2.2. Ind. step: mix on formulae of complexity n is eliminable,
if it is eliminable on smaller formulae; proved (again) by:

III. Induction on the rank of mix
4.1. Basis: mix with rank = 2 on a complex cut-formula may be
substituted with mix on a cut-formula of lesser complexity.
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4.2. Ind. step: if mix on a complex cut-formula has rank n > 2,
then it may be substituted with mix of lesser rank.
Conclusion of 4.1., 4.2: mix on complex cut-formulae may be
substituted with mix on cut-formulae of lesser complexity.

Conclusion of 2.1., 2.2: mix on complex cut-formulae is eliminable
from proofs with one applications of mix.

1.2. Ind. step: If mix is eliminable in proofs with n applications,
then it is eliminable in proofs with n + 1 applications.

There are two points concerning the proof structure worth underlining. Note
that induction III is applied twice as a subsidiary induction for both, the proof
of the basis and of the induction step of induction II. This strategy is generally
followed in other proofs of cut elimination, although sometimes with induction
III applied on the height instead of the rank (compare the proof in section 1.8).
Since the differences between these two embedded applications of induction III
are not significant, it is usually extracted as just an induction on the rank (or
height) without paying attention to the assumed complexity of the cut-formula.
Below we will follow this custom. Note however, that in contrast to the proof from
section 1.8, we cannot change (and simplify) the structure of the proof by changing
the order of inductions, in the way described in remark 1.6. This is not possible
because a reduction of rank cannot change the complexity of the cut-formula but
a reduction of the complexity may increase the rank. Hence if the induction on
the complexity is carried as subsidiary, we cannot correctly refer to the inductive
hypothesis of the induction on the rank. This is not a problem in case of the height
since the reduction of complexity cannot increase the height.

The second thing is that the proper proof of cut elimination (consisting of
induction II and III) is included as a justification only for the basis of induction
I. Consequently it may be treated in isolation as the proof of admissibility of cut
since it is assumed that proofs of both premisses are cut-free. Hence we can extract
it and first take for granted:

Theorem 2.5. (1-Mix elimination). Any D with exactly one application of mix as
the last rule may be transformed into a cut-free D′.

This is sufficient for proving the lemma corresponding to the induction step
of induction I:

Lemma 2.6. (Mix number reduction). If D has any application of mix, then it may
be transformed into a cut-free D′.

Proof: By induction on the number of mix applications in D:
Basis: D with one application of mix may be transformed into a cut-free proof—it
holds by 1-Mix elimination theorem.
Induction step: If any D with n applications of mix may be transformed into a
cut-free proof, then D with n + 1 applications of mix may be transformed into a
cut-free proof. We can prove it as follows. Take the highest leftmost application of
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mix. The part of the proof ending with it may be replaced by a cut-free proof by 1-
Mix elimination theorem. The resulting proof has n applications of mix, hence—by
the induction hypothesis—it may be transformed into cut-free proof. �

This is how Gentzen’s strategy for dealing with the multiplicity of cuts works.
It remains to prove 1-Mix elimination theorem:

Proof: We consider first induction III (in both applications, i.e. as subsidiary to
the basis or to the induction step of induction II).
The basis: rank = 2.

Point 3.1. The cut-formula is atomic, hence each premiss is either an ax-
iom or a sequent where the cut-formula was introduced by weakening. In each of
the 4 possible combinations mix (which is cut indeed) is trivially eliminable. For
example, a proof

ϕ ⇒ ϕ
Γ ⇒ Δ (W ⇒)

ϕ,Γ ⇒ Δ
(Mix)

ϕ,Γ ⇒ Δ

is replaced with a proof of ϕ,Γ ⇒ Δ in the right premiss.
In case of applications of W in both premisses we have:

Γ ⇒ Δ(⇒ W )
Γ ⇒ Δ, ϕ

Π ⇒ Σ (W ⇒)
ϕ,Π ⇒ Σ

(Cut)
Γ,Π ⇒ Δ,Σ

which is replaced with:

Γ ⇒ Δ(W )(P )
Γ,Π ⇒ Δ,Σ

Point 4.1. Any premiss that is an axiom or that has the cut-formula intro-
duced by W is eliminated as in point 3.1. So only 4 cases remain where the cut-
formula is introduced as principal in both premisses by a suitable logical rule. In
each case we show that a proof with the mix under consideration may be replaced
by a proof with mix(es) on shorter cut-formulae.

Case of cut-formula := ϕ ∧ ψ. A part of a proof:

Γ ⇒ Δ, ϕ Γ ⇒ Δ, ψ
(⇒ ∧)

Γ ⇒ Δ, ϕ ∧ ψ

ϕ,Π ⇒ Σ
(∧ ⇒)

ϕ ∧ ψ,Π ⇒ Σ
(Mix)

Γ,Π ⇒ Δ,Σ

is replaced with:

Γ ⇒ Δ, ϕ ϕ,Π ⇒ Σ
(Mix)

Γ,Πϕ ⇒ Δϕ,Σ
(W )(P )

Γ,Π ⇒ Δ,Σ
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Note that since the rank = 2, ϕ∧ψ occurs neither in Δ nor in Π and analogously
for (∧ ⇒) with ψ as side formula.

Exercise 2.13. Prove reduction steps for the cases where the cut-formula is a nega-
tion and a disjunction.

Case of cut-formula := ϕ → ψ. A proof:

ϕ,Γ ⇒ Δ, ψ
(⇒→)

Γ ⇒ Δ, ϕ → ψ

Π ⇒ Σ, ϕ ψ,Λ ⇒ Ξ
(→⇒)

ϕ → ψ,Π,Λ ⇒ Σ,Ξ
(Mix)

Γ,Π,Λ ⇒ Δ,Σ,Ξ

is replaced with:

Π ⇒ Σ, ϕ

ϕ,Γ ⇒ Δ, ψ ψ,Λ ⇒ Ξ
(Mix)

ϕ,Γ,Λψ ⇒ Δψ,Ξ
(Mix)

Π,Γϕ,Λψ,ϕ ⇒ Σϕ,Δψ,Ξ
(W )(P )

Γ,Π,Λ ⇒ Δ,Σ,Ξ

where Λψ,ϕ denotes Λ with all occurrences (if any) of ψ and ϕ deleted.
Note that we obtain a part of a proof with two applications of Mix. This may

seem problematic since we are proving a lemma where only one mix, namely the
last applied rule is eliminable. But the highest one is eliminable by the induction
hypothesis of induction II. Hence we have a proof of ϕ,Γ,Λψ ⇒ Δψ,Ξ with no
application of mix and then the lower one is the sole application of mix and also
satisfies the induction hypothesis of induction II and as such is eliminable.

Induction step of induction III (points 3.2 and 4.2).

This part of a proof requires much more work. As the induction hypothesis
we assume that mix of rank < n is eliminable. We must prove that every mix of
rank = n may be replaced with applications of mix on the same cut-formula but
of lower rank. In principle we have two parts:

A. We assume that r-rank > 1 and consider all possible cases leading to the
proof of the right premiss of mix.

B. We assume that l-rank > 1 and consider all possible cases leading to the
proof of the left premiss of mix.

In each part we must distinguish between situations where the cut-formula
is parametric, side or principal. In fact, for proving point 3.2. it may be (as it is
atomic) only parametric or a side formula, but for proving point 4.2 all cases must
be considered. Moreover, in each situation we must consider all rules as they lead
to the proof of the respective premiss. We prove A.

A1. Let the cut-formula be parametric.

A11. The right premiss is deduced by a rule operating only on the succedent.
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A111. One-premiss rules:
A1111. (⇒ ∨). A part of a proof:

Γ ⇒ Δ[ϕ]
Π[ϕ] ⇒ Σ, ψ

(⇒ ∨)
Π[ϕ] ⇒ Σ, ψ ∨ χ

(Mix)
Γ,Πϕ ⇒ Δϕ,Σ, ψ ∨ χ

is replaced with:

Γ ⇒ Δ[ϕ] Π[ϕ] ⇒ Σ, ψ
(Mix)

Γ,Πϕ ⇒ Δϕ,Σ, ψ
(⇒ ∨)

Γ,Πϕ ⇒ Δϕ,Σ, ψ ∨ χ

Exercise 2.14. Prove the cases of (⇒ W ), (⇒ C), (⇒ P ).

A112. Two-premiss rules—only (⇒ ∧). A part of a proof:

Γ ⇒ Δ[ϕ]
Π[ϕ] ⇒ Σ, ψ Π[ϕ] ⇒ Σ, χ

(⇒ ∧)
Π[ϕ] ⇒ Σ, ψ ∧ χ

(Mix)
Γ,Πϕ ⇒ Δϕ,Σ, ψ ∧ χ

is replaced with:

Γ ⇒ Δ[ϕ] Π[ϕ] ⇒ Σ, ψ
(Mix)

Γ,Πϕ ⇒ Δϕ,Σ, ψ

Γ ⇒ Δ[ϕ] Π[ϕ] ⇒ Σ, χ
(Mix)

Γ,Πϕ ⇒ Δϕ,Σ, χ
(⇒ ∧)

Γ,Πϕ ⇒ Δϕ,Σ, ψ ∧ χ

where both applications of (Mix) are of lower rank hence eliminable by the induc-
tion hypothesis.

A12. Cases where the right premiss is deduced by a rule operating only on
the antecedent.

A121. One-premiss rules.
A1211. Case of (∧ ⇒). We have:

Γ ⇒ Δ[ϕ]
ψ,Π[ϕ] ⇒ Σ

(∧ ⇒)
ψ ∧ χ,Π[ϕ] ⇒ Σ

(Mix)
Γ, ψ ∧ χ,Πϕ ⇒ Δϕ,Σ

and change it into:

Γ ⇒ Δ[ϕ] ψ,Π[ϕ] ⇒ Σ
(Mix)

Γ, ψ,Πϕ ⇒ Δϕ,Σ
(∧ ⇒)(P ⇒)

Γ, ψ ∧ χ,Πϕ ⇒ Δϕ,Σ

Exercise 2.15. Prove it for (W ⇒), (C ⇒), (P ⇒) and also for the only case of a
two-premiss rule—(∨ ⇒).
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A13. Cases where the right premiss is deduced by a rule operating on both
sides of a sequent.

A131. One-premiss rules.
A1311. Case of (⇒→). We have:

Γ ⇒ Δ[ϕ]
ψ,Π[ϕ] ⇒ Σ, χ

(⇒→)
Π[ϕ] ⇒ Σ, ψ → χ

(Mix)
Γ,Πϕ ⇒ Δϕ,Σ, ψ → χ

and change it into:

Γ ⇒ Δ[ϕ] ψ,Π[ϕ] ⇒ Σ, χ
(Mix)

Γ, ψ,Πϕ ⇒ Δϕ,Σ, χ
(⇒→)(P ⇒)

Γ,Πϕ ⇒ Δϕ,Σ, ψ → χ

Exercise 2.16. Prove the cases of (¬ ⇒), (⇒ ¬).

A132. Two-premiss rules—only (→⇒):

Γ ⇒ Δ[ϕ]
Π[ϕ] ⇒ Σ, ψ χ,Λ[ϕ] ⇒ Ξ

(→⇒)
ψ → χ,Π[ϕ],Λ[ϕ] ⇒ Σ,Ξ

(Mix)
Γ, ψ → χ,Πϕ,Λϕ ⇒ Δϕ,Σ,Ξ

is replaced with:

Γ ⇒ Δ[ϕ] Π[ϕ] ⇒ Σ, ψ
(Mix)

Γ,Πϕ ⇒ Δϕ,Σ, ψ

Γ ⇒ Δ[ϕ] χ,Λ[ϕ] ⇒ Ξ
(Mix)

Γ, χ,Λϕ ⇒ Δϕ,Ξ
(P ⇒)

χ,Γ,Λϕ ⇒ Δϕ,Ξ
(→⇒)

ψ → χ,Γ,Πϕ,Γ,Λϕ ⇒ Δϕ,Σ,Δϕ,Ξ
(P ), (C)

Γ, ψ → χ,Πϕ,Λϕ ⇒ Δϕ,Σ,Ξ

where both applications of (Mix) are of lower rank.

A2. Cases where the cut-formula is a side formula of a rule applied to the
right premiss.

A21. One-premiss rules.
A211. Case of (⇒→):

Γ ⇒ Δ[ϕ]
ϕ,Π[ϕ] ⇒ Σ, ψ

(⇒→)
Π[ϕ] ⇒ Σ, ϕ → ψ

(Mix)
Γ,Πϕ ⇒ Δϕ,Σ, ϕ → ψ

is replaced with:

Γ ⇒ Δ[ϕ] ϕ,Π[ϕ] ⇒ Σ, ψ
(Mix)

Γ,Πϕ ⇒ Δϕ,Σ, ψ
(W ⇒)

ϕ,Γ,Πϕ ⇒ Δϕ,Σ, ψ
(⇒→)

Γ,Πϕ ⇒ Δϕ,Σ, ϕ → ψ
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Exercise 2.17. Prove the cases of (¬ ⇒) and (∧ ⇒).

A22. Two-premiss rules.
A221. Case of (→⇒):

Γ ⇒ Δ[ϕ]
Π ⇒ Σ, ψ ϕ,Λ ⇒ Ξ

(→⇒)
ψ → ϕ,Π,Λ ⇒ Σ,Ξ

(Mix)
Γ, ψ → ϕ,Πϕ,Λϕ ⇒ Δϕ,Σ,Ξ

This time we have two possibilities:
A221a. if ϕ is not in Π (Πϕ = Π), then we introduce:

Π ⇒ Σ, ψ

Γ ⇒ Δ[ϕ] ϕ,Λ ⇒ Ξ
(Mix)

Γ,Λϕ,⇒ Δϕ,Ξ
(W ⇒)

ϕ,Γ,Λϕ,⇒ Δϕ,Ξ
(→⇒)

ψ → ϕ,Π,Γ,Λϕ ⇒ Σ,Δϕ,Ξ
(P )

Γ, ψ → ϕ,Πϕ,Λϕ ⇒ Δϕ,Σ,Ξ
A221b. if ϕ is in Π, then we introduce:

Γ ⇒ Δ[ϕ] Π[ϕ] ⇒ Σ, ψ
(Mix)

Γ,Πϕ ⇒ Δϕ,Σ, ψ

Γ ⇒ Δ[ϕ] ϕ,Λ ⇒ Ξ
(Mix)

Γ,Λϕ,⇒ Δϕ,Ξ
(W ⇒)

ϕ,Γ,Λϕ,⇒ Δ,Ξ
(→⇒)

ψ → ϕ,Γ,Πϕ,Γ,Λϕ ⇒ Δϕ,Σ,Δϕ,Ξ
(P )(C)

Γ, ψ → ϕ,Πϕ,Λϕ ⇒ Δϕ,Σ,Ξ

Exercise 2.18. Prove the case of (∨ ⇒).

A3 Cases where the cut-formula is principal (note that in this case the cut-
formula also must have parametric occurrences, by our assumption concerning
r-rank).

A31. One-premiss rule.
A311. Case of (∧ ⇒):

Γ ⇒ Δ[ϕ ∧ ψ]
ϕ,Π[ϕ ∧ ψ] ⇒ Σ

(∧ ⇒)
ϕ ∧ ψ,Π[ϕ ∧ ψ] ⇒ Σ

(Mix)
Γ,Πϕ∧ψ ⇒ Δϕ∧ψ,Σ

is replaced with:

Γ ⇒ Δ[ϕ ∧ ψ]

Γ ⇒ Δ[ϕ ∧ ψ] ϕ,Π[ϕ ∧ ψ] ⇒ Σ
(Mix)

Γ, ϕ,Πϕ∧ψ ⇒ Δϕ∧ψ,Σ
(P ⇒)

ϕ,Γ,Πϕ∧ψ ⇒ Δϕ∧ψ,Σ
(∧ ⇒)

ϕ ∧ ψ,Γ,Πϕ∧ψ ⇒ Δϕ∧ψ,Σ
(Mix)

Γ,Γ,Πϕ∧ψ ⇒ Δϕ∧ψ,Δϕ∧ψ,Σ
(P ), (C)

Γ,Πϕ∧ψ ⇒ Δϕ∧ψ,Σ
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Notice that the second application of (Mix) has r-rank=1 since the cut-
formula is for the first time in the right premiss; occurrences of the cut-formula
above are not taken into consideration because the first application of (Mix) is
first eliminated by the induction hypothesis. The same remark applies to every
lower application of mix in other similar transformations.

Exercise 2.19. Prove the case of (¬ ⇒).

A32. Two-premiss rules.
A321. Case of (→⇒):

Γ ⇒ Δ[ϕ → ψ]
Π ⇒ Σ, ϕ ψ,Λ ⇒ Ξ

(→⇒)
ϕ → ψ,Π,Λ ⇒ Σ,Ξ

(Mix)
Γ,Πϕ→ψ,Λϕ→ψ ⇒ Δϕ→ψ,Σ,Ξ

Let us notice that we do not know where exactly we may have occurrences
of ϕ → ψ in Π and Λ. Accordingly we must consider three subcases:

A321a. ϕ → ψ is in Π and Λ; we introduce:

Γ ⇒ Δ[ϕ → ψ]

Γ ⇒ Δ[ϕ → ψ] Π ⇒ Σ, ϕ
(Mix)

Γ, Πϕ→ψ ⇒ Δϕ→ψ , Σ, ϕ

Γ ⇒ Δ[ϕ → ψ] ψ, Λ ⇒ Ξ
(Mix)

Γ, ψ, Λϕ→ψ ⇒ Δϕ→ψ, Ξ
(P ⇒)

ψ, Γ, Λϕ→ψ ⇒ Δϕ→ψ, Ξ
(→⇒)

ϕ → ψ, Γ, Πϕ→ψ , Γ, Λϕ→ψ ⇒ Δϕ→ψ , Σ, Δϕ→ψ , Ξ
(Mix)

Γ, Γϕ→ψ , Πϕ→ψ , Γϕ→ψ, Λϕ→ψ ⇒ Δϕ→ψ , Δϕ→ψ , Σ, Δϕ→ψ, Ξ
(P )(C)

Γ, Πϕ→ψ , Λϕ→ψ ⇒ Δϕ→ψ , Σ, Ξ

A321b. ϕ → ψ is in Π but not in Λ. We obtain:

Γ ⇒ Δ[ϕ → ψ]

Γ ⇒ Δ[ϕ → ψ] Π[ϕ → ψ] ⇒ Σ, ϕ
(Mix)

Γ, Πϕ→ψ ⇒ Δϕ→ψ, Σ, ϕ ψ, Λ ⇒ Ξ
(→⇒)

ϕ → ψ, Γ, Πϕ→ψ, Λ ⇒ Δϕ→ψ, Σ, Ξ
(Mix)

Γ, Γϕ→ψ, Πϕ→ψ, Λ ⇒ Δϕ→ψ, Δϕ→ψ, Σ, Ξ
(P )(C)

Γ, Πϕ→ψ, Λ ⇒ Δϕ→ψ, Σ, Ξ

A321c. ϕ → ψ is in Λ but not in Π. We introduce:

Γ ⇒ Δ[ϕ → ψ]
Π ⇒ Σ, ϕ

Γ ⇒ Δ[ϕ → ψ] ψ,Λ[ϕ → ψ] ⇒ Ξ
(Mix)

Γ, ψ,Λϕ→ψ ⇒ Δϕ→ψ,Ξ
(P ⇒)

ψ,Γ,Λϕ→ψ ⇒ Δϕ→ψ,Ξ
(→⇒)

ϕ → ψ,Π,Γ,Λϕ→ψ ⇒ Σ,Δϕ→ψ,Ξ
(Mix)

Γ,Π,Γϕ→ψ,Λϕ→ψ ⇒ Δϕ→ψ,Σ,Δϕ→ψ,Ξ
(P )(C)

Γ,Π,Λϕ→ψ ⇒ Δϕ→ψ,Σ,Ξ

�
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Exercise 2.20. Prove the case of (∨ ⇒); no subcases here.
Prove part B.

Few remarks are in order. Gentzen’s proof is brilliant but has a rather com-
plicated structure. There are plenty of cases to consider; in particular when per-
forming induction on the rank of compound formulae we must distinguish cases
where the cut-formula is a principal-, side- or parameter-formula of the last infer-
ence step. These complexities suggest numerous later improvements. In particular
we can consider two questions:

1) can we use the height instead of rank in the presence of mix?
2) can we provide a direct proof of cut (instead of mix) elimination?

The positive answers for these questions were provided by some logicians and we
review some proofs of this kind below.

2.4.2 Cross-Cuts Technique

One of the proposals is due to Girard [99]. It is based on solutions applied by
Tait [257] in his proof of cut elimination for some nonstandard (infinitary) SC
for arithmetic. In Girard’s proof [99] we can find three significant differences with
Gentzen’s proof:

1. a different strategy for dealing with the multiplicity of cuts due to Tait (elim-
ination of the maximal cuts);

2. a subsidiary induction on the height not on the rank;

3. applications of the technique of cross-cuts.

To deal with contraction Girard in fact also uses mix but its application is
restricted to one lemma which just shows mix admissibility in LK (with cut), hence
the proof generally goes for LK, not for LK’. However we can formulate it for LK’
as well (see the remark 2.2). His original proof consists of the following steps:

1. Mix reduction lemma;

2. Cut-degree reduction lemma;

3. Cut-elimination theorem.

Let us define the notions of cut-degree and proof degree:

1. Cut-degree is the complexity of the cut-formula ϕ (the number of occurrences
of constants—see subsection 1.1.1—dϕ

2. Proof-degree (dD) is the maximal cut-degree in D, i.e. the complexity of the
most complex cut-formula.

Lemma 2.7. (Mix reduction). If D1 � Γ ⇒ Δ, ϕi and D2 � ϕk,Π ⇒ Σ and
dD1, dD2 < dϕ, then we can construct a proof D such that D � Γ,Π ⇒ Δ,Σ
and dD < dϕ
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Proof: It goes by induction on the sum of the heights of D1 and D2. Similarly as
in Gentzen’s proof we consider different cases. There are two differences:

1. One must consider the case of cut (of lower degree) as leading to the
left (right) premiss of the mix that is being analysed. This does not cause any
difficulties; we just permute cuts.

2. The cases where both cut-formulae are principal but not unique (i.e. some
other occurrences are parametric) is treated in a different way, by the application
of the cross-cuts technique which was introduced first by Martin-Löff [172] (see
also Pfenning [196]). This corresponds to Gentzen’s reduction of the rank where
the cut-formula is parametric; the difference is that we take care of the second
premiss as well. We consider some cases:

a) Let Γ ⇒ Δ, ϕi be an axiom ψ ⇒ ψ. If ψ = ϕ, then Γ is just ϕ and we derive
Γ,Π ⇒ Δ,Σ from the second premiss by means of structural rules. Otherwise we
derive Γ,Π ⇒ Δ,Σ from ψ ⇒ ψ.

b) Γ ⇒ Δ, ϕi was deduced by cut. Since dD1 < dϕ, the cut-formula must
be different from and shorter than ϕ. By the induction hypothesis we delete all
occurrences of ϕ in both premisses of cut and the new conclusion of this cut
application is Γ ⇒ Δ. This yields a proof of Γ,Π ⇒ Δ,Σ by W and P with the
same degree.

All other applications of structural and logical rules with ϕ parametric are
transformed in the same way due to the context independence of all rules. Similarly,
if ϕ is an active formula of C or W, we just delete all occurrences of ϕ in the premiss
by the induction hypothesis and obtain the result by P and W.

Exercise 2.21. Provide a few examples of the transformations sketched above.

The original part of the proof is concerned with cases where both Γ ⇒ Δ, ϕi

and ϕk,Π ⇒ Σ were obtained by the application of logical rules with one of the
occurrence of ϕ principal. The most complicated case is that of implication.

c) Let ϕ := ψ → χ. We have the following deductions as the last steps of D1

and D2:

ψ,Γ ⇒ Δ, ϕi−1, χ
(⇒→)

Γ ⇒ Δ, ϕi

and

ϕm,Π′ ⇒ Σ′, ψ χ, ϕn,Π′′ ⇒ Σ′′
(→⇒)

ϕk,Π ⇒ Σ

where m + n = k − 1,Π is a concatenation of Π′ and Π′′ and similarly for Σ.
By the induction hypothesis we obtain proofs of the following three sequents:

(a) ψ,Γ,Π ⇒ Δ,Σ, χ – from ψ,Γ ⇒ Δ, ϕi−1, χ and ϕk,Π ⇒ Σ;
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(b) Γ,Π′ ⇒ Δ,Σ′, ψ – from Γ ⇒ Δ, ϕi and ϕm,Π′ ⇒ Σ′, ψ;

(c) χ,Γ,Π′′ ⇒ Δ,Σ′′ – from Γ ⇒ Δ, ϕi and χ,ϕn,Π′′ ⇒ Σ′′.

Now we can combine them to derive the desired effect:

Γ,Π′ ⇒ Δ,Σ′, ψ ψ,Γ,Π ⇒ Δ,Σ, χ
(Cut)

Γ,Π′,Γ,Π ⇒ Δ,Σ′,Δ,Σ, χ χ,Γ,Π′′ ⇒ Δ,Σ′′
(Cut)

Γ,Π′,Γ,Π,Γ,Π′′,⇒ Δ,Σ′,Δ,Σ,Δ,Σ′′
(C), (P )

Γ,Π ⇒ Δ,Σ

These cuts are not eliminable but since all are applied on subformulae of ϕ
the degree of a new proof is smaller than dϕ and we are done. �

Note that to obtain (a), (b), (c) we have used the technique of cross-cuts.
Note also that the special induction on the degree (complexity) of the cut-formula
is not necessary as it is involved into conditions specified in the lemma.

Exercise 2.22. Prove the cases where the principal formula ϕ is a negation, con-
junction and disjunction.

Lemma 2.8. (Cut-degree reduction). If D � Γ ⇒ Δ and dD > 0, then we can
construct a proof D′ such that D′ � Γ ⇒ Δ and dD′ < dD
Proof: Induction on the height of D. There are two cases:

a) the last inference is not a maximal cut;
b) the last inference is a maximal cut.
In case a) we consider the proof(s) of the premiss(es) of Γ ⇒ Δ which is/are

of lower height hence by the induction hypothesis may be replaced with a proof
(or proofs) of the premiss(es) of lower degree. We apply suitable rules to obtain a
proof of Γ ⇒ Δ of lower degree.

In case b) we have the following last step:

D1

Γ ⇒ Δ, ϕ

D2

ϕ,Π ⇒ Σ
(Cut)

Γ,Π ⇒ Δ,Σ

Both proofs of the premisses may contain other maximal cuts but by the
induction hypothesis they may be replaced with the proofs of lower degree. Hence
the mix reduction lemma applies to them and we get a proof of Γ,Πϕ ⇒ Δϕ,Σ of
lower degree. By applications of W, if necessary, we get Γ,Π ⇒ Δ,Σ. �

Note that the above proof may be used also as an alternative technique
for showing how to prove cut elimination on the basis of an admissibility result.
Gentzen’s method is top-down whereas this one is a bottom-up procedure.

Finally, by successive applications of the above lemma we get:

Theorem 2.6. (Cut elimination). If D � Γ ⇒ Δ and dD > 0, then we can construct
a proof D′ such that D′ � Γ ⇒ Δ and dD′ = 0
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Remark 2.2. Girard’s proof may be applied also to LK’ to show eliminability of Mix
(see e.g. Dowek [63]). In this case we can construct suitable proof figures showing
transformations of parts of a proof in the mix reduction lemma. For example in
case of negation we have:

ϕ,Γ ⇒ Δ,¬ϕk

(⇒ ¬)
Γ ⇒ Δ,¬ϕk+1

¬ϕn,Π ⇒ Σ, ϕ
(¬ ⇒)¬ϕn+1,Π ⇒ Σ

(Mix)
Γ,Π ⇒ Δ,Σ

and this is replaced with:

ϕ, Γ ⇒ Δ,¬ϕk

(⇒ ¬)
Γ ⇒ Δ,¬ϕk+1 ¬ϕn, Π ⇒ Σ, ϕ

(Mix)
Γ, Π ⇒ Δ, Σ, ϕ

ϕ, Γ ⇒ Δ,¬ϕk

¬ϕn, Π ⇒ Σ, ϕ
(¬ ⇒)

¬ϕn+1, Π ⇒ Σ
(Mix)

ϕ, Γ, Π ⇒ Δ, Σ
(Mix)

Γϕ, Γ, Πϕ, Π ⇒ Δϕ, Δ, Σϕ, Σ
(C)(P )

Γ, Π ⇒ Δ, Σ

where two uppermost mixes are eliminable by the induction hypothesis. The
last one is not eliminable but it has lower degree. As we can see even in the simplest
case the transformations obtained are significantly complicated.

Exercise 2.23. Provide transformations for the case of ∧,∨ and → as principal.

2.4.3 Reductive Proof

We can extract one more proof of cut elimination of a similar character from
the more general construction applied by Metcalfe, Olivetti and Gabbay [176] in
the framework of hypersequent calculi, a generalised version of SC, particularly
useful for non-classical logics (see chapter 4 for more information). In fact, this
construction and similar ones for other generalised forms of SC for non-classical
logics (e.g. Belnap [25] for display calculus, or Restall [214]) all are somewhat
influenced by Curry’s proof which will be presented in section 2.5.1.

In the context of the approach developed in [176], a general categorization
of rules is proposed into substitutive and reductive. Roughly speaking, the former
allow for height reduction, the latter for complexity reduction. Such an approach in
[176] is particularly useful for developing a general schema of proof which applies
to any extension of the basic system provided the new rules are substitutive and
reductive. Moreover, it is easier to develop a global proof of cut elimination on
the basis of such preliminary categorization of proof (proofs from [176] are of
this sort)2. However, we leave the problem of defining general schemata for rules
yielding at least sufficient criteria for proving cut elimination aside and provide
a local proof. Such a proof is working even for systems using rules of different
characters (e.g. rules for modal logics which in general are not substitutive). One

2Several proposals of this sort were offered for different classes of SC. For example by Avron
[14] or Ciabattoni [50], where the notion of substitutive and reductive rules was introduced.
Ciabattoni and Terui [51] provide a survey of such attempts.
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can find similar proofs in Ciabattoni, Metcalfe, Montagna [52], Indrzejczak [135],
Kurokawa [154], Lellmann [160], all in the hypersequent framework. Indrzejczak
[137, 141, 142] provide examples of its application for standard SC. Here we adapt
this strategy to LK.

The proof is based on two lemmata; the first of which is:

Lemma 2.9. (Right reduction). Let D1 � Γ ⇒ Δ, ϕ and D2 � ϕk,Π ⇒ Σ with
dD1, dD2 < dϕ, and ϕ principal in Γ ⇒ Δ, ϕ, then we can construct a proof D
such that D � Γk,Π ⇒ Δk,Σ and dD < dϕ.

Proof: By induction on the height of D2. We must consider all cases. In most
of them we simply apply the induction hypotheses to the premisses of ϕk,Π ⇒ Σ
and then apply the respective rule. We consider some cases:

a) The basis: ϕk,Π ⇒ Σ is an axiom ϕ ⇒ ϕ, hence k = 1,Π is empty and Σ
consists of one occurrence of ϕ. Then Γ ⇒ Δ, ϕ is our Γk,Π ⇒ Δk,Σ and it is
already proved.

b) ϕk,Π ⇒ Σ is derived by (∨ ⇒) with one occurrence of ϕ as side formula and
the remaining ones as parametric. So we have:

ϕk+1,Π′ ⇒ Σ ψ,ϕk,Π′ ⇒ Σ
(∨ ⇒), (P ⇒)

ϕk,Π ⇒ Σ

where Π consists of Π′ and ϕ ∨ ψ. By the induction hypothesis we get �
Γk+1,Π′ ⇒ Δk+1,Σ and � ψ,Γk,Π′ ⇒ Δk,Σ both with proofs having proof
degree dD < dϕ. Then we continue with them:

Γk+1,Π′ ⇒ Δk+1,Σ
(C), (P ), (W ⇒)

ϕ,Γk,Π′ ⇒ Δk,Σ ψ,Γk,Π′ ⇒ Δk,Σ
(∨ ⇒), (P ⇒)

Γk,Π ⇒ Δk,Σ

Exercise 2.24. Provide transformations for the other logical rules with ϕ being para-
metric or with some occurrences being side formulae.

c) ϕk,Π ⇒ Σ is derived by (Cut) on some ψ such that dψ < dϕ. So we have:

ϕi,Π′ ⇒ Σ′, ψ ψ, ϕj ,Π′′ ⇒ Σ′′
(Cut)

ϕk,Π ⇒ Σ

where k = i+j,Π consists of Π′ and Π′′ and similarly for Σ. By the induction
hypothesis we get � Γi,Π′ ⇒ Δi,Σ′, ψ and � ψ,Γj ,Π′′ ⇒ Δj ,Σ′′ both with proofs
having dD < dϕ. Then we continue:

Γi,Π′ ⇒ Δi,Σ′, ψ ψ,Γj ,Π′′ ⇒ Δj ,Σ′′
(Cut)

Γk,Π ⇒ Δk,Σ
Note that ϕ cannot be a cut-formula due to our assumption that dD1, dD2 < dϕ.
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Exercise 2.25. Provide transformations for other structural rules with ϕ being
either parametric or with some occurrences being side- and principal formulae.

d) In cases where one occurrence of ϕ in ϕk,Π ⇒ Σ is principal we make use of
the fact that ϕ in the left premiss is principal too. Let us consider an example
with ϕ = ψ ∧ χ. By the induction hypothesis we get D′

2 � ψ,Γk−1,Π ⇒ Δk−1,Σ
with dD′

2 < dϕ. Then we continue with one of the premisses of Γ ⇒ Δ, ϕ:

Γ ⇒ Δ, ψ ψ,Γk−1,Π ⇒ Δk−1,Σ
(Cut)

Γk,Π ⇒ Δk,Σ

The new proof has obviously a degree lower than dϕ, since the new cut is on
a subformula of ϕ. �

Exercise 2.26. Provide proofs for the other logical rules with one occurrence of ϕ
being principal.

Lemma 2.10. (Left reduction). Let D1 � Γ ⇒ Δ, ϕk and D2 � ϕ,Π ⇒ Σ with
dD1, dD2 < dϕ, then we can construct a proof D such that D � Γ,Πk ⇒ Δ,Σk

and dD < dϕ.

Proof: Similarly, now by induction on the height of D1, but with some important
differences. First note that we do not require ϕ to be principal in ϕ,Π ⇒ Σ,
so it includes the case where ϕ is atomic. In cases where no occurrence of ϕ is
principal in the left premiss we just apply the induction hypothesis. Note that
the only transformations which introduce new cuts (but of lower degree) are for
ϕ compound. Thus if ϕ is atomic, then—by the assumption of the lemma—there
are no other cuts above, and the proof obtained is cut-free.

Now, in cases where one occurrence of ϕ in Γ ⇒ Δ, ϕk is principal we make
use of the Right reduction lemma. For example: let ϕ = ψ ∨χ, then the premiss is
Γ ⇒ Δ, ϕk−1, ψ (or (χ) and by the induction hypothesis we get D′

1 � Γ,Πk−1 ⇒
Δ,Σk−1, ψ with dD′

1 < dϕ, and by (⇒ ∨) we get Γ,Πk−1 ⇒ Δ,Σk−1, ϕ. Since
ϕ is principal in this sequent, the Right reduction lemma applies to it and to D2

and, if there is no ϕ in Π, we obtain D � Γ,Πk ⇒ Δ,Σk with dD < dϕ. Otherwise,
we obtain this result after some applications of structural rules. �

Exercise 2.27. Provide at least some other cases in the proof of this lemma.

Now we are ready to prove the cut-elimination theorem:

Proof: by double induction: primary on dD and subsidiary on the number of
maximal cuts (in the basis and in the inductive step of the primary induction).
We always take the topmost maximal cut, hence we have the following situation:

Γ ⇒ Δ, ϕ ϕ,Π ⇒ Σ
(Cut)

Γ,Π ⇒ Δ,Σ
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If ϕ is not atomic, then by the Left reduction lemma we obtain a proof of
Γ,Πk ⇒ Δϕ,Σk of lower degree; if it is atomic, then the new proof is cut-free, as
we observed above. This, by applications of (⇒ W ) and (C) (if necessary) yields
Γ,Π ⇒ Δ,Σ. By successive repetition of this procedure we diminish either the
degree of the proof or the number of maximal cuts in it until we obtain a proof
with d = 0. �

Remark 2.3. Note that we can interchange the present proof of the cut-elimination
theorem with the proof given in the preceding subsection, i.e. we can prove it as
above (by double induction) on the basis of Girard’s reduction lemmata (taking
the cut reduction lemma instead of the left reduction lemma) or we can prove it
only by induction on the height (but using the left reduction lemma instead of the
cut reduction lemma).

Note also that the problem of dealing with the multiplicity of cuts in elim-
inability proofs does not exist for proofs of the admissibility of cut. Moreover,
all the proofs of eliminability presented in this subsection may be reworked as
proofs of admissibility. However in this case we cannot compute the bounds on the
complexity of output proofs, like in Girard’s proof.

The interesting thing is that the above proof applies directly to LK with
cut although it may be argued that some generalised forms of cut are implicitly
involved in it. Such rules are extracted by Restall [214] as succedent multiple cut
and antecedent multiple cut and may be formally defined as follows:

(AMCut) Γ⇒ Δ, ϕ ϕk,Π⇒ Σ
Γk,Π⇒ Δk,Σ

(SMCut) Γ⇒ Δ, ϕk ϕ,Π⇒ Σ
Γ,Πk⇒ Δ,Σk

Exercise 2.28. Prove that LK is equivalent to LK with any of these rules instead
of cut.

2.4.4 Contraction-Sensitive Proof

The proofs of cut elimination described in two preceding subsections have many
advantages. In particular, Girard additionally provides, on the basis of his proof,
a complexity result concerning the hyperexponential growth of the transformed
proof trees. Still in both cases we seem to be halfway with respect to the problem
of eliminating cut instead of mix. In both cases we finally prove elimination of cut
but it is based on the previous work with mix (Girard’s proof) or some kind of
one-sided mix. So the question may be posed once more: Can we provide a proof
similar to Gentzen’s original one but directly for cut?

The crucial point is how to deal with contraction in the course of the proof.
Different strategies were proposed for that aim which we are not going to con-
sider here. One of them is based on the introduction of an additional induction
parameter – the number of applications of contraction above cut (Bimbo [31]).
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Another one is connected with a different interpretation of multiset unions in se-
quents (Indrzejczak [134]). However, the simplest solution may be obtained if we
take advantage of our invertibility results from section 2.3. We can provide a direct
proof of the admissibility of cut for LK on the basis of a careful analysis of the
part of a proof where contraction was applied to the cut-formula. Such a proof was
provided by Negri and von Plato [185] for a kind of SC similar to LK. In fact, due
to invertibility, we can restrict our interest to the case of atomic cut-formulae. The
proof is by induction on the complexity of the cut-formula. Only in the basis do
we need a subsidiary induction on the height of a proof of one premiss. Let LK−

denote LK without cut.

Theorem 2.7. (Admissibility of cut in LK−). If � Γ ⇒ Δ, ϕ and ϕ,Π ⇒ Σ, then
� Γ,Π ⇒ Δ,Σ.

Proof: In the basis we consider an atomic cut-formula and perform an additional
induction on the height of the left (or right, if we wish) premiss. Cases of axioms
and W are trivial, and cases of logical rules follow from context independence
of rules (the cut-formula may only be parametric). Now consider a case where
the cut-formula was derived by (⇒ C) on ϕ. Even if there was a series of such
applications of C there must be a first one so we have above a sequent Γ ⇒ Δ, ϕk.
It cannot be an axiom, so it was deduced by some structural or logical rule. If
it was (⇒ W ) applied to ϕ we just delete this application of (⇒ W ), the height
is reduced and we are done. Otherwise ϕ is parametric and we may permute the
application of this rule with the series of applications of (⇒ C) to ϕ and suitable
cut and again obtain the effect of height reduction. Let the last rule be (→⇒) and
we have the following proof figure:

Γ′,⇒ Δ′, ϕi, ψ χ,Γ′′,⇒ Δ′′, ϕj

(→⇒)
ψ → χ,Γ ⇒ Δ, ϕk

(⇒ C)
ψ → χ,Γ ⇒ Δ, ϕ ϕ,Π ⇒ Σ

(Cut)
ψ → χ,Γ,Π ⇒ Δ,Σ

where k = i + j and Γ is a concatenation of Γ′,Γ′′, similarly for Δ. It is
transformed as follows:

Γ′,⇒ Δ′, ϕiψ
(P ), (⇒ C)

Γ′ ⇒ Δ′, ψ, ϕ ϕ, Π ⇒ Σ
(Cut)

Γ′, Π ⇒ Δ′, ψ, Σ
(⇒ P )

Γ′, Π ⇒ Δ′, Σ, ψ

χ, Γ′′,⇒ Δ′′, ϕj

(⇒ C)
χ, Γ′′ ⇒ Δ′′, ϕ ϕ, Π ⇒ Σ

(Cut)
χ, Γ′′, Π ⇒ Δ′′, Σ

(→⇒)
ψ → χ, Γ′, Π, Γ′′, Π ⇒ Δ′, Σ, Δ′′, Σ

(P )(C)
ψ → χ, Γ, Π ⇒ Δ, Σ

Clearly the height of both cuts is reduced.
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In the inductive step we make a reduction of the complexity of the cut-
formula. Let ϕ = ψ → χ. By invertibility (Theorem 2.3) we obtain from both
premisses of cut:

(a) ψ,Γ ⇒ Δ, χ

(b) Π ⇒ Σ, ψ

(c) χ,Π ⇒ Σ

and combine them to derive the desired effect:

Π ⇒ Σ, ψ ψ,Γ ⇒ Δ, χ
(Cut)

Π,Γ ⇒ Σ,Δ, χ χ,Π ⇒ Σ
(Cut)

Π,Γ,Π,⇒ Σ,Δ,Σ
(P )(C)

Γ,Π ⇒ Δ,Σ

All cuts are of lower complexity. �

One should notice that this proof contains transformations which are not
wholly local. Hence it may be treated as being halfway in the direction of proofs
based on global transformations.

2.5 Global Proofs of Cut Elimination

In contrast to local proofs this kind of proof is based on global transformations,
defined on the whole proofs of the premisses of cut. Such an approach allows for
a convenient treatment of contraction. On the other hand, proofs of this kind are
strongly connected with the fact that rules are context independent. Proofs based
on global transformations are seldom. We provide two such proofs of different
characters, the first due to Curry [56], and the second due to Buss [43]. Curry’s
proof is in fact the first proof of admissibility (not eliminability) of cut. Buss’
proof is again for the cut-elimination theorem and it is based on Tait strategy, and
similar to Girard’s proof.

2.5.1 Curry’s Substitutive Proof

This kind of a proof of admissibility of cut (called by Curry the Elimination Theo-
rem) was introduced first in [55] and later [56] extended to a number of SC similar
to (and including) LK. Curry’s proof was quite influential due to a detailed analysis
of the properties of rules and its impact on the construction of many other proofs.
It paved the way for the search for general (sufficient and necessary) conditions
for rules that enable such a proof. Some of them (e.g. Belnap’s analysis for display
calculus [25] or Restall [214]) follow Curry’s analysis and strategy quite closely.
Other proposals, like the one in Ciabattoni and Terui [51], Metcalfe, Olivetti and
Gabbay [176], or Avron and Lev [14] provide different solutions.
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The differences with Gentzen’s proof are significant. First of all, Curry shows
admissibility not eliminability of cut and no mix is involved in his proof. Essentially
it is by a double induction on the complexity of the cut-formula and on the heights
of the proofs of the premisses. However, the most original features of the proof are
the following two:

1. the proof is divided into three (partly) independent stages;

2. proofs of two (dual) stages 1 and 2 are based on global transformations.

We will formulate the stages in the form of lemmata for easier comparison
with other solutions. But first we introduce some abbreviations. Let ϕp mean
that the cut-formula ϕ is principal in a sequent and the following capital letters
represent:

A : � Γ ⇒ Δ, ϕ
B : � ϕ,Π ⇒ Σ
C : � Γ,Π ⇒ Δ,Σ
A′ : � Γ ⇒ Δ, ϕp

B′ : � ϕp,Π ⇒ Σ

The lemmata corresponding to Curry’s stages may be formulated as follows
(H1, H2, H3 refer to the antecedents of displayed implications):

Lemma 2.11. (Stage 1 reduction). If (H1) A′ and B imply C, then A and B imply
C.

Lemma 2.12. (Stage 2 reduction). If (H2) A and B′ imply C, then A and B imply
C.

Lemma 2.13. (Stage 3 reduction). If (H3) cut is admissible for each subformula
of ϕ, then A′ and B′ imply C.

Stage 3 is proven in the same way as complexity reduction steps in the proof
of cut admissibility from section 1.8 (case 2) or in Gentzen’s proof from section 2.4
(the case of rank=2 from part 4.1). Stages 1 and 2 are proven by induction on the
height of the proof of A and B, respectively. Finally we prove � Γ,Π ⇒ Δ,Σ by
induction on the complexity of the cut-formula on the basis of these three lemmata.
Belnap [25] has already noticed that any informal explanation (like those provided
by Curry) rather obscure the structure of the whole proof and demonstrated it
(for display calculus) by means of natural deduction proof. We follow his approach
below in this respect although our reconstruction is a bit different (but closer
to Curry’s original presentation). The following proof in Jaśkowski-style natural
deduction shows precisely the structure of Curry’s proof:

1. Cut on subformulae of cut-formula ϕ is admissible (H3)
2. � Γ ⇒ Δ, ϕ
3. � ϕ,Π ⇒ Σ
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3.1. � Γ ⇒ Δ, ϕp

3.1.1. � ϕp,Π ⇒ Σ
3.1.2. � Γ,Π ⇒ Δ,Σ 1., 3.1., 3.1.1., stage 3 reduction lemma

3.2. if � ϕp,Π ⇒ Σ, then � Γ,Π ⇒ Δ,Σ 3.1.1 – 3.1.2.
3.3. H2 3.2.
3.4. A and B imply C 3.3, stage 2 reduction lemma
3.5. � Γ,Π ⇒ Δ,Σ 2, 3, 3.4.

4. if � Γ ⇒ Δ, ϕp, then � Γ,Π ⇒ Δ,Σ 3.1 – 3.5.
5. H1 4.
6. A and B imply C 5, stage 1 reduction lemma
7. � Γ,Π ⇒ Δ,Σ 2, 3, 6.

Note that it is possible to simplify slightly both lemmata corresponding to
stages 1 and 2 and to obtain a slightly simpler proof.

Lemma 2.14. (Stage 1 reduction). If (H1) A′ implies C, then A and B imply C.

Lemma 2.15. (Stage 2 reduction). If (H2) B′ implies C, then A and B imply C.

Now � Γ,Π ⇒ Δ,Σ is derivable in the following way:

1. Cut on subformulae of cut-formula ϕ is admissible (H3)
2. � Γ ⇒ Δ, ϕ
3. � ϕ,Π ⇒ Σ

3.1. � Γ ⇒ Δ, ϕp

3.1.1. � ϕp,Π ⇒ Σ
3.1.2. � Γ,Π ⇒ Δ,Σ 1., 3.1., 3.1.1., stage 3 reduction lemma

3.2. H2 3.1.1–3.1.2.
3.3. � Γ,Π ⇒ Δ,Σ 2, 3, 3.2, stage 2

4. H1 3.1–3.3.
5. � Γ,Π ⇒ Δ,Σ 2, 3, 4, stage 1

It remains to prove stages 1 and 2. They are proven independently by global
transformation of the whole proof of the respective premiss. It is possible due to
some properties of rules (context independence)—hence not possible in SC for
many non-classical logics. We will provide a proof of the stage 2 reduction lemma.

Proof: Let D be a proof of the right premiss, i.e. ϕ,Π ⇒ Σ and S1, ..., Sn an
enumeration of sequents in this proof preserving the order of inferences. Clearly
Sn := ϕ,Π ⇒ Σ. We define recursively Sk := Φk,Πk ⇒ Σk for k ≤ n, starting
with the root Sn:

1. Φn contains one occurrence of ϕ,Πn = Π,Σn = Σ

2. If Sk is a premiss for Sm, then:

(a) all parameters from Φm which are in Sk are in Φk
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(b) if the principal formula of the application of (C ⇒) or (W ⇒) is in Φm,
then either both side formulae are in Φk (the first case) or this formula
is absent in Φk (the second case).

Clearly Φk is defined for each k and it is a multiset (possibly empty) of
occurrences of ϕ. Let D1 denote the list of these sequents from D, where Φk is
empty, and D2 the remaining part of the list. Notice that all premises for elements
of D1 also belong to it by definition of Φk (condition 2).

For every Sk we define S′
k := Γn,Πk ⇒ Δn,Σk, where n ≥ 0 corresponds to

the number of occurrences of ϕ. Note that if Sk is in D1, then Sk = S′
k and that S′

n

is the conclusion of application of cut under consideration, i.e. S′
n := Γ,Π ⇒ Δ,Σ.

We show by induction on k, that if the hypothesis H2 holds, then every S′
k

is provable, in particular S′
n. We have 5 cases:

1. Sk belongs to D1, hence S′
k := Sk and it is provable.

2. Sk is an axiom and belongs to D2, so, because Φk is not empty, it has a
form ϕ ⇒ ϕ. Then S′

k := Γ ⇒ Δ, ϕ but this is just the left premiss of cut which is
provable by assumption.

3. Sk belongs to D2 and is derivable from Si (and Sj in case of two-premiss
rules) by means of an instance of a rule where all elements of Φk are parameters.
By the induction hypothesis S′

i (and S′
j) is provable. Since all rules are context

independent S′
k is derivable from S′

i (and S′
j) by means of the same rule.

4. Sk belongs to D2, the principal formula is in Φk and Sk is derivable from
Si by means of (C ⇒) or (W ⇒). By the induction hypothesis S′

i is provable. In
case of (C ⇒) the difference of S′

k and S′
i is only the matter of one occurrence of

Γ (and possibly Δ if nonempty) less, so it is derivable from S′
i by applications of

C. In case of (W ⇒), Φk in Sk has one more occurrence of ϕ than Φi, so S′
k is

derivable from S′
i by applications of W for getting Γ in the antecedent and possibly

Δ (if nonempty) in the succedent.
5. Sk is in D2, the principal formula is in Φk and Sk is derivable from Si (and

possibly Sj) by means of some logical rule. Let S′′
k be Sk in which all parameters

from Φk (i.e. other occurrences of ϕ, if there are any) are replaced with occurrences
of Γ and Δ added in the succedent. Then S′′

k is derivable from S′
i in the same way

as under point 3. Moreover, in S′′
k ϕ is principal, so S′′

k satisfies the assumption of
(1a) and S′

k is derivable from it. �

Curry’s technique may be applied also to K (with additive cut as well) yield-
ing very simple proofs. But admissibility of W (derivability of axioms from the
second premiss) and C (in stage 3 or, if we prefer additive cut, in reducing Sk

from Γ,Γ ⇒ Δ,Δ to Γ ⇒ Δ) is still necessary.

Exercise 2.29. Prove the Stage 1 reduction lemma.
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2.5.2 Buss’ Invertive Proof

Quite a different global proof was provided by Buss [43] for a version of LK but
with invertible rules, additive cut and atomic axioms. Here, at the price of some
extra complications, we adapt it for the original LK with multiplicative cut but
with atomic axioms. As for the latter, we know that this is an inessential restriction
thanks to Lemma 1.8 (section 1.5) which holds also for LK.

Exercise 2.30. Prove Lemma 1.8 for LK.

The proof of cut elimination may be developed in a similar way as Girard’s
proof, however, for the sake of demonstrating a different technique of proof as well
as for the possible further use, we separate first the special case. Let us call all
applications of (Cut) where the cut-formula is propositional symbol atomic cuts.
We will show that:

Lemma 2.16. (Atomic Cut Admissibility). In cut-free LK atomic cuts are admis-
sible.

Proof: We take a proof Dl of the left premiss Γ ⇒ Δ, ϕ with ϕ atomic and
transform it into D′

l in the following way.
Each sequent Λ ⇒ Θ in Dl is replaced with Π,Λ ⇒ Σ,Θϕ, where Θϕ means

that all occurrences of ϕ in Θ were deleted. As a result every leaf ψ ⇒ ψ of Dl

becomes in D′
l a sequent of the form Π, ψ ⇒ ψ,Σ if ψ is not ϕ, or Π, ψ ⇒ Σ, if

ψ = ϕ.
Generally, thanks to the context independence of the rules, D′

l is a derivation
or almost a derivation (see points (d)–(e) below) of Γ,Π,⇒ Δϕ,Σ from some
nonaxiomatic sequents. Finally from D′

l we get a proof D′ of Γ,Π ⇒ Δ,Σ as
follows:

(a) A final sequent is either complete or obtained from the root of D′
l by

applications of W (in case there were some occurrences of ϕ in Δ).
(b) Every leaf of the shape Π, ψ ⇒ ψ,Σ, we get from ψ ⇒ ψ by applications

of W.
(c) Every leaf of the shape Π, ϕ ⇒ Σ is just the right premiss so we add its

proof above it.
(d) In case of the application of (→⇒) in Dl we obtain a figure:

Π,Λ′ ⇒ Σ,Θ′
ϕ, ψ χ,Π,Λ′′ ⇒ Σ,Θ′′

ϕ

ψ → χ,Π,Λ′,Λ′′ ⇒ Σ,Θ′
ϕ,Θ′′

ϕ

which is not a proper application of (→⇒). We must insert it between the
premisses and the conclusion of this figure a sequent ψ → χ,Π,Π,Λ′,Λ′′ ⇒
Σ,Σ.Θ′

ϕ,Θ′′
ϕ and successive applications of C to Π and Σ to get a correct proof.

(e) In case some occurrence of ϕ is a side formula of (¬ ⇒) or (⇒ ∨) we justify
an inference by W introducing a principal formula. In case it is a side formula of
(⇒→) we must insert a sequent recovering ϕ by means of W in the succedent to
allow for an application of (⇒→).
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(f) In case of (⇒ C) or (⇒ W ) applied to ϕ in Dl, we delete one sequent in
D′

l. �

Exercise 2.31. Provide a proof of Atomic Cut Admissibility for Buss’ original calculus—
observe in what respects and why it is simpler.

In Buss’ approach, instead of the mix reduction lemma we first prove:

Lemma 2.17. (Cut reduction). If Dl � Γ ⇒ Δ, ϕ and Dr � ϕ,Π ⇒ Σ and
dDl, dDr < dϕ, then we can construct a proof D such that D � Γ,Π ⇒ Δ,Σ
and dD < dϕ

Proof: The proof goes by induction on d. In the basis ϕ is atomic and, by as-
sumption concerning dD, proofs of both premisses must be cut-free, hence the
atomic cut admissibility lemma applies. We must demonstrate the induction step.
The proof provided by Buss is essentially based on a global argument for invert-
ibility. Since we abstracted this result in section 2.3 we can just use it here. Let
us consider one case as an example.

The case where the cut-formula ϕ := ψ → χ. On the basis of the proof of the
left premiss Dl we obtain D′

l for ψ,Γ ⇒ Δ, χ and instead of Dr we construct two
proofs: Dψ for Π ⇒ Σ, ψ and Dχ for χ,Π ⇒ Σ. All are obtained by invertibility.
Finally we build from these three proofs a new D′ in the following way:

Dψ

Π ⇒ Σ, ψ

D′
l

ψ,Γ ⇒ Δ, χ

Dχ

χ,Π ⇒ Σ
(Cut)

ψ,Γ,Π ⇒ Δ,Σ
(Cut)

Π,Γ,Π ⇒ Σ,Δ,Σ
(P )(C)

Γ,Π ⇒ Δ,Σ
Both applications of cut are of lower degree. �
From this lemma the cut-elimination theorem follows via the cut-degree re-

duction lemma, like in Girard’s proof.

Exercise 2.32. Complete the proof where ϕ is a negation and a disjunction.
Prove it for Buss’ original system with A-cut and rules like in K.

Both Curry’s and Buss’ proofs are global but based on significantly different
transformations. Let us note some differences with Curry’s proof:

1. Buss’ proof is a proof of eliminability but also avoids induction on the number
of cut applications (Tait’s technique).

2. In Curry’s proof a transformation goes by the addition of parameters from
the second premiss whereas in Buss’ strategy there is a replacement of the
cut-formula with its subformulae. Thus the former was named substitutive
since it generalises a local strategy of height reduction, whereas in Buss’ proof
a similar transformation is applied only to atomic cuts.
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3. In Curry’s proof only sequents with the cut-formula are changed in input
proofs, whereas in Buss’ proof all sequents are replaced with new ones. How-
ever, this may be changed; we may define the transformation only for sequents
where the cut-formula in question occurs and leave untouched all sequents
above.

If we analyse the proof of the cut-degree reduction lemma it is obvious why we
call Buss’ proof invertive. A transformation applied in this proof is a generalisation
of Schütte strategy of using invertibility instead of height reduction (with the
exception of the basic step based on the atomic cut admissibility lemma). It shows
that if we separate the atomic cut admissibility lemma for LK and the invertbility
lemma as preliminary results, we obtain an immediate proof of eliminability of cut
based only on induction on the complexity of the cut-formula (degree of cut) and
using Tait’s strategy.

2.6 Decidability

As we already noticed one of the most important applications of cut elimination
is for proving decidability. At first sight it may seem that cut elimination for LK
yields decidability of CPL in a similar way as in K. It is true that if S is provable
in LK, then, by cut elimination, we are assured that there is a proof satisfying the
subformula property and there is only a finite number of such proofs to consider.
However the specific features of LK and its rules make proof search much harder.
We will discuss first the sources of difficulties before we provide a solution.

1. Not all rules of LK are invertible. By Theorem 1.3 (section 1.6) this implies
that LK is not confluent which makes proving decidability much harder. In partic-
ular, if we are trying systematic proof search in LK we are forced to backtracking.
Let us consider the following:

Example 2.5.

p ⇒ p q ⇒ r
(→⇒)p → q, p ⇒ r

(⇒→)p → q ⇒ p → r
(∧ ⇒)

(p → q) ∧ (p ∨ q → r) ⇒ p → r

Although the sequent is obviously provable we failed to find a proof because
of a wrong choice of a side formula in the first (at the bottom) application of
(∧ ⇒). What we should do is to backtrack to the beginning and try with p∨q → r
as side formula. Similar problems are connected with (⇒ ∨) whereas applications
of (→⇒) can be even more troublesome due to the number of possible choices
concerning parameters; we must decide how parameters from the conclusion will
be divided between two premisses. Here is an illustration:

Example 2.6.
⇒ q, p q, p ⇒

(→⇒)p → q, p ⇒ q
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The example is so trivial that it is hard to believe that someone would make
such a choice from 4 possibilities but in nontrivial cases we cannot be sure in
advance if we correctly divided parameters.

2. We have mentioned in section 2.1. that contraction is indispensable in LK
(see example 2.2.) This fact is not only troublesome for proofs of cut elimination
but may lead to problems in performing backward proof search. We never know
in advance if we should apply contraction to some formula before we apply the
logical rule with it as a principal formula. In fact we could use contraction to
avoid backtracking in case of the application of three non-invertible rules. One
may postulate that before any (backward) application of (⇒ ∨) and (∧ ⇒) the
second occurrence of the principal formula should be added by contraction, and
before application of (→⇒) all parametric formulae should be duplicated and then
one occurrence of each is put into both premisses. This way we indeed introduce
K-like counterparts of these rules into action. But generally contraction may lead
to uncontrolled production of new sequents on the branch. In the context of K the
subformula property is enough, but in LK it is not, since it is not formulae but
their occurrences that count.

3. Proofs in LK may contain redundancies in the sense that duplications of
the same sequent occur on the branch. In K, due to the subformula property and
the lack of structural rules, this was not possible, but in LK we can easily obtain
something like this:

Example 2.7.

...
ϕ,ϕ,Γ ⇒ Δ

(C ⇒)
ϕ,Γ ⇒ Δ

(W ⇒)
ϕ,ϕ,Γ ⇒ Δ

According to König’s lemma a tree may be infinite either by having infinitely
many branches starting from a node or by having at least one infinite branch. The
first possibility is excluded in LK since for any sequent there is always only a finite
number of possible premisses for it, but the second option is allowed in backward
proof search. Again the example is trivial, but this does not change the fact that
there is a real risk of building infinite proof trees.

The problems briefly described show that in LK the issues of systematic proof
search and proving decidability are not so closely connected as in K and we can
prove the latter in a way not based on the former. Below we will present Gentzen’s
original proof of decidability of CPL on the basis of LK, which is an example of
such an approach.

In fact, the last problem (from the three discussed above) is rather easy to
eliminate.

Claim 2.2. Every redundant proof may be transformed into a proof with exactly one
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occurrence of any sequent on the same branch.

Proof: Suppose we have the following segment on the branch:

B1

Γ ⇒ Δ
...

Γ ⇒ Δ
B2

We just replace it with:

B1

Γ ⇒ Δ
B2

This way we eliminate one by one every redundant part of the original proof.
�

Thanks to this claim we can restrict further consideration to nonredundant
proofs. In order to deal with the second problem (uncontrolled contractions) we
introduce additional notions:

Definition 2.2. A sequent Γ ⇒ Δ is 3-reduced iff any formula in it occurs at most
three times in the antecedent or in the succedent. It is 1-reduced iff any formula in
it occurs exactly once in the antecedent or in the succedent. A proof is reduced iff
all sequents in it are 3-reduced.

Now we prove:

Lemma 2.18. If Γ ⇒ Δ is provable and Γ1 ⇒ Δ1 is any 1-reduction of it, then
there exists a cut-free, nonredundant, reduced proof of Γ1 ⇒ Δ1.

Proof: We proceed by induction on the height of a proof of Γ ⇒ Δ and restrict
our considerations to cut-free and nonredundant proofs. The basis is trivial since
every axiom is 1-reduced. So suppose that the claim holds for any k < n and that
Γ ⇒ Δ has a proof of height n. We consider the last applied rule and proofs of
the premiss(es). Take as an example an application of (→⇒) to Γ ⇒ Δ, then it
has the form ϕ → ψ,Π,Σ ⇒ Λ,Θ and the premisses are Π ⇒ Λ, ϕ and ψ,Σ ⇒ Θ.
Let Π1 ⇒ Λ1, ϕ and ψ,Σ1 ⇒ Θ1 be any 1-reductions of the premisses, then by
the induction hypothesis both have reduced cut-free proofs. Applying (→⇒) to
Π1 ⇒ Λ1, ϕ and ψ,Σ1 ⇒ Θ1 we obtain a proof of ϕ → ψ,Π1,Σ1 ⇒ Λ1,Θ1. If
necessary we apply to this sequent P and C to obtain a 1-reduction of it. The
resulting proof is reduced since the proofs of both premisses were reduced, the
new premisses are both 1-reduced, and ϕ → ψ,Π1,Σ1 ⇒ Λ1,Θ1 is 3-reduced. The
last claim, and in general the restriction to 3-reduced sequents in the definition
of reduced proofs is just dictated by the form of (→⇒). A formula ϕ → ψ may
already appear once in Π1 and Σ1 (since both premisses are 1-reduced) and in this
case it occurs thrice in ϕ → ψ,Π1,Σ1 ⇒ Λ1,Θ1 but not more! �
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Exercise 2.33. Check the remaining cases of rule applications in the proof (what if
Γ ⇒ Δ is deduced by contraction?).

This way we have obtained an upper bound on the number of sequents re-
quired in proof search. If we want to establish whether Γ ⇒ Δ is provable it is
sufficient to consider if any of it is provable. And to do this it is enough to check
if any tree consisting of only 3-reduced sequents built from subformulae of Γ1,Δ1

yields a proof of it. If no such tree exists, then Γ ⇒ Δ is unprovable.
The above considerations provide a theoretical proof of the decidability result,

but the separate problem is how to organise a specific algorithm for checking.
The original solution sketched by Gentzen is not based on root-first proof search;
on the contrary. Since SF (Γ ∪ Δ) is finite, the set S3(Γ ∪ Δ) of all 3-reduced
sequents built from these formulae is also finite. Take as S3(Γ ∪ Δ)0 the set of all
axiomatic sequents from S3(Γ ∪ Δ), then as S3(Γ ∪ Δ)1 the set of these sequents
from S3(Γ ∪ Δ) − S3(Γ ∪ Δ)0 which are deducible from elements of S3(Γ ∪ Δ)0.
In general for every stage n + 1 take as S3(Γ ∪ Δ)n+1 the set of these sequents
from S3(Γ ∪ Δ) − S3(Γ ∪ Δ)n which are deducible from S3(Γ ∪ Δ)n. Every stage
is running in finite time and the whole procedure is terminating. Either at some
stage k we put Γ ⇒ Δ to S3(Γ∪Δ)k which means that it is provable, or we finish
with S3(Γ∪Δ)−S3(Γ∪Δ)k containing only sequents which are not provable and
including Γ ⇒ Δ.

Such a procedure is not really practical and efficient so we still may think
about some better behaving algorithm based on systematic backward proof search.
This may be done in many different ways and in this case the problem is not only
with the choice between depth-first versus breath-first strategies. We do not aim to
go deeply into the details, since K is much better for such an enterprise in case of
CPL. However, in chapter 4 and 5 we will find logics which do not admit sequent
calculi as convenient as K with respect to projecting proof search procedures. So
we sketch here some solutions which may be profitable there.

One strategy is to develop an algorithm of proof search based on backtracking.
In case of essential choice (like applications of (⇒ ∨), (∧ ⇒) or (→⇒)) we store in
the memory the conclusion sequent and if we fail with the construction of a proof,
we backtrack to this sequent and repeat application of this rule but with different
side formula or parameters divided in a different way. As a result we are building
not one but many trees for Γ ⇒ Δ. If at least one is a proof we can stop, otherwise
we obtain a finite collection of proof trees for Γ ⇒ Δ. Of course in order to keep
the procedure finite we must use only 3-reduced sequents build from SF (Γ ∪ Δ).

Exercise 2.34. Define an algorithm according to remarks given. Restrict W only to
cases where the application of some rule introduces a side formula which is the 4th
occurrence of this formula on the same side of a sequent and to the deletion of all
parameters from axiomatic sequents in the sense of K.

We can apply a slightly different solution and introduce more general trees
instead of proof trees. Let us call them proof-search trees. Intuitively these are
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trees of all possible choices of rule applications in the proof search. Thus such a
tree may contain proofs as subtrees (in case a root sequent is provable). Let us
consider the following (meta-)rule of disjunctive branching:

(DB) S1, ..., Sn
S

where for each i ≤ n either Si

S
is an instance of some one-premiss rule, or

for some j ≤ n
Si Sj

S
is an instance of some two-premiss rule.

Two things should be noted. First, in this schema we do not require that all
rule applications possible with respect to S should be reflected above the line. We
may restrict the list of premisses to some essential choices in order to keep the
branching factor of our tree reasonable. In particular, we should remember that
applications of C to any formula in S should not exceed 2. More focused version
of such a rule will be introduced in chapter 4.

The second thing is connected with the character of branching represented
by this rule. All two-premiss rules of LK represent a branching which may be
called conjunctive, since both branches must provide proofs of premisses for the
conclusion to be provable. In the case of (DB) a provability of at least one of Si

(or Si and Sj) is sufficient for having a proof of S. Such a solution, taking into
account two kinds of branching, was first applied by Beth [28] in the context of
a tableau system for intuitionistic logic. Now, the introduction of two kinds of
branching makes the control over the result harder, since the occurrence of some
nonaxiomatic leaves is not sufficient for falsification of a root sequent.

In [125], to keep track of these differences, we introduced the following ma-
chinery. Let us call a grade of a proof-search tree the number of applications of
(DB) in it. We may now define recursively the notion of a closed proof-search tree
as representing proofs of its root sequent.

1. A proof-search tree of grade 0 is closed iff it is a proof of its root sequent.

2. A proof-search tree of grade n is closed iff at least one of its subtrees of
smaller degree is closed.

In practice (see e.g. Bilkova [30]) one may mark all axioms as positive and
other leaves as negative and continue with marking sequents in the following way:

(a) mark a conclusion of (DB) as positive if any Si (or Si, Sj in case of
two-premiss rule) is marked as positive;

(b) in case of other rule applications mark a conclusion as positive if all
premisses are positive.

In this way we see that a root sequent is proved if it is marked as positive; we
can delete all negative sequents and a proof is distilled from a proof-search tree.

Of course some other solutions are also possible. For example, instead of
introducing two kinds of branching we can generalise the notion of a sequent
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and keep only conjunctive branching. The price is that we are using finite sets of
sequents called hypersequents. This strategy will be considered in chapter 4.

Exercise 2.35. Try to develop an algorithm for proof search on the basis of proof-
search trees and (DB). Think of reasonable restrictions on the application of DB.

Remark 2.4. In general in case of LK there is a problem with applications of P.
In fact, we already treated P badly in cut-elimination proofs and this suggests an
even more drastic move which will be considered in the next chapter; use finite
multisets instead of lists in sequents. However, there is a good opportunity to point
out in this place that it is possible to dispense with P and keep sequents built from
lists if we suitably reformulate rules. A solution proposed by Gallier [93] consists
in placing side and principal formulae in suitable places. In case of rules which do
not switch their position it is just the same place in the list; in case of rules where
there is some switch we put side formulae at the beginning of suitable list. Thus
rules for ∧ look like this:

(∧⇒) Γ, ϕ, ψ,Δ⇒ Π
Γ, ϕ∧ψ,Δ⇒ Π (⇒∧) Γ⇒ Δ, ϕ,Π Γ⇒ Δ, ψ,Π

Γ⇒ Δ, ϕ∧ψ,Π

whereas rules for ¬ and → look like that:

(¬⇒) Γ,Δ⇒ ϕ,Π
Γ,¬ϕ,Δ⇒ Π (⇒¬) ϕ,Γ⇒ Δ,Π

Γ⇒ Δ,¬ϕ,Π

(→⇒) Γ,Δ⇒ ϕ,Π ψ,Γ,Δ⇒ Π
Γ, ϕ→ψ,Δ⇒ Π (⇒→) ϕ,Γ⇒ ψ,Δ,Π

Γ⇒ Δ, ϕ→ψ,Π

Notice that Gallier introduces also K-like rules (multiplicative (∧ ⇒), addi-
tive (→⇒)) for better proof search. This solution makes P dispensable even in
case of sequents made of lists, and notice that using such sequents may be conve-
nient for designing fully automated proof search procedures, since one can always
just take the leftmost (or the rightmost) compound formula to deal with in the
root-first procedure.

2.7 Permutability of Rules

As we have observed, in local proofs of cut elimination the possibility of permuting
cut upwards plays an essential role. It is worth noting that all steps made for height
reduction are special cases of a more general result due to Kleene [151] concerning
permutability of rules in SC. Suppose we have a proof of a sequent S with two
occurrences of compound formulae ϕ and ψ. Let ϕ be a principal formula of an
application of r and ψ be a principal formula of an application of r′. If r′ was the
last logical rule applied in the proof of S and r was a rule performed immediately
above, can we show that the order of the application of both rules may be reversed,
i.e. r′ applied immediately above r in a proof of the same sequent? There are 64



110 Chapter 2. Gentzen’s Sequent Calculus LK

cases to consider in four groups: both rules one-premiss (25)3, the first two-premiss,
the second one-premiss (15), reverse order (15), both two-premiss rules (9). Kleene
has shown for a variant of LK with additive (→⇒) that all rules may be permuted
in such a way. We state this result here for LK:

Lemma 2.19. (Permutability). The successive applications of any two logical rules
r and r′ of LK may be permuted if the principal formula of r is not a side formula
of r′.

Proof: Let us consider one example in each group.
(A) If both rules are one-premiss, for example r is (∧ ⇒) (additive) and r′ is

(⇒→) (multiplicative):

ϕ, χ,Γ ⇒ Δ, γ
(∧ ⇒)

ϕ ∧ ψ, χ,Γ ⇒ Δ, γ
(P ⇒)

χ,ϕ ∧ ψ,Γ ⇒ Δ, γ
(⇒→)

ϕ ∧ ψ,Γ ⇒ Δ, χ → γ

is changed into:

ϕ, χ,Γ ⇒ Δ, γ
(P ⇒)

χ,ϕ,Γ ⇒ Δ, γ
(⇒→)

ϕ,Γ ⇒ Δ, χ → γ
(∧ ⇒)

ϕ ∧ ψ,Γ ⇒ Δ, χ → γ

(B) r is two-premiss and r′ one-premiss rule. For example, (⇒ ∧) (additive)
versus (⇒→) (multiplicative):

χ,Γ ⇒ Δ, γ, ϕ χ,Γ ⇒ Δ, γ, ψ
(⇒ ∧)

χ,Γ ⇒ Δ, γ, ϕ ∧ ψ
(⇒ P )

χ,Γ ⇒ Δ, ϕ ∧ ψ, γ
(⇒→)

Γ ⇒ Δ, ϕ ∧ ψ, χ → γ

is changed into:

χ,Γ ⇒ Δ, γ, ϕ
(⇒ P )

χ,Γ ⇒ Δ, ϕ, γ
(⇒→)

Γ ⇒ Δ, ϕ, χ → γ
(⇒ P )

Γ ⇒ Δ, χ → γ, ϕ

χ,Γ ⇒ Δ, γ, ψ
(⇒ P )

χ,Γ ⇒ Δ, ψ, γ
(⇒→)

Γ ⇒ Δ, ψ, χ → γ
(⇒ P )

Γ ⇒ Δ, χ → γ, ψ
(⇒ ∧)

Γ ⇒ Δ, χ → γ, ϕ ∧ ψ
(⇒ P )

Γ ⇒ Δ, ϕ ∧ ψ, χ → γ

(C) r is one-premiss and r′ two-premiss rule. For example, (⇒→) (multi-
plicative) versus (⇒ ∧) (additive):

3We treat both variants of (∧ ⇒) and (⇒ ∨) as one rule.
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χ,Γ ⇒ Δ, ϕ, γ
(⇒→)

Γ ⇒ Δ, ϕ, χ → γ
(⇒ P )

Γ ⇒ Δ, χ → γ, ϕ Γ ⇒ Δ, χ → γ, ψ
(⇒ ∧)

Γ ⇒ Δ, χ → γ, ϕ ∧ ψ

Now because the rule permuted upwards is additive and we must unify all
parameters a transformation is considerably more complicated:

χ,Γ ⇒ Δ, ϕ, γ
(P )(W )

χ,Γ ⇒ Δ, χ → γ, γ, ϕ

Γ ⇒ Δ, χ → γ, ψ
(P ), (W )

χ,Γ ⇒ Δ, χ → γ, γ, ψ
(⇒ ∧)

χ,Γ ⇒ Δ, χ → γ, γ, ϕ ∧ ψ
(⇒ P )

χ,Γ ⇒ Δ, χ → γ, ϕ ∧ ψ, γ
(⇒→)

Γ ⇒ Δ, χ → γ, ϕ ∧ ψ, χ → γ
(⇒ P )

Γ ⇒ Δ, ϕ ∧ ψ, χ → γ, χ → γ
(⇒ C)

Γ ⇒ Δ, ϕ ∧ ψ, χ → γ
(⇒ P )

Γ ⇒ Δ, χ → γ, ϕ ∧ ψ

We have considered the case with one-premiss rule in the left branch but the
case where their location is in the right branch is similar.

(D) Finally consider the case where both rules are two-premiss. For example,
multiplicative (→⇒) versus additive (∨ ⇒):

Γ ⇒ Δ, ϕ ψ, χ,Π ⇒ Σ
(→⇒)

ϕ → ψ, χ,Γ,Π ⇒ Δ,Σ
(P )

χ,ϕ → ψ,Γ,Π ⇒ Δ,Σ γ, ϕ → ψ,Γ,Π ⇒ Δ,Σ
(∨ ⇒)

χ ∨ γ, ϕ → ψ,Γ,Π ⇒ Δ,Σ

is changed into:

Γ ⇒ Δ, ϕ

ψ, χ, Π ⇒ Σ
(P ), (W )

χ, ψ, ϕ → ψ, Γ, Π ⇒ Δ, Σ

γ, ϕ → ψ, Γ, Π ⇒ Δ, Σ
(P ), (W )

γ, ψ, ϕ → ψ, Γ, Π ⇒ Δ, Σ
(∨ ⇒)

χ ∨ γ, ψ, ϕ → ψ, Γ, Π ⇒ Δ, Σ
(P )

ψ, χ ∨ γ, ϕ → ψ, Γ, Π ⇒ Δ, Σ
(→⇒)

ϕ → ψ, Γ, χ ∨ γ, ϕ → ψ, Γ, Π ⇒ Δ, Σ, Δ
(P ), (C)

χ ∨ γ, ϕ → ψ, Γ, Π ⇒ Δ, Σ

In the last group we should notice that if we assume additionally that: (a)
the formula permuted down (i.e. the principal formula of the conclusion of r) is
principal in both premisses of the application of r′ and (b) that permuted rules
are additive (i.e. invertible), then we can get rid of the additional applications of
structural rules (except possibly P). An example:

χ,Γ ⇒ Δ, ϕ χ,Γ ⇒ Δ, ψ
(⇒ ∧)

χ,Γ ⇒ Δ, ϕ ∧ ψ

γ,Γ ⇒ Δ, ϕ γ,Γ ⇒ Δ, ψ
(⇒ ∧)

γ,Γ ⇒ Δ, ϕ ∧ ψ
(∨ ⇒)

χ ∨ γ,Γ ⇒ Δ, ϕ ∧ ψ

is changed into:



112 Chapter 2. Gentzen’s Sequent Calculus LK

χ,Γ ⇒ Δ, ϕ γ,Γ ⇒ Δ, ϕ
(∨ ⇒)

χ ∨ γ,Γ ⇒ Δ, ϕ

χ,Γ ⇒ Δ, ψ γ,Γ ⇒ Δ, ψ
(∨ ⇒)

χ ∨ γ,Γ ⇒ Δ, ψ
(⇒ ∧)

χ ∨ γ,Γ,⇒ Δ, ϕ ∧ ψ

This fact is of importance for Zeman’s [276] proof of admissibility of contrac-
tion which we will consider in the next chapter.

Exercise 2.36. Check at least two examples in each group. Try to select different
combinations of rules (e.g. both additive, both multiplicative) to see what structural
rules are needed in the transformation.

Remark 2.5. It should be noted that problems of permutability and of inversion
of rules are closely related, as was already noted by Curry in connection with his
proof of invertibility based on global transformation (see the proof of theorem 2.3).
Let us consider a proof ending with the application of r′ but with r introducing ϕ
as a principal formula immediately above. If ϕ is parametric in this application of
r′ and we apply Curry’s transformation to ϕ (i.e. we replace it in the proof with
its side(s) formula(e)), then the last sequent of the transformed proof contains its
side(s) formula(e) and we can apply r below r′.

In this sense we may roughly say that invertibility implies permutability. It
also provides a better explanation for the fact noted in section 1.6 that one can
explain confluency of rules either in terms of invertibility or in terms of permutabil-
ity.



Chapter 3

Purely Logical Sequent Calculus

In this chapter we consider a system very similar to K but with one significant
difference: sequents are ordered pairs of finite multisets. We briefly discuss why
such a choice seems to be a better solution than using lists or sets as building
blocks. A specific calculus, commonly called G3, is apparently identical with K
but we need to provide for it some auxiliary results like e.g. admissibility of con-
traction rules. This will be done in section 3.2. In section 3.3, we focus on four
different strategies of proving admissibility of cut either in multiplicative or in
additive version. The most popular approach is due to Dragalin and it is essen-
tially the proof we provided for K in chapter 1. However, the fact that sequents
are built from multisets introduces some additional complications which require
applications of contraction. Smullyan-style proof is similar but devised for multi-
plicative cut. It was originally presented for tableau system but we provide here
its modification for G3. Both proofs work in general for SC with invertible rules
but invertibility itself is not used in proofs. Schütte provided a different kind of
proof which explicitly applies invertibility of rules. We present two variants of his
proof for multiplicative and additive version of cut. Section 3.4 is devoted to ad-
ditional topics connected with different ways of interpretation of sequents. As a
by-product of these considerations we will provide a Post-style completeness proof
via conjunctive normal forms in the setting of G3. In section 3.5 a general survey
of different types of SC, including nonstandard and generalised systems, will be
sketched. Some of them will be applied in the remaining chapters. Summary of
kinds of rules and their properties is provided for better characterisation of stan-
dard SCs. In the next section we provide three different proofs of the interpolation
theorem, due to Maehara, Smullyan, Wintein and Muskens. All are constructive
and serve as another application of the cut-elimination theorem. In the last section
we consider some other rule, called tautology elimination rule, which is equivalent
to cut. We will prove admissibility of this rule for G3 as an alternative way of prov-
ing admissibility of cut for SC with invertible rules. Finally, a proof of a refined
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version of the strong completeness theorem for nonstandard SC with elimination
rules is provided. This result, due to Přenosil, shows that all structural rules may be
restricted to atomic instances and in particular, cuts are only on atoms occurring
in the initial nonaxiomatic sequents. The resulting proofs resemble normal natural
deduction proofs and additionally give us interpolants.

3.1 The System G3

The reader certainly noticed that although sequents of LK were defined as pairs of
finite lists we quite often disregard the order of formulae in sequents. In this chapter
we officially use sequents built from multisets. However, the special calculus dealt
with here is not just like LK with permutation rules deleted. In this chapter we will
be concerned with one of the most popular versions of SC commonly called G31.
It consists of axioms of the form ϕ,Γ ⇒ Δ, ϕ with ϕ ∈ PROP and the following
rules:

(¬⇒) Γ⇒ Δ, ϕ
¬ϕ,Γ⇒ Δ (⇒¬) ϕ,Γ⇒ Δ

Γ⇒ Δ,¬ϕ

(∧⇒) ϕ,ψ,Γ⇒ Δ
ϕ∧ψ,Γ⇒ Δ (⇒∧) Γ⇒ Δ, ϕ Γ⇒ Δ, ψ

Γ⇒ Δ, ϕ∧ψ

(⇒∨) Γ⇒ Δ, ϕ, ψ
Γ⇒ Δ, ϕ∨ψ

(∨⇒) ϕ,Γ⇒ Δ ψ,Γ⇒ Δ
ϕ∨ψ,Γ⇒ Δ

(⇒→) ϕ,Γ⇒ Δ, ψ
Γ⇒ Δ, ϕ→ψ

(→⇒) Γ⇒ Δ, ϕ ψ,Γ⇒ Δ
ϕ→ψ,Γ⇒ Δ

The notions of a proof, derivation, principal, side formula, etc. remain the
same as in the preceding chapters. It is obvious that we defined G3 in exactly
the same way as K (or rather K’ from section 1.5). The only difference is that
sequents consist of finite multisets and we restrict axioms to atomic, i.e. an active
formula on both sides of an axiomatic sequent is a propositional symbol. The last
restriction is inessential—recall lemma 1.8 for K; its proof is the same for G3. It
follows also that G3 is an adequate formalisation of CPL; the reader may apply
some strategies from chapter 1 and reprove it for G3 to see that application of
multisets does not call for any substantial changes.

However, the lack of any structural rules may seem surprising. Permutation is
dispensable and weakening as well, due to generalised form of axioms and context
independence of rules. But we can expect that, due to the replacement of sets with
multisets, at least one structural rule will be necessary—contraction. However, it
is not so—as we will see in the next section one may prove that contraction is
admissible in G3. In fact, one may wonder if we really need contraction in proofs
of sequents in G3. In chapter 2 we have shown that contraction is required in

1The calculus was essentially introduced by Ketonen and in the exact form and under this
name was introduced by Troelstra and Schwichtenberg [264].
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(cut-free) LK proofs because of using context-free two-premiss rule for → and one-
premiss rules for ∧ and ∨ with one-side formula. But K and G3 avoid the problem
by using only context-sharing two-premiss rules and one-premiss rules with both
side formulae. In fact, we do not need contraction for constructing proofs in G3 but
it does not mean that is not needed at all. As we will see contraction is necessary
for proving metatheorems about G3. The problem arises in particular with proving
admissibility of cut for G3 and we will see that admissibility of this rule is essential,
at least for multiplicative cut. Due to the lack of primitive structural rules G3 is
called purely logical calculus (only logical rules are primitive).

One may ask why we prefer to use multisets as the basic data structures
instead of sets. As far as we are concerned with classical logic the problem may
seem apparent. Many authors (for example, Avron, Smullyan, Fitting) prefer sets,
and some even argue (e.g. Bimbo [31]) that the use of multisets is not necessary.
On the other hand, authors like Negri and von Plato [185, 186] provide strong
arguments for using multisets instead of sets, mainly on formal grounds. For ex-
ample, in rules like (∧ ⇒) or (⇒ ∨), we do not have a formal way for representing
a suitable inference if both side formulae are identical. Such a possibility is usually
treated (also in chapter 1) implicitly as an obvious case but if considered formally
it leads to further complications in the definition of a calculus (see [185]). In fact,
it was noticed very early by Curry [55] that formally adequate application of sets
must complicate rules. However, the most important rationale for using multisets
is connected with SC formalizations of many non-classical logics which will be
discussed in chapter 5. It appeared that in the framework of SC, for dealing with
several logics weaker than CPL, like relevant or many-valued logics, the applica-
tion of more refined data structures (at least multisets) in sequents is sometimes
necessary. As we will see in chapter 5, for some of these logics we may obtain
a satisfactory formalisation by deleting or modifying structural rules. This phe-
nomenon led in consequence to the introduction of the term “substructural logics”
to cover some of the families of non-classical logics 2.

3.2 Preliminary Results

We describe here some results of auxiliary character which are needed for proofs
of cut admissibility presented in the next section. We start with an almost trivial
result:

Lemma 3.1 (Height-preserving admissibility of W for G3). If �n Γ ⇒ Δ, then
�n Γ′ ⇒ Δ′ for Γ ⊆ Γ′,Δ ⊆ Δ′

Proof: By induction on the height exactly as for K (lemma 1.4 in subsection
1.4.2). �

2Interestingly enough Negri and von Plato who strongly insist on using multisets are rather
not convinced with this argument since some of these logics may be formalised with structural
rules as well but on the ground of generalised forms of SC.
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It is obvious that this result holds also for G3 with axioms not restricted to
atomic active formula. What is more interesting is that we can prove admissibility
of weakening for even more strongly restricted SC with axioms strictly atomic, i.e.
having all formulae atomic: active and parametric. However, a proof is more com-
plicated since we must make an additional induction on the complexity of added
formulae (see Ershow and Palyutin [74]). Moreover, it is not height-preserving
admissibility.

Exercise 3.1. Prove admissibility of W in G3 with strictly atomic axioms.

There is also no problem with the following result:

Lemma 3.2. � ϕ,Γ ⇒ Δ, ϕ, for any ϕ.

Proof: The same as a proof of lemma 1.8 in section 1.5. �

3.2.1 Invertibility Again

We know (see subsection 1.4.3) that all rules of K are (semantically) invertible
and this result applies to G3 as well. Also, in section 2.3 we have shown that it is
possible to prove invertibility of rules syntactically in several ways:

1. by cut applications—the simplest method due to Ketonen [148];

2. by tracking the proof of the conclusion (Curry [56], Negri and von Plato
[185]);

3. by induction on the height (Schütte [232], Pogorzelski [199]).

The last method in case of G3 may be strengthened in the sense that for
inversions of all rules we may prove its height-preserving invertibility. We will
recall here this result after Dragalin [64]:

Lemma 3.3 (Height-preserving invertibility). For any instance of the application
of any logical rule, if the conclusion has a proof of height n, then premisses have
proofs of height ≤ n.

Proof: by induction on the height. We will illustrate the proof with the case
of (∧ ⇒). The basis is provable because axioms are generalised and atomic—let
ϕ ∧ ψ,Γ, p ⇒ p,Δ be an axiom, then ϕ,ψ,Γ, p ⇒ p,Δ is also an axiom.

In induction step let D �n ϕ ∧ ψ,Γ ⇒ Δ. There are two cases:

a. ϕ ∧ ψ is principal

b. ϕ ∧ ψ is not principal.

The case (a) is trivial; just delete the last sequent to get D �n−1 ϕ,ψ,Γ ⇒ Δ.
In case (b) we must consider the last rule application. Due to context independence
of all rules we may demonstrate it schematically. E.g. the last rule is (∨ ⇒) and
we have:
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γ, ϕ ∧ ψ,Γ ⇒ Δ δ, ϕ ∧ ψ,Γ ⇒ Δ
γ ∨ δ, ϕ ∧ ψ,Γ ⇒ Δ

By the induction hypothesis both γ, ϕ, ψ,Γ ⇒ Δ and δ, ϕ, ψ,Γ ⇒ Δ are
provable with lower height. By the same rule we infer γ ∨ δ, ϕ, ψ,Γ ⇒ Δ.

�

Exercise 3.2. Prove the remaining subcases of the case b.

It is instructive to compare this proof with the proof of theorem 2.4 from
section 2.3. Despite the similarities in case of G3 we can both simplify a proof and
obtain a stronger result. The reader should consider why this is possible for G3
but not for LK.

3.2.2 Admissibility of Contraction

All the results stated so far were possible to obtain for K and invertibility also
for LK although in a slightly restricted form. Now we focus on the result which
does not hold for LK (and for K is implicit)—admissibility of contraction. Again,
the most popular form of the proof of this result is due to Dragalin [64] (see also
Schwichtenberg and Troelstra [264], Negri and von Plato [185]) although sometimes
the name Curry’s lemma is used. Below we explain why we do not follow this
custom here.

Lemma 3.4 (Height-preserving admissibility of C for G3). If �n Γ, ϕ, ϕ ⇒ Δ, then
�n Γ, ϕ ⇒ Δ and if �n Γ ⇒ Δ, ϕ, ϕ, then �n Γ ⇒ Δ, ϕ

Proof: By induction on the height of proof of ϕ,ϕ,Γ ⇒ Δ (for Γ ⇒ Δ, ϕ, ϕ
analogous). In the basis: �0 ϕ,ϕ,Γ ⇒ Δ, hence it is an axiom and ϕ,Γ ⇒ Δ is
also an axiom.

The induction hypothesis claims that the lemma holds for any sequent with the
proof having the height < n. We must show that it holds if the proof has the
height n. There are two cases:

a. ϕ is not principal

b. ϕ is principal

If ϕ is not principal, then ϕ,ϕ,Γ ⇒ Δ is derived from ϕ,ϕ,Γ′ ⇒ Δ′ by one-
premiss rule or additionally from ϕ,ϕ,Γ′′ ⇒ Δ′′ by two-premiss rule. In each case
proofs of premisses are covered by the induction hypothesis so ϕ,Γ′ ⇒ Δ′ (and
ϕ,Γ′′ ⇒ Δ′′) has a proof of the height < n, hence by the application of the same
rule we get a proof of ϕ,Γ ⇒ Δ with the height at most n. Note that this step
holds by context independence of rules.

If ϕ is principal, then we must consider all cases of ϕ.
Let ϕ := ψ ∧ χ, then our sequent is of the form ψ ∧ χ, ψ ∧ χ,Γ ⇒ Δ and

the premiss of the form ψ, χ, ψ ∧ χ,Γ ⇒ Δ has a proof of the height n − 1. By
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height-preserving invertibility lemma ψ, χ, ψ, χ,Γ ⇒ Δ has a proof of the height
not exceeding n − 1. By the induction hypothesis applied twice we get a proof of
ψ, χ,Γ ⇒ Δ of the height not greater than n − 1, so by (∧ ⇒) we get a proof of
ψ ∧ χ,Γ ⇒ Δ of the height at most n. �
Exercise 3.3. Complete the proof for other cases of principal ϕ and prove the lemma
for succedent contraction. Note that in all cases of ϕ principal we need to apply
the height-preserving invertibility lemma.

A careful analysis of this proof shows that we can extract from it some weaker
result which does not require appealing to the invertibility lemma. It is:

Lemma 3.5 (Height-preserving admissibility of atomic C for G3). If �n Γ, ϕ, ϕ ⇒
Δ, then �n Γ, ϕ ⇒ Δ and if �n Γ ⇒ Δ, ϕ, ϕ, then �n Γ ⇒ Δ, ϕ, for ϕ atomic.

Appealing to height-preserving invertibility during the proof of contraction
admissibility is also not required if we use a variant of G3 with rules modified in
a way described in subsection 1.7.2. (a system KK). We mean rules involving so
called Kleene’s trick, i.e. having a copy of the principal formula in premisses (see
e.g. Pfenning [196]). Nowadays such rules are often called contraction-absorbing
for this reason. In fact, such a result was indeed first proved by Curry [55] but
it should be noted that he did not appeal to invertibility and did not explicitly
mention height-preservation. Curry noted that such a result holds when standard
rules are replaced with contraction-absorbing rules. Later, in [56] he has taken
into account also invertibility of ordinary rules. On the other hand, Dragalin first
proved it for G3 on the basis of height-preserving invertibility.

In fact, height-preserving admissibility of contraction is indeed too much for
most of our purposes; simple admissibility is enough and one may prove it by
using Zeman’s method. Originally Zeman [276] proved the eliminability of C as a
prerequisite for decidability proof for a version of LK but with all rules invertible.
Invertibility of rules as such is not required in the proof but anyway his proof
works for SC with invertible rules only and atomic axioms, since it is not possible
to eliminate contraction in the presence of noninvertible rules (see examples of
proofs for Peirce law and excluded middle in section 2.1). A detailed exposition of
such proof but for labelled SC may be also found in Vigano [274]. Below we apply
Zeman’s proof for showing admissibility of C in G3.

The proof goes by induction on the complexity of contracted formula and sub-
sidiary induction on the so called rank of C. The latter notion is defined similarly
as the rank of cut so we informally describe it as the highest (different branches
may be taken into account) number of sequents above the root which contain at
least one occurrence of a formula in question.

Lemma 3.6 (Admissibility of C). If � Γ, ϕ, ϕ ⇒ Δ, then � Γ, ϕ ⇒ Δ and if � Γ ⇒
Δ, ϕ, ϕ, then � Γ ⇒ Δ, ϕ

Proof: In the basis we consider atomic ϕ. Even if it is an active formula in
axiomatic sequents only one occurrence is necessary so we can delete the second
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occurrence in all sequents without destroying a proof. Note that this is possible
because all two-premiss rules are additive. If we have at least one multiplicative
rule we could obtain two occurrences of ϕ in the conclusion of such rule application
coming from different premisses and deletion of one of them could destroy a proof.

In the induction step we consider all compound formulae and as the induction
hypothesis we assume that the claim holds for any shorter formulae. First of all
notice that if at least one occurrence of ϕ was not introduced by logical rule it must
be present in all axiomatic sequents as a parameter (since only atomic formulae
may be active in axioms) and it may be just deleted from the whole proof. So we
assume that both occurrences were introduced by (the same) logical rule.

First we assume that one occurrence of ϕ was introduced by the last applied
rule and perform an induction on the rank. Note that under this additional as-
sumption the rank is just a distance between a sequent with two occurrences of
ϕ and the introduction of the first one. In the basis the rank is 2. We illustrate a
proof with two cases: of ϕ ∨ ψ in the succedent and ϕ → ψ in the antecedent.

In the first case we have:

Γ ⇒ Δ, ϕ, ψ, ϕ, ψ
(⇒ ∨)

Γ ⇒ Δ, ϕ, ψ, ϕ ∨ ψ
(⇒ ∨)

Γ ⇒ Δ, ϕ ∨ ψ,ϕ ∨ ψ

We apply the induction hypothesis twice and obtain:

Γ ⇒ Δ, ϕ, ψ
(⇒ ∨)

Γ ⇒ Δ, ϕ ∨ ψ

In the second case we have:

Γ ⇒ Δ, ϕ, ϕ ψ,Γ ⇒ Δ, ϕ
(→⇒)

ϕ → ψ,Γ ⇒ Δ, ϕ

ψ,Γ ⇒ Δ, ϕ ψ, ψ,Γ ⇒ Δ
(→⇒)

ϕ → ψ,ψ,Γ ⇒ Δ
(→⇒)

ϕ → ψ,ϕ → ψ,Γ ⇒ Δ

again we apply the induction hypothesis twice to the leftmost and to the
rightmost premiss and obtain:

Γ ⇒ Δ, ϕ ψ,Γ ⇒ Δ
(→⇒)

ϕ → ψ,Γ ⇒ Δ

In the induction step we consider rank = k + 1 and assume that the claim
holds for rank = k. Since rank is higher than 2 at least one logical rule r′ is applied
below the application of a rule r introducing ϕ. Moreover ϕ is a parameter in the
application of r′ since it is parametric in all sequents below. Hence we can apply
the permutability lemma and the claim holds by the induction hypothesis. Note
that in case of r′ being two-premiss rule due to the fact that all such rules are
additive our ϕ is present in both premisses. Moreover, it must be introduced by r
immediately above r′ in both premisses of r′ due to our assumption that r′ is the
next rule. In such a situation we have a simplified proof of permutability which
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was illustrated in the comment to the proof of the permutability lemma in section
2.7.

Thus we have proved that the claim holds if the second occurrence of ϕ was
introduced as the last step in the proof of Γ ⇒ Δ, ϕ, ϕ (or ϕ,ϕ,Γ ⇒ Δ). Now
assume that it is not, so above we have some (at least one) sequent(s) on different
branches of the shape Γ′ ⇒ Δ′, ϕ, ϕ (or ϕ,ϕ,Γ′ ⇒ Δ′) where one occurrence of
ϕ was just introduced. So our previous consideration applies and we obtain Γ′ ⇒
Δ′, ϕ (or ϕ,Γ′ ⇒ Δ′) in all cases. Now proofs in which some parametric formula
occurs twice may be replaced with proofs where there is only one occurrence of it
due to context independence. So we may safely delete the second occurrence of ϕ
in all sequents below Γ′ ⇒ Δ′, ϕ (or ϕ,Γ′ ⇒ Δ′) and obtain the proof of Γ ⇒ Δ, ϕ
(or ϕ,Γ ⇒ Δ). �

Exercise 3.4. Complete the proof for other cases.
Prove the permutability lemma for G3.

Such a proof is sufficient—as we will see—as the basis for some cut admis-
sibility proofs. Note again its essential limitations, namely that this proof does
not work for SC with noninvertible rules. We have noticed that the basis cannot
be proved in the presence of multiplicative two-premiss rules. But additive one-
premiss rule also does not admit such a proof in the induction step. Consider again
the case of ϕ ∨ ψ in the succedent but this time obtained by additive (⇒ ∨). It
may be that each occurrence of ϕ ∨ ψ was deduced from a different side formula
and we have:

Γ ⇒ Δ, ϕ, ψ,
(⇒ ∨)

Γ ⇒ Δ, ϕ, ϕ ∨ ψ
(⇒ ∨)

Γ ⇒ Δ, ϕ ∨ ψ,ϕ ∨ ψ

In such a situation we cannot apply the induction hypothesis and the proof
breaks down.

On the other hand, it should be noted that the restriction to atomic axioms
is not necessary at the cost of little complication in the proof. Notice that the only
point where the assumption concerning atomic axioms was needed is at the begin-
ning of the induction step, on the basis of the induction on rank. In brief, if both
occurrences of (compound) contracted formula are not introduced by respective
logical rule, then one must be a parameter and may be safely deleted. If we admit
nonatomic axioms it is possible that one occurrence is introduced by logical rule
but the other is active in axiom. But it does not make any problems. Consider
again the first example but now in this shape, so we have:

ϕ ∨ ψ,Γ ⇒ Δ, ϕ, ψ, ϕ ∨ ψ
(⇒ ∨)

ϕ ∨ ψ,Γ ⇒ Δ, ϕ ∨ ψ,ϕ ∨ ψ

and instead we can simply start with an axiom ϕ ∨ ψ,Γ ⇒ Δ, ϕ ∨ ψ. Other
cases are eliminated similarly.
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Zeman’s original proof is a proof of elimination which leads to some small
differences with the proof displayed above. He requires that:

1. C is the last applied rule;

2. a proof contains no other application of C;

3. one of the occurrences of the contracted formula is introduced immediately
above C.

The first two restrictions play the same role as in Gentzen’s proof of cut
elimination; we can always apply his top-down method of elimination of more
applications of C in any proof or just treat our proof as the proof of the basis of
induction on the number of applications of C in arbitrary proof. The third is added
also for simplifying a proof and is easy to explain as well. Proofs in which some
parametric formula occurs twice for several steps and then it is contracted may
be replaced with proofs where contraction is applied immediately after the second
occurrence was introduced. It is justified because correctness of all inferences is
preserved if only one occurrence of this parameter is present instead of two.

3.3 Admissibility of Cut

Now we focus on proofs of admissibility of cut for G3. All of them are local. The
most popular one is due to Dragalin [64] (see excellent presentations in Troel-
stra and Schwichtenberg [264] or Negri and von Plato [185]) and it is formulated
exactly for G3 with M-cut. Some other proofs which will be presented in this
section are due to Schütte [232] and Smullyan [245]. They may be classified as
of essentially similar character although in both cases they were formulated for
systems of quite a different character. Schütte proved the result for a system with
one-sided sequents which are finite sets of formulae in the negation normal form,
moreover he applied explicitly the notion of antecedent and succedent occurrence
of a formula. Smullyan’s formulation is for Hintikka’s style tableau system also op-
erating on finite sets of formulae. This way in both cases the problems with C are
avoided from the start. We will show in what way their strategies may be applied
to G3 at the price of departure from many details of a peculiar character. There
are two significant differences between presented proofs: a) Dragalin and Schütte
prove the admissibility of M-cut, whereas Smullyan’s proof is for A-cut. b) Dra-
galin and Smullyan do not apply explicitly the invertibility of rules but refer to
admissibility of C instead, whereas Schütte’s proof explicitly applies invertibility
of rules. These seemingly small differences lead to further changes in the list of
prerequisites but also in the proof technique. We additionally examine the proof
which combines some features of Schütte’s and Smullyan’s approach by explicit
application of invertibility but for A-cut.

As for similarities we should note that all these proofs are local, all apply
directly to cut and proceed by double induction on the complexity of cut-formula
(main) and the cut-height (subsidiary).
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3.3.1 Dragalin’s Proof

This is a very elegant proof and in some sense the most similar to Gentzen’s
original proof but much simpler in details due to the fact that structural rules,
mix, and rank are avoided. In particular, the induction on the cut-height does not
require distinct transformations according to the status of cut-formula (principal,
side, etc.). This proof in fact was provided for K in section 1.8 so we do not need
to record it here again in full but only consider what must be changed due to the
fact that G3 uses sequents built from multisets.

Let us recall that it is handy to divide a proof into three parts:

1. at least one premiss is axiomatic;

2. the cut-formula is principal in both premisses;

3. the cut-formula is not principal in at least one premiss.

One may go even further and make an abstraction of these parts as partial
results which together yield the cut admissibility theorem (similarly as in Curry’s
proof). This will be useful in the next subsections since we organise all proofs in
this way for easier comparison. So let us call them, respectively:

1. The trivial cuts elimination lemma—a result to the effect that if one premiss
of M-cut is axiomatic, then it is eliminable.

2. The principal cut reduction lemma—a result (corresponding to Curry’s stage
3 reduction lemma) to the effect that M-cut on compound formula may be
always replaced with M-cut(s) on their subformulae.

3. The height reduction lemma—a result stating that if cut-formula is not prin-
cipal in one premiss of M-cut, then we may lift up an application of M-cut
on this premiss.

As for 1 and 3, there are no differences between a proof for K and for G3 so
one may repeat for G3 the proof presented in section 1.8. However in case of 2,
there is a difference which requires the application of contraction. Let us illustrate
the problem:

Γ ⇒ Δ, ϕ, ψ
(⇒ ∨)

Γ ⇒ Δ, ϕ ∨ ψ

ϕ,Π ⇒ Σ ψ,Π ⇒ Σ
(∨ ⇒)

ϕ ∨ ψ,Π ⇒ Σ
(Cut)

Γ,Π ⇒ Δ,Σ

is replaced with:

Γ ⇒ Δ, ϕ, ψ ϕ,Π ⇒ Σ
(Cut)

Γ,Π ⇒ Δ,Σ, ψ ψ,Π ⇒ Σ
(Cut)

Γ,Π,Π ⇒ Δ,Σ,Σ
(C)

Γ,Π ⇒ Δ,Σ
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Note that not only two cuts are introduced (both eliminable by the induction
hypothesis) but we must additionally apply contraction to the last sequent to get
a correct result.

So in order to apply the strategy of Dragalin in proving cut admissibility for
G3 we must have contraction at our disposal and this fact requires some other
preliminary results. We may list necessary prerequisites:

1. The calculus requires axioms restricted to atomic active formulae. Clearly
we must also show that this restriction does not preclude a proof of such sequents
for any compound ϕ (see lemma 1.8).

2. We must show height-preserving admissibility of W (necessary for trivial
cuts elimination)

3. We must show also height-preserving invertibility of logical rules (presup-
poses 1).

4. Finally we must show height-preserving admissibility of C (presupposes 3,
hence also 1).

This is how it is usually presented. The striking simplicity of proof is strongly
dependent on the rich collection of auxiliary results. On the other hand, for K
we need only point 2, i.e. admissibility of W. Is it possible to reduce the list of
preliminary results in case of G3?

Point 2 is necessary for proving part 1 (i.e. at least one premiss of cut ax-
iomatic) for all proofs of M-cut admissibility in K or G3. It is not necessary to
have W height-preserving admissible but it does not matter. As for the rest, we
have seen that point 4 is essential for proving part 2, however one may drop point
3 if point 4 is obtained by Zeman’s proof of the weaker result (just admissibil-
ity of C). It is possible because: (a) invertibility of rules is not directly applied
in Dragalin’s proof; (b) The proof uses admissibility of C but not necessarily in
height-preserving version. (c) Zeman’s proof, although it also holds only for the
system with atomic axioms and invertible rules, does not apply invertibility as
well and provides only a sheer admissibility of C. So we can resign from proving
invertibility of rules for a system if our purpose is only to show M-cut admissibil-
ity; points 1, 2 and 4 in weaker version (just admissibility of C) are enough for
that. In fact, for Zeman’s proof even 1 is not needed, as we noticed in the previous
section. So only 2 and 4 (in the weakened version, not requiring h-p admissibility)
are necessary as preliminaries for this proof.

One should also notice that it is possible to avoid application of contraction if
instead of using the ordinary version of M-cut we take the version due to Herbelin
[110] and mentioned in subsection 2.1.1. For G3 with such ‘intelligent’ form of cut
we do not need to prove admissibility of C and, in consequence, also invertibility
of rules. Restriction to atomic axioms is also not necessary and the proof of the
admissibility of cut goes simply like for K.
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3.3.2 Smullyan’s Proof

In case of Dragalin’s proof we put stress on the fact that all three parts (or cor-
responding lemmata) hold for M-cut. Is it necessary? Are there any differences
if we prove admissibility of A-cut instead? Here we focus on this problem while
presenting a proof of A-cut admissibility due to Smullyan [245]. We have already
mentioned that Smullyan’s original proof has apparently many differences with
other proofs. In particular, it was provided for tableau system with A-cut and with
axioms not restricted to atomic. C is dispensable because the system is defined
for sets, but height-preserving admissibility of W is essential. The original proof
of Smullyan is in fact organised in the same way so, after reformulation for G3,
we may find it essentially similar to Dragalin’s proof. The only serious difference
results from using A-cut. This time both reduction steps are strongly dependent on
having W as height-preserving admissible. Moreover, introducing multisets calls
for C and atomic axioms which were dispensable in Smullyan’s system operating
on sets. Summing up the prerequisites for the proof include:

1. atomic generalised axioms;

2. height-preserving admissibility of W (required for the reduction of height and
of complexity, but not for axiom case);

3. admissibility (not necessarily height-preserving) of C (required for the case
of cut on axiom and of height reduction).

So again the invertibility of rules is not required in the proof, if point 3 is
obtained by Zeman’s proof. As we noted in this case axioms also do not need to
be atomic since (improved) Zeman’s proof does not require this condition. Sum-
ming up, necessary prerequisites are exactly the same as for Dragalin’s proof. But
notice that W must be h-p admissible, not just admissible (which is sufficient for
Dragalin’s proof).

In part 1, we again have two subcases. Let the left premiss of cut be axiomatic,
if ϕ is not active in it, then Γ ⇒ Δ is an axiom and we are done. Otherwise
Γ = ϕ,Γ′ and we obtain Γ ⇒ Δ from the right premiss by contraction on ϕ.
Note that in contrast to elimination of M-cut, we do not need weakening here but
contraction.

Part 2 of the proof is straightforward although the reduction of complexity
in the presence of A-cut requires admissibility of W for unification of premisses.
Here is an example:

Γ ⇒ Δ, ϕ, ψ
(⇒ ∨)

Γ ⇒ Δ, ϕ ∨ ψ

ϕ,Γ ⇒ Δ ψ,Γ ⇒ Δ
(∨ ⇒)

ϕ ∨ ψ,Γ ⇒ Δ
(Cut)

Γ ⇒ Δ

is replaced with:
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Γ ⇒ Δ, ϕ, ψ

ϕ,Γ ⇒ Δ
(W )

ϕ,Γ ⇒ Δ, ψ
(Cut)

Γ ⇒ Δ, ψ ψ,Γ ⇒ Δ
(Cut)

Γ ⇒ Δ
The most complicated part of Smullyan’s proof is part 3. Let us consider an

example:

ϕ ∨ ψ,Γ ⇒ Δ, χ

χ, ϕ,Γ ⇒ Δ χ, ψ,Γ ⇒ Δ
(∨ ⇒)

χ,ϕ ∨ ψ,Γ ⇒ Δ
(Cut)

ϕ ∨ ψ,Γ ⇒ Δ

it is replaced with:

ϕ ∨ ψ, Γ ⇒ Δ, χ
(W )

ϕ, ϕ ∨ ψ, Γ ⇒ Δ, χ

χ, ϕ, Γ ⇒ Δ

χ, ϕ, ϕ ∨ ψ, Γ ⇒ Δ
(Cut)

ϕ, ϕ ∨ ψ, Γ ⇒ Δ

ϕ ∨ ψ, Γ ⇒ Δ, χ

ψ, ϕ ∨ ψ, Γ ⇒ Δ, χ

χ, ψ, Γ ⇒ Δ

χ, ψ, ϕ ∨ ψ, Γ ⇒ Δ

ψ, ϕ ∨ ψ, Γ ⇒ Δ
(∨ ⇒)

ϕ ∨ ψ, ϕ ∨ ψ, Γ ⇒ Δ
(C)

ϕ ∨ ψ, Γ ⇒ Δ

Both cuts are of lower height hence eliminable. Note however that in this part
we need W not just admissible, but height-preserving admissible for induction to
work.

Exercise 3.5. Provide proofs of the remaining cases in all three parts of the proof.

Note that C is derivable by A-cut but in general it is not sufficient for avoiding
a proof of C admissibility; without it we have only a system with noneliminable
trivial cuts of the form:

ϕ,Γ ⇒ Δ, ϕ ϕ, ϕ,Γ ⇒ Δ
(Cut)

ϕ,Γ ⇒ Δ

Our exposition of Smullyan’s proof differs significantly from his original pre-
sentation since we tried to focus on the essential points of his strategy. One may
find in Bimbo [31] a thorough analysis so we finish with only brief comments con-
cerning one aspect of his original proof. In particular, Smullyan applies SC similar
to K, i.e. he uses sequents built from sets so he did not bother about admissibility
of contraction. Accordingly he did not provide any proof of invertibility of rules
but instead he proves the following lemma:

Lemma 3.7. For any i, j < k,

1. if � Γ ⇒¬ϕ
k Δ,¬ϕ, then � Γ, ϕ ⇒i Δ,¬ϕ

2. if � Γ,¬ϕ ⇒¬ϕ
k Δ, then � Γ,¬ϕ ⇒i Δ, ϕ

3. if � Γ ⇒ϕ∧ψ
k Δ, ϕ ∧ ψ, then � Γ ⇒i Δ, ϕ, ϕ ∧ ψ and � Γ ⇒j Δ, ψ, ϕ ∧ ψ

4. if � Γ, ϕ ∧ ψ ⇒ϕ∧ψ
k Δ, then � Γ, ϕ, ψ, ϕ ∧ ψ ⇒i Δ
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5. if � Γ ⇒ϕ∨ψ
k Δ, ϕ ∨ ψ, the � Γ ⇒i Δ, ϕ, ψ, ϕ ∨ ψ

6. if � Γ, ϕ ∨ ψ ⇒ϕ∨ψ
k Δ, then � Γ, ϕ, ϕ ∨ ψ ⇒i Δ and � Γ, ψ, ϕ ∨ ψ ⇒j Δ

7. if � Γ ⇒ϕ→ψ
k Δ, ϕ → ψ, then � Γ, ϕ ⇒i Δ, ψ, ϕ → ψ

8. if � Γ, ϕ → ψ ⇒ϕ→ψ
k Δ, then � Γ, ψ, ϕ → ψ ⇒i Δ and � Γ, ϕ → ψ ⇒j Δ, ϕ

The notation � Γ ⇒ϕ
k Δ means that a proof of Γ ⇒ Δ has height k and

ϕ ∈ Γ ∪ Δ is a principal formula of this sequent. It is obvious that this lemma
provides a weaker version of the inversion lemma, sufficient for proving the main
theorem.

Exercise 3.6. Prove this lemma.

3.3.3 Schütte’s Proof

One of the most interesting proofs of admissibility of cut is due to Schütte [232].
Although developed for a version of SC rather different from G3 (see subsection
3.4.2 and 3.5.1) it may be applied for it without many changes. It has two special
features:

a) It is heavily based on the application of invertibility of rules.
b) Induction on the height is performed for only one premiss, and only on the basis
of induction on the complexity.

Exactly because of the explicit application of the invertibility lemma we do not
need to perform induction on the height twice. The general schema will show the
structure of proof better:

I. Induction on the complexity of cut-formula
1.1. Basis: cut on atomic cut-formulae is admissible

II. Induction on the height of the left (or right) premiss of cut
2.1. Basis: cut with the left premiss of height 0 is admissible
2.2. Inductive step: if cut with the left height < n is admissible,
then with the height n is admissible too.
Conclusion of 2.1., 2.2: cut on atomic cut-formulae is admissible

1.2. Inductive step: if cut on the cut-formula of the complexity < n is
admissible, then on n is admissible.
Conclusion of 1.1., 1.2: cut on every formula is admissible.

The proof of part 1 and 3 (axiom case and reduction of height) is exactly as
in Dragalin’s proof. The fact that we are reducing the height only in case of cut-
formula atomic does not make any changes in the proof. On the other hand, a proof
of part 2 (reduction of complexity) is totally different since we do not require that
the cut-formula is principal in both (or even in one) premiss. We are just applying
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the invertibility lemma3. In fact, using the name principal cut reduction lemma
for this part of Schütte’s proof is inadequate. It is rather the complexity reduction
lemma assuming invertibility of rules instead of the principality of cut-formulae.
Here is an example:

Γ ⇒ Δ, ϕ ∨ ψ ϕ ∨ ψ,Π ⇒ Σ
(Cut)

Γ,Π ⇒ Δ,Σ
is replaced with:

Γ ⇒ Δ, ϕ ∨ ψ
Inv Γ ⇒ Δ, ϕ, ψ

ϕ ∨ ψ,Π ⇒ Σ
Inv

ϕ,Π ⇒ Σ
(Cut)

Γ,Π ⇒ Δ,Σ, ψ

ϕ ∨ ψ,Π ⇒ Σ
Inv

ψ,Π ⇒ Σ
(Cut)

Γ,Π,Π ⇒ Δ,Σ,Σ
(C)

Γ,Π ⇒ Δ,Σ
where Inv denotes an application of the invertibility lemma.
Now, we do not require that the cut-formula is principal, only compound.

Note that also C is needed.

Exercise 3.7. Provide transformations for other compound cut-formulae.

For easier comparison we organised a presentation of Schütte’s proof in the
same three parts as for Dragalin’s and Smulyann’s proof but it may be misleading.
In fact, Schütte’s proof is naturally composed of two parts which may be called:

1. The atomic cuts admissibility lemma.

2. The complexity reduction lemma.

Note that although we have proved the basis of induction on the complex-
ity (i.e. the atomic cuts admissibility lemma) by induction on the height of one
premiss, it may be avoided. In subsection 2.5.2 such a lemma (lemma 2.16) was
proved for LK by means of a global proof. It may be done also for G3.

Exercise 3.8. Prove the atomic cuts admissibility lemma for G3 using Buss’ strat-
egy.

This shows possible simplification of the organisation of proof: one may do it
by only one induction, on the complexity of cut-formula, if the basis is proven by
Buss’ method.

The analysis of the essential prerequisites for Schütte proof is also instructive—
we need:

1. Admissibility of W (required for axiom case as in Dragalin’s proof).

2. Invertibility of rules (not necessarily height-preserving—applied only for com-
plexity reduction).

3Situation is a bit different in case of logics where full invertibility fails like in modal logic
(see subsection 4.3.2) or first-order logic which will be discussed in the second volume.
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3. C admissibility (not necessarily height-preserving—only for complexity re-
duction and axiom case).

Notice that the inductive step is performed by using invertibility of rules; we
do not need to assume that the cut-formula is principal. Also height-preserving
invertibility is not necessary because we reduce only the complexity of cut formula
in this step. Summing up, this method may be applied also to LK (C primitive
and invertibility proved by Schütte’s method (see also Pogorzelski [199] or Negri
and von Plato [185] for illustrations of how this method works in the presence of
noninvertible rules). This shows that Schütte’s strategy of proof has a rather wide
scope of application.

3.3.4 Schütte-style Proof for Admissibility of A-cut

One may consider also a variant of Schütte’s proof for G3 with A-cut. Part 1 of
the proof goes exactly as in Smullyan’s proof.

On the other hand, in part 2 (reduction of complexity) we do not need C.
For example:

Γ ⇒ Δ, ϕ ∨ ψ ϕ ∨ ψ,Γ ⇒ Δ
(Cut)

Γ ⇒ Δ
is replaced with:

Γ ⇒ Δ, ϕ ∨ ψ
Inv Γ ⇒ Δ, ϕ, ψ

ϕ ∨ ψ,Γ ⇒ Δ
Inv

ϕ,Γ ⇒ Δ
(W )

ϕ,Γ ⇒ Δ, ψ
(Cut)

Γ ⇒ Δ, ψ

ϕ ∨ ψ,Γ ⇒ Δ
Inv

ψ,Γ ⇒ Δ
(Cut)

Γ ⇒ Δ
A comparison of this example with the analogous one in the previous sub-

section shows that admissibility of W is required.
Exercise 3.9. Prove the remaining cases.

This time part 3 of the proof (the reduction of height) is the most involved.
Let us analyse an example:

ϕ ∨ ψ,Γ ⇒ Δ, χ

χ, ϕ,Γ ⇒ Δ χ, ψ,Γ ⇒ Δ
(∨ ⇒)

χ,ϕ ∨ ψ,Γ ⇒ Δ
(Cut)

ϕ ∨ ψ,Γ ⇒ Δ

is replaced with:

ϕ ∨ ψ,Γ ⇒ Δ, χ
Inv

ϕ,Γ ⇒ Δ, χ χ, ϕ,Γ ⇒ Δ
(Cut)

ϕ,Γ ⇒ Δ

ϕ ∨ ψ,Γ ⇒ Δ, χ

ψ,Γ ⇒ Δ, χ χ, ψ,Γ ⇒ Δ
ψ,Γ ⇒ Δ

(∨ ⇒)
ϕ ∨ ψ,Γ ⇒ Δ
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Note that now we must rely on height-preserving invertibility of rules for
induction to work!

Exercise 3.10. Prove the remaining cases.

This proof in general shows a different strategy for dealing with the problem
of unifying premisses of A-cut when doing reductions of height or complexity. In
Smullyan’s proof this unification was based on the application of height-preserving
admissibility of W and then on the application of C to delete superfluous occur-
rences of some formulae. In Schütte-like proof we apply invertibility instead and
no new formulae are added hence C is not required in parts 2 and 3. At first the
prerequisites for this kind of proof seem to be stronger:

1. Height-preserving invertibility of rules (essential for height reduction, requires
atomic axioms).

2. W admissible (not necessarily height-preserving—only for complexity reduc-
tion).

3. C admissible (in part 1)

But only the requirement for invertibility is stronger. On the other hand,
note that C is not needed at all unless we do not apply Buss’ proof on the basis
of induction on complexity. It is enough to observe that in the atomic axiom case
we can always delete the second occurrence of the cut-formula—it was extracted
in subsection 3.2.2 as the atomic contraction admissibility (lemma 3.5).

Summing up: this is the only proof where we do not need C at all, however,
when compared with Schütte’s proof, it has more rigid scope of application. Simi-
larly as in Dragalin’s and Smullyan’s proof it may be applied only to G3, because
it is based on the application of the height-preserving invertibility lemma. Also,
in contrast to Schütte’s proof, we cannot get rid of the induction on the height,
because Buss’ proof requires C.

One may notice that we can also avoid admissibility of C as well as proving
the invertibility of rules, at the price of small complications in figures showing
transformations, if we prove for G3 the admissibility of Herbelin’s cut (see subsec-
tion 2.1.1) combining the features of M- and A-cut. There are also some other ways
of reducing the list of preliminaries, in particular the admissibility of C, which are
not discussed here (but see Indrzejczak [134]).

3.4 Interpretations of Sequents

In subsection 2.2.1 we have proved lemma 2.1 and 2.2. Provided proofs required the
application of cut in many places but in G3 we can reprove them much simpler with
the help of the invertibility lemma. Moreover, we do not need to apply contraction
since we use the additive versions of (⇒ ∨) and (∧ ⇒).

Exercise 3.11. Prove lemma 2.1 and 2.2 for G3.
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In fact, it is useful to strengthen lemma 2.1 by the addition of the following
equivalences:

Lemma 3.8. The following are equivalent:

1. �⇒ ϕ1 ∧ ... ∧ ϕi → ψ1 ∨ ... ∨ ψk

2. � ϕ1 ∧ ... ∧ ϕi ∧ ¬ψ1 ∧ ... ∧ ¬ψk ⇒
3. �⇒ ¬ϕ1 ∨ ...,∨¬ϕi ∨ ψ1 ∨ ... ∨ ψk

Proof: 2 =⇒ 3. By invertibility of (∧ ⇒) we get � ϕ1, ...ϕi,¬ψ1, ...¬ψk ⇒ which,
by lemma 2.1, is equivalent to �⇒ ¬ϕ1, ...,¬ϕi, ψ1, ...ψk, and this implies �⇒
¬ϕ1 ∨ ...,∨¬ϕi ∨ ψ1 ∨ ... ∨ ψk by (⇒ ∨). �
Exercise 3.12. Prove the remaining parts of the lemma.

Prove this lemma for LK.

Note that in the proofs of the equivalences from lemma 2.1, 2.2 and lemma
3.8 (either in LK or in G3) the assumption that sequents of the specified form are
provable was not required. Hence in the more general setting of proof trees we can
prove the same result in a weaker form for any sequents, showing (in the same way)
that they are all interderivable, i.e. that ϕ1, ...ϕi ⇒ ψ1, ...ψk � ϕ1 ∧ ... ∧ ϕi ⇒
ψ1 ∨ ... ∨ ψk, ϕ1 ∧ ... ∧ ϕi ⇒ ψ1 ∨ ... ∨ ψk � ϕ1, ...ϕi ⇒ ψ1, ...ψk etc.

Exercise 3.13. Prove the content of lemma 2.1, 2.2 and 3.8 in the form of deriv-
ability results.

On the basis of lemma 3.8 we may introduce three interpretations of sequents
in terms of formulae:

1. IG(ϕ1, ..., ϕi ⇒ ψ1, ..., ψk) = ϕ1 ∧ ... ∧ ϕi → ψ1 ∨ ... ∨ ψk

2. IC(ϕ1, ..., ϕi ⇒ ψ1, ..., ψk) = ¬(ϕ1 ∧ ... ∧ ϕi ∧ ¬ψ1 ∧ ... ∧ ¬ψk)
3. ID(ϕ1, ..., ϕi ⇒ ψ1, ..., ψk) = ¬ϕ1 ∨ ...,∨¬ϕi ∨ ψ1 ∨ ... ∨ ψk

One can prove for each interpretation I ∈ {IG, IC , ID}:

Lemma 3.9. The following claims are equivalent:

1. S1, ..., Sn � S

2. ⇒ I(S1), ...,⇒ I(Sn) � ⇒ I(S)
3. � I(S1), ..., I(Sn) ⇒ I(S)

We will demonstrate this lemma specifically for ID. But first we need some
supporting result:

Lemma 3.10. For every primitive rule
S1, ..., Sn

S
of G3, a corresponding rule

⇒ ID(S1), ...,⇒ ID(Sn)
⇒ ID(S)

(called ID-transform of suitable rule) is admissible and

invertible in G3.
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Proof: We must show that it holds for all primitive rules of G3 except (⇒ ∨)
where in its ID-transform the premiss is identical with the conclusion. We examine
the cases of (∧ ⇒) and (⇒ ∧).

In the first case ID-transform has the form:
⇒ ¬Γ ∨ ¬ϕ ∨ ¬ψ ∨ Δ
⇒ ¬Γ ∨ ¬(ϕ ∧ ψ) ∨ Δ

From

the premiss we obtain ϕ,ψ ⇒ ¬Γ ∨ Δ by invertibility of (⇒ ∨) and (⇒ ¬). Then,
successively applying (∧ ⇒), (⇒ ¬) and (⇒ ∨) we obtain the conclusion. Note
that all steps are carried out by invertible rules, hence we can obtain the proof of
the premiss from the conclusion as well.

InthesecondcaseID-transformhastheform:
⇒ ¬Γ ∨ Δ ∨ ϕ ⇒ ¬Γ ∨ Δ ∨ ψ

⇒ ¬Γ ∨ Δ ∨ ϕ ∧ ψ
From the premisses we obtain ⇒ ¬Γ ∨ Δ, ϕ and ⇒ ¬Γ ∨ Δ, ψ by invertibility of
(⇒ ∨). Then, by (⇒ ∧) and (⇒ ∨), we obtain the conclusion. Since all steps
are obtained by invertible rules we can obtain the proof of each premiss from the
conclusion as well. �

Note that although this proof may be displayed as a proof in G3 it does
not prove derivability, since we are using invertible rules which were shown to be
admissible, not derivable.

Exercise 3.14. Show admissibility of the remaining ID-transforms.
Prove this lemma for IG- and IC-transforms of primitive rules of G3.

Now we can prove lemma 3.9 for the case of ID.

Proof: 1 =⇒ 2: By lemma 3.10, to each primitive rule of G3 there corresponds its
ID-transform. Hence we rewrite step by step a proof-tree D for S1, ..., Sn � S as a
proof tree D′ for ⇒ ID(S1), ...,⇒ ID(Sn) � ⇒ ID(S) treating ID-transforms of the
applications of G3 rules in D as macros comprising sequences of the applications
of primitive rules and their inversions.

2 =⇒ 3: First note that G3 enriched with ID-transforms is still closed un-
der weakening, so we can add any parameters to any side of the premisses and
conclusion without losing their admissibility for G3. Now take a derivation of
⇒ ID(S1), ...,⇒ ID(Sn) � ⇒ ID(S) and add ID(S1), ..., ID(Sn) to the antecedent
of each sequent in it. This way all leaves are axiomatic and the root sequent
ID(S1), ..., ID(Sn) ⇒ ID(S) is a provable sequent.

3 =⇒ 1: Start with each Si and derive from it ⇒ ID(Si) by successive appli-
cations of (⇒ ¬) and (⇒ ∨). Now by n applications of cut to ID(S1), ..., ID(Sn) ⇒
ID(S) and these n sequents of the form ⇒ ID(Si) we obtain ⇒ ID(S) and then,
by invertibility of (⇒ ¬) and (⇒ ∨), we get S. �

Exercise 3.15. Prove this lemma for interpretations IG and IC .

Note that each ID-transform corresponds to some provable equivalence. In
case of two-premiss rule we take the conjunction of two premisses. We state it as:
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Lemma 3.11. For each one-premiss ID-transform of a primitive rule we have � ⇒
ID(S1) ↔ ID(S2).

For each two-premiss ID-transform of a primitive rule we have � ⇒ ID(S1) ↔
ID(S2) ∧ ID(S3).

Proof: By lemma 3.9 and 3.10. Take the case of some two-premiss rule. Since
⇒ I(S1),⇒ I(S2) �⇒ I(S), then by 2 =⇒ 3 and (∧ ⇒) we get � I(S1)∧ I(S2) ⇒
I(S). By invertibility of this rule and (⇒ ∧) we obtain � I(S) ⇒ I(S1)∧ I(S2). �

Note that the proof applies also to the remaining transforms.

One may prove the equivalences corresponding to rules directly; In fact it was
done for IG in chapter 1. But now we obtain this as a simple corollary of theorem
3.10 in one step for any kind of transform. Otherwise we must prove this for each
rule directly; in case of ID it means that we must prove 6 equivalences of the form:

1. �⇒ γ ∨ ϕ ↔ γ ∨ ¬¬ϕ

2. �⇒ (γ ∨ ¬ϕ) ∧ (γ ∨ ¬ψ) ↔ γ ∨ ¬(ϕ ∨ ψ)

3. �⇒ γ ∨ ¬ϕ ∨ ¬ψ ↔ γ ∨ ¬(ϕ ∧ ψ)

4. �⇒ (γ ∨ ϕ) ∧ (γ ∨ ψ) ↔ γ ∨ ϕ ∧ ψ

5. �⇒ γ ∨ ¬ϕ ∨ ψ ↔ γ ∨ (ϕ → ψ)

6. �⇒ (γ ∨ ϕ) ∧ (γ ∨ ¬ψ) ↔ γ ∨ ¬(ϕ → ψ)

(to simplify things we let γ replace ¬Γ ∨ Δ occurring in ID-transforms)

Exercise 3.16. Provide proofs for these equivalences.
Display and prove equivalences corresponding to IC-transforms.

3.4.1 Post Theorem

We have focused on ID since it allows us for showing that G3 (or any other
SC) may produce a conjunctive normal form (CNF) for any formula. There are
different ways of proving this fact and it may be interesting to compare them. We
will show some more general result:

Theorem 3.1. If S1, ..., Sn � ⇒ ϕ, then � ⇒ ϕ ↔ ID(S1) ∧ ... ∧ ID(Sn)

Proof 1: We show two implications:

(a) � ⇒ ϕ → ID(S1) ∧ ... ∧ ID(Sn)

and

(b) � ⇒ ID(S1) ∧ ... ∧ ID(Sn) → ϕ.
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ad (a), by invertibility of all rules we get: ⇒ ϕ � S1, ...,⇒ ϕ � Sn from our
assumption that S1, ..., Sn � ⇒ ϕ. By the fact that ϕ = ID(ϕ) and lemma 3.9. (1
=⇒ 3) we get � ϕ ⇒ ID(S1), ...,� ϕ ⇒ ID(Sn). Hence by successive applications
of (⇒ ∧) and (⇒→) we obtain the result.

ad (b), directly from lemma 3.9. (1 =⇒ 3), (∧ ⇒) and (⇒→). �

The above proof was based on lemma 3.9 and has an internal character in the
sense of being proved in G3. It is interesting to show how the same result may be
obtained in the external way by using the resources of axiomatic system, namely
the extensionality principle (point 15 of lemma 1.1) and the equivalence of G3 to
axiomatic formalisation of CPL (theorem 1.8). It goes by induction on the stages
of the systematic root-first construction of a proof tree for ϕ. We prove that for
each stage ϕ is equivalent to the conjunction of ID-transforms of all leaves.

Proof 2 The basis is trivial since ϕ is the only leaf and ϕ = ID(ϕ) so we have
directly � ⇒ ϕ ↔ ID(ϕ).

Assume that the claim holds for the nth stage of the construction of a proof
tree, i.e. that we have � ⇒ ϕ ↔ ID(S1) ∧ ... ∧ ID(Sn) for S1, ..., Sn which are
all leaves of the actual proof-search tree. Let the stage n + 1 be obtained by the
application of some two-premiss rule to, say Sn, hence we obtain a proof tree
with two new leaves Sn1 and Sn2 attached over Sn. We know by lemma 3.11 that
� ⇒ ID(Sn) ↔ ID(Sn1) ∧ ID(Sn2) By theorem 1.8 in Hilbert system we have
�H ϕ ↔ ID(S1) ∧ ... ∧ ID(Sn) and �H ID(Sn) ↔ ID(Sn1) ∧ ID(Sn2), hence by
the extensionality principle also ϕ ↔ ID(S1)∧ ...∧ ID(Sn1)∧ ID(Sn2) is provable.
Thus by theorem 1.8 � ⇒ ϕ ↔ ID(S1) ∧ ... ∧ ID(Sn1) ∧ ID(Sn2). �

Exercise 3.17. Provide a direct proof of admissibility of extensionality rule for G3

From theorem 3.1 we obtain:

Theorem 3.2 (Post). For any ϕ there is an equivalent formula in CNF

Proof: It is enough to apply the procedure from chapter 1 for constructing com-
pleted proof trees to ⇒ ϕ and take the conjunction of ID-transforms of all atomic
leaves (including axiomatic ones). By theorem 3.1 it is equivalent to ϕ. �

This fact allows for another completeness proof based on the following fact
concerning CNF-formulae

Lemma 3.12 For any ϕ in CNF, |= ϕ iff any clause in ϕ covers an instance of the
law of excluded middle (LEM).

Proof: =⇒ Suppose that in at least one clause we do not have any pair of literals
that form an instance of LEM. We can provide a valuation which gives 0 to all
atoms and 1 to all negated atoms. This makes the clause false and so ϕ is a false
conjunction under this valuation.

⇐= Obvious—the conjunction of valid formulae is valid. �
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Now we are in the position to prove:

Theorem 3.3 (Completeness). If |= ϕ, then �⇒ ϕ

1. |= ϕ
2. � ⇒ ϕ ↔ ID(S1) ∧ ... ∧ ID(Sn) Post theorem
3. |= ϕ ↔ ID(S1) ∧ ... ∧ ID(Sn) 2, Soundness
4. |= ID(S1) ∧ ... ∧ ID(Sn) 1, 3
5. � ⇒ ID(S1) ∧ ... ∧ ID(Sn) 4, lemma 3.12, by (⇒ ¬), (⇒ ∨), (⇒ ∧)
6. � ⇒ ID(S1) ∧ ... ∧ ID(Sn) → ϕ 2
7. � ID(S1) ∧ ... ∧ ID(Sn) ⇒ ϕ 6, invertibility of (⇒→)
8. � ⇒ ϕ 5, 7 Cut

Note that ID(S1)∧ ...∧ ID(Sn) denotes here a conjunction of clauses not just
arbitrary disjunctions.

3.4.2 SC and Other Kinds of Systems

We have already mentioned in subsection 1.3.2 (remark 1.5) that there is a close
relationship between SC and tableau calculi. On the basis of the results presented
in this section we can state these observations in more general and precise terms.

Let us recall that Hintikka [116] provided one of the first versions of tableau
calculus for classical logic. His version is an indirect one in the sense that if we
want to prove that Γ � ϕ we start with Γ,¬ϕ and decompose this set by means of
suitable rules until we construct a tree (with sets of formulae as nodes) where each
leaf is contradictory, i.e. contains some ψ,¬ψ. The main difference with K is that
instead of sequents simply sets are used and that a tree is built upside-down. One
can easily check that in Hintikka’s tableau system there is a step-wise simulation
of every rule of K for ∧,∨,→:

Γ⇒ Δ
Γ′⇒ Δ′ ⇐⇒ Γ′,¬Δ′

Γ,¬Δ

Γ⇒ Δ Γ′ ⇒ Δ′
Γ′′⇒ Δ′′ ⇐⇒ Γ′′,¬Δ′′

Γ,¬Δ | Γ′,¬Δ′

This simulation is based on lemma 3.10 but applies interpretation IC . In the
case of negation a simulation of (¬ ⇒) is trivial and the counterpart of the second
rule is a double negation elimination. On the basis of this translation we obtain:

Theorem 3.4 (Equivalence of Hintikka tableaux and K).

• Γ �Tab ϕ (:= Γ,¬ϕ �Tab ⊥) =⇒ �K Γ ⇒ ϕ

• �K Γ ⇒ Δ =⇒ Γ,¬Δ �Tab ⊥

There is a dual version of tableaux devised for classical logic by Rasiowa
and Sikorski [210] and developed significantly for several logics and theories by
Or�lowska and her collaborators (see in particular Or�lowska and Golińska-Pilarek
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[192]). It is based on disjunctive reading of sets, i.e. on ID. In fact, as far as we
are concerned with tableau systems for classical logic, this dual version is just an
upside-down version of Schütte’s SC [233] with one-sided sequents, referred to in
subsection 3.3.3.

Exercise 3.18. Show schemata of step-wise simulation for rules of dual tableaux
and state equivalence theorem with K.

SC is also in close relationship to resolution calculi of Robinson [219], in
particular on the propositional level4. Note that propositional resolution rule is
just a cut performed on atomic sequents. The main difference is that in ordinary
resolution systems we operate on clauses but we know that they correspond to
atomic sequents by ID so this is only a minor notational variant. What is more
important is how we obtain a set of clauses (atomic sequents). Standard resolution
is again an indirect method; to prove that � ϕ we transform ¬ϕ into its CNF and
then make resolutions on its member clauses until we derive an empty clause, i.e.
⊥. In the framework of K (with cut) we can divide the job into two stages. We
start with ϕ ⇒ and build a completed proof tree for it (see section 1.3) which by
lemma 1.9 must terminate. All nonaxiomatic leaves of this tree provide a set of
sequents from which we derive ⇒ by cuts only. In general case of proving Γ � ϕ
we can establish the equivalence of both methods in the following:

Theorem 3.5. For any sequent the following are equivalent:

1. � ϕ1, ..., ϕi ⇒ ψ1, ..., ψk

2. ⇒ ϕ1, ....,⇒ ϕi, ψ1 ⇒, ..., ψk ⇒ � ⇒

Exercise 3.19. Prove the above theorem using cut. Hint: look at the proof of claim
1.6 in subsection 1.9.2.

3.5 Variants of SC

Before we focus on the applications of SC to non-classical logics it is instructive
to make a more detailed characterisation of several variants of SC. It helps to
understand why logics other than CPL often require several changes in the basic
apparatus. In fact, even in the case of CPL there is a plenty of SC which are very
different from the three calculi we presented. Indeed all SCs introduced so far,
although slightly different in some respects, are in fact quite similar to each other.
The most impressive feature of all these systems is the fact that all are progressive
in the sense that only logical rules of introduction are primitive. In what follows
such calculi will be called standard SC. Two main aims of this section are to provide
a closer characterisation of standard systems and to sketch a general typology of
sequent calculi.

4More on the relations between SC and resolution, for example, in Avron [10], Gallier [93], or
Fitting [85].
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Let us recall that our preliminary characterisation of SC (in section 1.2) was
very general—just a collection of (schemata) of rules composed from sequents,
including rules with empty set of premisses i.e. axiomatic sequents. Such a char-
acterisation admits significantly different realisations depending on the notion of
a sequent and special requirements concerning the shape of rules.

3.5.1 Types of Sequents

In case of the notion of a sequent we only (implicitly) decided on two things: that
sequents are ordered pairs and that both arguments consists of finite collections
of formulae. The first difference between three SCs (and some small variations
of them) presented so far concerned the way of specifying what exactly is this
collection. We admitted sets, multisets, sequences, and after Casari [45] we can
call them the main alternatives of SC. But this nomination does not preclude a
possibility of other solutions. In particular, one is free to consider also different
data structures as arguments of a sequent—we will mention some proposals of
this kind in the remaining chapters. It is possible to introduce even more radical
changes in the definition of a sequent. We consider briefly three such variations:
the number of formulae (or other objects) included in arguments of a sequent, the
very structure of a sequent (for example, the arity—the number of its arguments),
the character of objects included in arguments of a sequent.

The number of (occurrences of) formulae in the succedent or antecedent may
be regulated. In particular, introduction of single-succedent sequents, i.e. with (at
most) one formula in the succedent seems to be a very natural solution, corre-
sponding to Tarski-style consequence relations. Gentzen made it a characteristic
feature of his SC for intuitionistic logic although it is not necessary for provid-
ing SCs adequate for this logic (see section 5.1). In general a variety of different
options is possible, for example, sequents having exactly one formula in the an-
tecedent and the succedent (like in the system of Rieger [217] for CPL, or SC for
FDE in subsection 5.3.3), or at most one formula in the antecedent (see Wansing
and Kamide [145]). We have mentioned also sequents with empty antecedent (or
succedent)—so called one-sided sequents in Schütte [232] or in tableau transfor-
mations of SC. These one-sided sequents are formally justified by interpretations
ID and IC . On the other hand, even sequents with an infinite number of formulae
were admitted in proof theoretical considerations (e.g. in Tait [257]).

In what follows we will say that sequents being ordered pairs of finite (multi)sets
or sequences of formulae, possibly with numerical restrictions (including one-sided,
i.e. with empty antecedent or succedent), are ordinary sequents and all systems
with rules operating on such kind of sequents will be called ordinary SC. Any sys-
tem defined by means of some other notion of a sequent will be called a generalised
SC5.

5In Troelstra and Schwichtenberg [264] such calculi are called varying G-systems.
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3.5.2 Generalised SC

During the past five decades researchers who tried to apply Gentzen’s formalism to
several non-classical logics faced many serious problems. In order to overcome the
difficulties they provided a lot of ingenious solutions, mainly based on the changes
in the notion of basic items on which rules are defined. It is possible to describe
at least four main types of generalised SC:

• structured sequent calculi;

• labelled sequent calculi;

• many-sequent calculi;

• multisequent calculi.

The above list of different generalised SC is by no means exhaustive. The cat-
egories are also certainly not disjoint, hence it is only a proposal of some typology
and surely a different conceptual organisation of this domain may be proposed.
A detailed presentation of several generalised SCs may be found in Wansing [270]
and Poggiolesi [198] with slightly different conceptual order of solutions.

In the first group the very notion of a sequent is generalised somehow. We can
find here at least three solutions where ordinary distinction between the antecedent
and the succedent is saved but with the additional division of both arguments into
smaller parts, or with more refined structure occurring in arguments of a sequent,
and even such where we have sequents with n-arguments, for n > 2.

The first approach may be applied either for expression of some essential
features of formalised logics which is rather not possible in ordinary sequents, or
as a kind of technical device with no deeper motivation. The former approach
is evident in systems for modal (Sato [224], Blamey and Humberstone [34]) and
temporal logics (Nishimura [188]) where a division of arguments is introduced for
making distinctions between modal status, or temporal localizations of formulae.
We briefly characterise Sato’s system in section 4.8 and provide SC of this kind
for some many-valued logics in section 5.5. In the latter case an introduction
of additional collections of formulae into antecedent or succedent has rather a
technical character needed for improvement of a proof search. As an example we
can mention systems with displayed ’head formulae’ in sequents considered in
Troelstra and Schwichtenberg [264]. We will illustrate this approach in section 4.4
by means of some calculi developed for modal logics and mention also some other
ones in section 5.1 for intuitionistic logic.

The next approach in this group was introduced independently by Mints
[178] and Dunn [67], and is commonly called consecution calculus for relevant
logics. Several developments of this approach are analysed, for example, in Restall
[214] and Bimbo [31] so we only briefly describe its main features in section 5.3.
Certainly the most general realisation of this idea is provided by display calculus
constructed by Belnap [25]. In this approach arguments of a sequent are built from
special structures where formulae are combined by means of additional structural
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constants. Different variants of display calculi were extensively studied and applied
to a variety of non-classical logics (see e.g. Wansing [269] or a survey of Ciabattoni,
Ramanayake, Wansing [53]).

The last solution in the group of structured SC is popular in several systems
for many-valued logics (Rousseau [221], Carnielli [44]), where n > 2 correspond to
n logical values, or – in a more refined version—to collections of values (Hähnle
[106]). The former approach is strongly dependent on the kind of interpretation
we put on n-sided sequents. Reading in terms of verification or falsification of such
a sequent leads to the construction of significantly different calculi. The latter
provides a more unified perspective, closer to standard SC and computationally
better behaving. We provide in sections 5.4 and 5.5 an exposition of these differ-
ent realisations of the same idea for some many-valued logics. Moreover, systems
presented there will be formalised in the way which makes them essentially sim-
ilar to systems from the first group. i.e. as defined on sequents with additionally
divided arguments. In fact, Wansing [270] and Poggiolesi [198] treat these systems
as essentially of the same form under the heading higher-arity SC.

As for the character of elements in arguments of sequents the most popular
approach is based on the application of several kinds of labels added to formu-
lae. A general theory of labelled systems was presented by Gabbay [91]; a survey
of solutions applied to modal logics may be found in Indrzejczak [130]. Several
SCs with term-labels added to formulae to express the so called Curry–Howard
isomorphism, as well as systems developed in the spirit of Martin-Löf [172] type
theory, may be also treated as belonging to this group. It should be underlined
that expressive power of labels is so strong that usually labelled SC are built with
sequents which are close to ordinary ones but with formulae enriched with labels.
However, there are also systems with labels attached to whole sequents like in
Mints [182]. Labelled approaches of some kinds will be dealt with in the second
volume; here we introduce only extremely simple system of this sort for modal
logic S5 in section 4.6.

The name many-sequent calculi is proposed here for the unification of all
systems using collections of (usually ordinary) sequents as the basic items. It covers
two main families of calculi operating on hyper- or nested sequents. Hypersequents
are structures of the form Γ1 ⇒ Δ1 | ... | Γi ⇒ Δi. They have found applications
to variety of non-classical logics (e.g. Avron [10]). We will discuss them in some
detail in section 4.7 with the application to modal logics. Nested sequents are a
slightly more complicated structures where, in addition to formulae, the elements
of a sequent may be other sequents, containing other sequents. This approach in
general form was initiated by Dos̆en [60] and it was extensively applied, under
different names (deep inference calculi, tree-hypersequent calculi), in the field of
modal and temporal logics (e.g. Bull [42], Kashima [147], Stouppa [246], Poggiolesi
[198]). Note that if we define hypersequents as (finite) sequences of sequents we
obtain in fact a special variant of nested sequents, with only one sequent admitted
as an element of a given sequent (Lellmann [161] calls them linear nested sequents
whereas in Indrzejczak [136] they are called non-commutative hypersequents).
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The last type, so called multisequent calculi, contains systems with different
kinds of sequents, for which possibly different collections of rules are defined. This
approach started with Curry [56] and Zeman [276] and was developed by Indrze-
jczak [126]. A system of this kind based on a different interpretation of two kinds
of sequents was also presented by Avron [10]. In section 4.8 we introduce a simple
double sequent calculus for S5 as an illustration of this approach.

We limited the list of generalised SCs only to these solutions which will be
presented in the remaining chapters. In particular, several systems belonging to
the first type will be treated in more detail and one system belonging to the third
type, namely hypersequent calculus. Other ones will be only incidentally invoked
for the sake of illustration.

3.5.3 Ordinary SC

We stipulated that all kinds of SCs which are defined on sequents being ordered
pairs of collections of formulae, even with several numerical restrictions, will be
called ordinary SC. This group includes standard SCs but also many other calculi
with rules of different characters. A survey of ordinary SCs presented in Indrzejczak
[133] proposes a division into three different types according to the priority given
either to primitive rules or to initial (axiomatic) sequents:

1. Gentzen’s type based on rules with a small number (usually one) of axiomatic
sequents;

2. Hertz’s type based on axiomatic sequents with a small number of rules (usu-
ally structural);

3. Mixed type with balanced participation of axioms and rules.

In particular, the first type contains, as a subtype, a standard SC containing
LK, G3, K and other systems being their variations. Gentzen’s type and Hertz’s
type represent extreme solutions. In the former type logical constants are usually
characterised (mainly) by rules with axiomatic sequents usually having a structural
character. On the contrary, in the latter type rules have structural character and
logical constants are characterised by axiomatic sequents. Such a solution was pro-
posed by Hertz [114] who in fact introduced the very notion of a (single-succedent)
sequent, sequent rule, tree representation of proofs and started the program de-
veloped later by Gentzen.6 But it should be noted that Hertz did not present any
specific system for concrete logic. His approach was abstract; he defined rather a
schema of the system in which rules have purely structural character. In addition
to rules of contraction, permutation and weakening in the antecedent, Hertz used
also the rule of syllogism which was a special kind of cut. Gentzen, in his earlier
work [94], developed to some extent a theory of Hertz. In particular, he presented
purely structural criteria which must be satisfied by any SC of this type with an

6One can find a detailed overview of Hertz’s system in Schroeder-Heister [227].
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independent set of axiomatic sequents. Also he replaced Hertz’s rule of syllogism
with cut.

In fact, the approach of Hertz to characterisation of concrete logics did not
find many applications, except two significant examples: one due to Suszko [253]
(see also [252] and [254]) and the other due to Smullyan [244]. Suszko proposed in
1940s the original SC of Hertz’s type operating on single-succedent sequents with
sequences in the antecedents and with complete set of sequents for CPL and some
non-classical logics. We do not describe it here; one may find a detailed analysis
in Indrzejczak [129]. Smullyan devised a system for classical logic where the only
rule is cut, moreover in analytic form. Since sequents in this system are built from
sets no other structural rules are needed. In the propositional part the following
sequents are primitive:

• ϕ ⇒ ϕ ⇒ ϕ,¬ϕ ¬ϕ,ϕ ⇒
• ϕ ∧ ψ ⇒ ϕ ϕ ∧ ψ ⇒ ψ ϕ,ψ ⇒ ϕ ∧ ψ

• ϕ ⇒ ϕ ∨ ψ ψ ⇒ ϕ ∨ ψ ϕ ∨ ψ ⇒ ϕ,ψ

• ϕ → ψ,ϕ ⇒ ψ ψ ⇒ ϕ → ψ ⇒ ϕ,ϕ → ψ

That analytic cut is sufficient for adequacy follows from lemma 2.4, or even
2.3. One can easily check that all applications of cut required for proving admissi-
bility of Gentzen’s rules use only subformulae of the proved conclusion sequent. In
the other direction it is routine to provide cut-free proofs of all the above sequents
in K.

Exercise 3.20. Demonstrate the equivalence of Smullyan’s system with K.

In fact, the first solution of this kind is already in Gentzen [95], where he
noticed that many rules of LK may be replaced with primitive sequents. Gentzen
used exactly the same sequents except for the last two with implication in the
succedent. Thus he eliminated all rules for ¬,∧,∨ but has left a logical rule (⇒→)
7. Also structural rules W, C, P were present due to the fact that sequents were
made from lists, like in LK. Gentzen noticed that cut is not eliminable from such
a system but he did not notice that it may be restricted to analytic form.

Due to the fact that some rules in Gentzen’s system are logical it belongs
to the mixed type. This group includes a plethora of SC where logical constants
are characterised either by means of sequents or rules to gain more flexibility in
proof search. There are a great many possible combinations with some constants
characterised only by means of rules and other only by means of sequents, or the
same constants partly characterised by rules and partly by sequents. One can find
considerations on these matters already in Bernays [26], Popper [200] and many
other logicians. Some other systems of this kind for CPL were provided, among
others, by Kleene [149], Hasenjaeger [109], Surma [250] and Rieger [217]. All are

7He also left two rules for quantifiers whereas Smullyan found a way to replace all of them
with sequents.



3.5. Variants of SC 141

using single-succedent sequents except Rieger who applies sequents with exactly
one formula on both sides of a sequent.

3.5.4 Gentzen’s Type of Ordinary SC

We mentioned that Gentzen’s original LK and other standard SC discussed so far
belong to the first type of ordinary SC but satisfy additional important require-
ments concerning logical rules. Roughly, logical constants are characterised only
by means of rules of introduction to the conclusion; usually a pair introducing a
constant to the antecedent or to the succedent. However, even in Gentzen’s type
we can find a lot of systems which are not standard because different kind of logical
rules is used in them.

We provide as an example of nonstandard SC of Gentzen’s type his system
of sequent natural deduction (ND). It should not be confused with the well-known
system of natural deduction NK (or NJ for intuitionistic logic) which was presented
by Gentzen in [95]; the latter is not SC since its rules are defined on formulae not
on sequents. However, the system introduced in [96] which was applied in the con-
sistency proof of Peano’s arithmetic is a combination of SC and ND. It is devised
for classical logic but uses sequents with sequences of formulae in antecedents but
exactly one formula in the succedent. There are only rules of introduction of logical
constants to the succedent; instead of rules for introduction to the antecedent it
has the rules of elimination of constants in the succedent. Hence it seems like a
kind of a compromise between his system NK of natural deduction and his stan-
dard sequent system LK in the sense that all inference rules are basically as in
his NK, but items which are operated on in proofs are not formulae but sequents.
Antecedents of sequents do not involve any logical operations; they provide only
a record of active assumptions.

In fact, such a system was implicitly present in [95] in the proof of correctness
of NK. Gentzen shows there an equivalence of his NK with Hilbert’s system via
LK. One part of the proof shows how to transform every NK proof tree into LK
proof tree. For this aim every inference rule of NK is rewritten with addition of
all active assumptions, in this way we obtain as a by-product the system which in
[96] is defined explicitly.

The only primitive sequents are of the form ϕ ⇒ ϕ, exactly as in LK. He also
applies structural rules of weakening, contraction and permutation in antecedents.
Logical rules for propositional part are the following:

(⇒ ¬) Γ, ϕ ⇒ ψ Δ, ϕ ⇒ ¬ψ
Γ,Δ ⇒ ¬ϕ (⇒ ¬E) Γ ⇒ ¬¬ϕ

Γ ⇒ ϕ

(⇒ ∧E1) Γ ⇒ ϕ ∧ ψ
Γ ⇒ ϕ (⇒ ∧E2) Γ ⇒ ϕ ∧ ψ

Γ ⇒ ψ

(⇒∧) Γ ⇒ ϕ Δ ⇒ ψ
Γ,Δ⇒ ϕ∧ψ

(⇒ ∨E) Γ, ϕ ⇒ χ Δ, ψ ⇒ χ Π ⇒ ϕ∨ψ
Γ,Δ,Π ⇒ χ



142 Chapter 3. Purely Logical Sequent Calculus

(⇒∨) Γ⇒ ϕ
Γ⇒ ϕ∨ψ

(⇒∨) Γ⇒ ψ
Γ⇒ ϕ∨ψ

(⇒→ E) Γ⇒ ϕ Δ⇒ ϕ → ψ
Γ,Δ⇒ ψ

(⇒→) Γ, ϕ ⇒ ψ
Γ⇒ ϕ→ψ

It is easily seen that this calculus when compared with LK has standard
rules for introduction in the succedent taken from his system LJ for intuitionistic
logic (see section 5.1); two-premiss form of (⇒ ¬) follows from the fact that ⊥ (or
empty succedent) is not allowed in the language. Instead of rules of introduction in
the antecedent we have elimination rules (in the succedent) taken from Gentzen’s
system NK (or NJ for intuitionistic logic). In particular, the rules (⇒ ¬), (⇒→)
and (⇒ ∨E) correspond to proof construction rules in NK, i.e. to these rules which
introduce subderivations based on the additional assumptions to be discharged
later (after deduction of a suitable formula). It is represented here as a subtraction
of some formula (additional assumption) from the antecedent of a sequent. All
other rules correspond to inference rules of NK (NJ) so the only operation on
antecedents of premisses is their concatenation.

It is easy to note that cut is derivable in this system by means of (⇒→)
and (⇒→ E) but of course it can be proved directly as an admissible rule of the
system, independently of the special rules for implication.

Exercise 3.21. Prove derivability of rules of this SC in LK.

As an ND system this calculus is not very practical in its original form. The
drawbacks follow from the fact that proofs are defined as trees of sequents so all
assumptions must be rewritten in each inference step. But this very fact allows us
to resign from defining the proof as a tree of sequents and use linear proofs (i.e.
sequences of sequents) which are much easier to deal with from the standpoint of
actual proof search. Moreover, in contrast to ND in Jaśkowski-style8, it does not
have to use any bookkeeping devices, like lines or boxes, for showing the depen-
dency of formulae in the proof on their assumptions. Also the process of rewriting
of all assumptions in each inference step may be significantly simplified since the
only operations on them have structural character. Instead of rewriting formulae
we may rewrite the numbers of lines where the respective assumptions were intro-
duced. This solution was first introduced in Feys’ and Ladriere [77] translation of
[95] into French. It was made popular due to Suppes’ [249] and its later simpli-
fications in Lemmon [162], Forbes [89] and many other textbooks. Usually in all
these systems authors simplify matters by introducing sets instead of sequences
of formulae/numbers in antecedents. It makes structural rules of permutation and
contraction dispensable9.

Note also that Gentzen’s sequent ND is based on the rigid conception of nat-
ural deduction as characterising logical constants only by means of rules operating

8In Anglo-American tradition usually called Fitch-style ND.
9Although one should observe that in some cases, e.g. in modal logics, it may be better to

keep sequences—see Garson [92].
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only on succedents of sequents. The only operations admissible on antecedents
have—as we noted above—structural character. But this restriction is by no means
necessary and one can find also a variety of systems representing greater flexibility
with respect to the shape of rules. In particular, also rules for introduction and
elimination of constants in the antecedent are applied. Of course this excludes the
solution mentioned above, of replacing collections of formulae in the antecedent
with the numerals of respective lines, but in many cases allows for construction of
shorter proofs. One can mention here systems of Hermes [113], Ebbinghaus, Flum
and Thomas [73], Ershow and Palyutin [74], �Lawrow and Maksimowa [167]), An-
drews [5], Leblanc [157, 158] or symmetric system with rules for negated formulae
due to Smullyan [245] and some other of this sort due to Wísniewski [272] (also
Leszczyńska-Jasion, Urbański and Wísniewski [163]). One of the particularly im-
portant SC of this type is Dos̆en’s SC [61] with invertible rules for constants based
on the earlier ideas of Popper (e.g. [200, 201]). According to Dos̆en, in order to
claim that an expression is a logical constant it is necessary to provide such a
double validity-preserving rule which after addition to structural rules allows for
obtaining a full characterisation of this constant. Rules of this system satisfy this
requirement in contrast to earlier Poppers’ proposal (a detailed analysis of Pop-
per’s approach is provided by Schroeder-Heister [226] (see also [228]).

3.5.5 Standard SC

We close this section with a more detailed analysis of standard SC focusing not so
much on the differences between K, LK, G3 and their minor variants, but rather
on the similarities between them.

There are two main differences between SCs investigated so far concerning
the notion of a sequent and the role of structural rules. The first one was already
discussed and in the case of classical logic it is not very important due to the fact
that structural rules ensure identical behaviour of the collections of formulae in all
these calculi. Things will change radically for some non-classical logics described
in chapter 5. The second difference between SCs investigated so far was connected
with the role of structural rules. If they are primitive we may say about structural
variant of SC, otherwise it is a logical variant10. Note that even SC using sequents
built from sequences may be presented as purely logical, as the example of Gallier
variant of LK shows (see remark 2.4 in section 2.6) so this distinction does not
depend on the chosen alternative. There were also differences concerning the choice
of rules (additive versus multiplicative, invertible versus noninvertible) or axioms
(simple versus contextual, atomic versus general) and we can easily provide more
variants of these SCs by further combinatorial changes. Moreover, in the class
of structural SC we can distinguish between analytic (no cut and contraction
primitive) and nonanalytic (logical SCs are all analytic).

10Poggiolesi [198] is using the same distinction in a slightly different way—she reserved the
term structural for SC of quite a different character due to Dos̆en [61] and remarked above.
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What is characteristic and common for all these variants of SC is the fact
that all primitive logical rules are only introduction rules and on this basis we
call them standard11. Concerning the shape of the rules we did not formulate any
requirements although we made a lot of comments on some features of presented
rules. The requirement of progressivity of all logical rules which we proposed in this
section for preliminary characterisation of standard SC is quite general and allow
for further specifications. When we are analysing concrete rules of LK or G3 we can
find some more interesting properties. Some of them, like context independence,
the subformula property or invertibility were already discussed (see in particular
subsections 1.2.2, 1.4.2 and 1.4.3) Following Wansing [269] (see also Poggiolesi
[198]) we may list some other desiderata for well-defined logical rules of standard
SC:

• Separation: a rule for a constant should not exhibit any other constants in
its schema.

• Weak symmetry: each rule should either introduce a constant to the an-
tecedent or to the succedent; if we have both such rules the calculus is (sim-
ply) symmetric with respect to this constant.

• Weak explicitness: a constant should be present only in the conclusion; if only
one occurrence of it is present a rule is (simply) explicit.

Rules satisfying these properties and the subformula property are called
canonical by Avron [14]. One may easily check that all logical rules of K, LK,
G3 are canonical in this sense. But not all standard systems are canonical—as we
will see soon.

Some of these properties are strongly connected with different approaches
to anti-realist and proof-theoretic approaches to the semantics of logical constants
which we mentioned in subsection 1.4.1. In these contexts two additional conditions
are sometimes required:

• Uniqueness: rules for a constant c1 provide a unique characterisation of it if
when we add to the language of this calculus a constant c2 which is charac-
terised in this extended calculus by the same rules as those for c1, then S is
provable iff S′ is provable, when S′ is just as S but with all occurrences of c1
replaced with c2.

• Avron’s property: rules should be independent of any particular semantics.

Some other desiderata are of interest when we consider SCs for families of
logics in the same language, as will be done in the remaining chapters.

• Modularity: in the family of logics all extensions should be characterised by
separate rules. In particular, if we consider H-systems as a point of reference,
then each new axiom should be represented by a new rule.

11Avron [14] uses a naming standard SC for all systems having standard structural rules
without any requirements concerning logical rules.
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• Došen property: the rules for constants should be stable; all extensions for
stronger logics in the same language should be obtained by structural rules
only.

Once the former is accepted rather with no doubts, the latter is criticised by
Poggiolesi [198], where some reformulation of it is proposed.

Many researchers were interested in the characterisation of such properties
of rules which are at least sufficient for ensuring cut admissibility for some strictly
specified classes of SC. As we already remarked Curry [56] was the first author who
undertaken such research. On the basis of his considerations Belnap [25] provided
such a list for a rather specific form of generalised SC, namely display calculus.
More recently Restall [214] presented a similar analysis but in the context of a more
general version of SC admitting also (after slight reformulation) standard SCs.
These analyses are rather complicated and when we focus on the most important
features of different proofs of cut admissibility we can separate just two such
desiderata. These were called substitutivity and reductivity (by Ciabattoni [52],
in Avron [14] these are called purity and coherence conditions12). The former
is connected with possibility of performing height reduction steps and the name
refers to the fact that a (multi)set of formulae is substituted for the occurrence(s)
of cut-formula in the last applied step where cut-formula is parametric. Roughly
speaking if all rules are context independent (pure) they are substitutive, but the
latter may hold even in the presence of some rules which are impure.

Reductivity (coherence) is abstracted from these features of logical rules
which enable complexity reduction steps. Informally it allows for deriving the same
conclusion from a series of cuts made on subformulae of some complex cut-formula.
Note that all rules of standard SC which were considered so far are reductive but
it is not the same as being canonical. Again we may use as an example Prior’s
rules for ‘tonk’ introduced in section 1.4. Since one of these rules was elimination
rule it is not standard but with the help of lemma 2.3.A we can easily replace it
with suitable introduction rule, thus we obtain:

Γ ⇒ Δ, ϕ / Γ ⇒ Δ, ϕ tonk ψ and
ψ,Γ ⇒ Δ / ϕ tonk ψ,Γ ⇒ Δ

One can easily check that both rules are canonical but not reductive.
Although for some specific classes of SC it was possible to show that discussed

properties characterise cut elimination, in the sense that in such a class they are
also necessary conditions for this result, it does not preclude the possibility that

12Note that different authors introduce their terminology in the context of investigation on
specific classes of SC and by means of specific machinery, so their results are different and not
simply reducible to each other. When we refer to their terminology we rather want to point
out the common conceptual core of their considerations, not to suggest that they are using
different terms for the same things. In fact, one may consider not rules but formulae which admit
characterisation terms of suitable rules; for example, Restall [214] is talking on regular formulae
to the same effect.
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(standard) SC with nonreductive, or even noncanonical rules, cannot be cut-free
and analytic. So for many non-classical logics ordinary SCs fail to satisfy some
of the properties we discussed. On the other hand, in generalised SCs very often
we can observe that their rules satisfy some generalised counterparts of features
satisfied by canonical and coherent SC. We will see examples of both kinds in the
remaining two chapters.

3.6 Constructive Proofs of Interpolation Theorem

In section 1.11, we have proved Craig’s interpolation theorem. However, that proof
was not constructive, partly semantical, and based on the application of analytic
cut. Now we are in a position to provide a proof which is constructive and based
on the cut-elimination theorem. One may find several constructive proofs of this
result based on the application of cut-free SC or tableaux. The common feature
of all of them is some way of separation of everything which is connected with the
antecedent and with the succedent. We have seen this already in the proof from
section 1.11 where two symmetric forms of cut were needed as well as relative
distinctions in building a model were necessary to keep track of two parts. All
constructive proofs of the interpolation theorem must also use some devices to
save this separation. In particular, rules in which a formula is transferred from the
antecedent to the consequent or vice versa are troublesome in this respect. Just
consider an instance of the application of (⇒ ¬) of the form:

p,Γ ⇒ Δ
Γ ⇒ Δ,¬p

and assume that we have an interpolant for the premiss which contains p
but no atoms from Γ and that p /∈ PROP (Γ). It is easily seen that it cannot
be an interpolant for the conclusion. So the crucial thing is to take care of the
separation of what is connected with the antecedent and what with the succedent
part. Different ways of attacking this problem were utilised in the framework of SC
or tableau systems. One of the possible strategies is to introduce some bookkeeping
device (e.g. labels) for marking in the proof which formula is essentially antecedent
and which is essentially succedent despite its actual position in the current sequent.
Such an approach was applied for example by Kleene [150] or Fitting [85].

We consider below three different proofs in which rather strictly syntactic
solution is applied. The first is due to Maehara (see Takeuti [261], Ono [191] or
Troelstra and Schwichtenberg [264]) and justifies a slightly generalised version of
the interpolation theorem. This proof is rather involved but it is very popular
and based on the interesting construction so it is important to know it. Moreover,
it may be developed for any standard version of SC with only minor modifica-
tions. The second proof due to Smullyan [245] (see also Fitting [85]) is relatively
simple but based on noncanonical version of SC. The last proof due to Wintein
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and Muskens [271], does not demand any changes in the system but splits proofs
instead.

3.6.1 Maehara’s Proof

We mentioned that the proof provided first by Maehara [169] may be carried for
any kind of standard cut-free SC. We will use slightly modified LK. First we extend
the language with � and ⊥ and add to LK axioms ⇒ � and ⊥ ⇒. Moreover, to
simplify matters we will change lists into multisets. In fact, we were tacitly doing
this many times in chapter 2 when disregarding the order of formulae in sequents.
However, for this proof we must consider unions of collections of data which is
simpler for multisets than for lists. Let � denote a union of multisets which is like
ordinary set union ∪ but with additional counting of the number of occurrences
of the same formula. Thus, e.g. [ϕ,ψ, ψ, χ] � [ψ, χ] = [ϕ,ψ, ψ, ψ, χ, χ], where [ and
] are used for enumeration of multisets.

For any Γ ⇒ Δ we define the notion of its partition. Let Γ1 � Γ2 = Γ and
Δ1 � Δ2 = Δ, then ((Γ1,Δ1), (Γ2,Δ2)) is a partition of Γ ⇒ Δ.

Note: in partitions we admit empty multisets, e.g. (Γ, ∅), (∅,Δ).

Maehara’s generalised interpolation theorem claims:

Theorem 3.6. If � Γ ⇒ Δ, then for any partition ((Γ1,Δ1), (Γ2,Δ2)) we can find
ϕ, such that:

1. � Γ1 ⇒ Δ1, ϕ

2. � ϕ,Γ2 ⇒ Δ2

3. PROP (ϕ) ⊆ PROP (Γ1 � Δ1) ∩ PROP (Γ2 � Δ2)

Proof: By induction on the height of a proof of Γ ⇒ Δ in cut-free LK.

Case k = 0, so Γ ⇒ Δ is an axiom. If it is ϕ ⇒ ϕ, then we have 4 partitions:

1. (([ϕ], [ϕ]), (∅, ∅))

2. ((∅, ∅), ([ϕ], [ϕ]))

3. (([ϕ], ∅), (∅, [ϕ]))

4. ((∅, [ϕ]), ([ϕ], ∅)).

In 1, the interpolant is ⊥ , since � ϕ ⇒ ϕ,⊥ and � ⊥ ⇒. In 2, the interpolant
is �, since �⇒ � and � �, ϕ ⇒ ϕ. Finally in 3 it is ϕ, and in 4 it is ¬ϕ, since
�⇒ ϕ,¬ϕ and � ¬ϕ,ϕ ⇒.

For added axioms: ⇒ � has two partitions ((∅, [�]), (∅, ∅)) and ((∅, ∅),
(∅, [�]). In the first case the interpolant is ⊥, since �⇒ �,⊥ and � ⊥ ⇒; in the
second it is �. For axiom ⊥ ⇒ a proof is dual.
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In case k > 0, we consider all possible cases of the last rule applied in the
proof. Let us take as an example the case of (∧ ⇒):

Γ ⇒ Δ := ψ ∧ χ,Γ′ ⇒ Δ and the premiss is ψ,Γ′ ⇒ Δ or χ,Γ′ ⇒ Δ. Take
the first one, there are two possible situations: (a) a partition with ψ ∧ χ ∈ Γ1

and (b) with ψ ∧ χ ∈ Γ2. For the first case, i.e. Γ1 := ψ ∧ χ,Γ′
1 in the premiss, we

consider the respective partition with ψ ∈ Γ1 i.e. Γ1 := ψ,Γ′
1. Since ψ,Γ′ ⇒ Δ has

a proof of height k− 1, therefore by the induction hypothesis there is ϕ such that:

1. � ψ,Γ′
1 ⇒ Δ1, ϕ

2. � ϕ,Γ2 ⇒ Δ2

3. PROP (ϕ) ⊆ PROP (Γ′
1 � [ψ] � Δ1) ∩ PROP (Γ2 � Δ2)

By 1, we have ψ∧χ,Γ′
1 ⇒ Δ1, ϕ. By 2, and PROP (ϕ) ⊆ PROP (Γ′

1�[ψ∧χ]�
Δ1)∩PROP (Γ2�Δ2) we conclude that ϕ is also an interpolant for ψ∧χ,Γ′ ⇒ Δ.

Now take any partition such that ψ ∧ χ ∈ Γ2 (i.e. Γ2 := ψ ∧ χ,Γ′
2) and for

the premiss consider respective partition with ψ ∈ Γ2 (i.e. Γ2 := ψ,Γ′
2). Again by

the induction hypothesis there is ϕ such that:

1. � Γ1 ⇒ Δ1, ϕ

2. � ϕ,Γ′
2, ψ ⇒ Δ2

3. PROP (ϕ) ⊆ PROP (Γ1 � Δ1) ∩ PROP (Γ′
2 � [ψ] � Δ2)

By 2, we get ψ ∧ χ,ϕ,Γ′
2 ⇒ Δ2, and by 1, and PROP (ϕ) ⊆ PROP (Γ1 �

Δ1) ∩ PROP (Γ′
2 � [ψ ∧ χ] � Δ2) we conclude that ϕ is also an interpolant for

ψ ∧ χ,Γ′ ⇒ Δ.

Consider the case of (⇒ ∧): then Γ ⇒ Δ := Γ ⇒ Δ′, ψ ∧ χ, and both
premisses have the form Γ ⇒ Δ′, ψ and Γ ⇒ Δ′, χ. We take any partition such
that ψ ∧ χ ∈ Δ1 (i.e. Δ1 := Δ′

1, ψ ∧ χ) and for premisses we consider respective
partitions with ψ ∈ Δ1 and χ ∈ Δ1 (i.e. Δ1 := Δ′

1, ψ and Δ1 := Δ′
1, χ). By the

induction hypothesis for both premisses we have interpolants ϕ1, ϕ2 such that:

1. � Γ1 ⇒ Δ′
1, ψ, ϕ1

2. � ϕ1,Γ2 ⇒ Δ2

3. PROP (ϕ1) ⊆ PROP (Γ1 � Δ′
1 � [ψ]) ∩ PROP (Γ2 � Δ2)

4. � Γ1 ⇒ Δ′
1, χ, ϕ2

5. � ϕ2,Γ2 ⇒ Δ2

6. PROP (ϕ2) ⊆ PROP (Γ1 � Δ′
1 � [χ]) ∩ PROP (Γ2 � Δ2)

From 1 and 4, we derive by (⇒ ∧) and (⇒ ∨) Γ1 ⇒ Δ′
1, ψ ∧ χ,ϕ1 ∨ ϕ2, and

from 2 and 5, we derive ϕ1 ∨ ϕ2,Γ2 ⇒ Δ2 by (∨ ⇒). Hence ϕ1 ∨ ϕ2 is a desired
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interpolant for Γ ⇒ Δ′, ψ∧χ since PROP (ϕ1∨ϕ2) ⊆ PROP (Γ1�Δ′
1� [ψ∧χ])∩

PROP (Γ2 � Δ2).
Now, we take any partition such that ψ ∧ χ ∈ Δ2 (i.e. Δ2 := Δ′

2, ψ ∧ χ) and
we consider for premisses respective partitions with ψ ∈ Δ2 and χ ∈ Δ2 (i. e.
Δ2 := Δ′

2, ψ i Δ2 := Δ′
2, χ). By the induction hypothesis for both premisses we

have interpolants ϕ1, ϕ2 such that:

1. � Γ1 ⇒ Δ1, ϕ1

2. � ϕ1,Γ2 ⇒ Δ′
2, ψ

3. PROP (ϕ1) ⊆ PROP (Γ1 � Δ1) ∩ PROP (Γ2 � Δ′
2 � [ψ])

4. � Γ1 ⇒ Δ1, ϕ2

5. � ϕ2,Γ2 ⇒ Δ′
2, χ

6. PROP (ϕ2) ⊆ PROP (Γ1 � Δ1) ∩ PROP (Γ2 � Δ′
2 � [χ])

Then from 1 and 4 we derive by means of (⇒ ∧) Γ1 ⇒ Δ1, ϕ1 ∧ϕ2, and from
2 and 5 by (⇒ ∧) and (∧ ⇒) we obtain ϕ1∧ϕ2,Γ2 ⇒ Δ′

2, ψ∧χ. Therefore ϕ1∧ϕ2

is an interpolant for Γ ⇒ Δ′, ψ ∧ χ, since PROP (ϕ1 ∧ ϕ2) ⊆ PROP (Γ1 � Δ1) ∩
PROP (Γ2 � Δ′

2 � [ψ ∧ χ]).
�

Exercise 3.22. Prove the cases of rules for disjunction, implication and negation
and the cases of contraction and weakening.

One can easily notice that Maehara’s theorem implies Craig’s theorem. As-
sume that: |= ϕ → ψ and PROP (ϕ) ∩ PROP (ψ) �= ∅. By adequacy of LK and
the inversion lemma we get � ϕ ⇒ ψ. Hence taking a partition Γ1 := [ϕ], Δ2 :=
[ψ], Γ2 = Δ1 = ∅ we derive from Maehara’s theorem an interpolant χ, such that
� ϕ ⇒ χ and � χ ⇒ ψ.

3.6.2 Smullyan’s Proof

Smullyan’s proof may be seen as a refinement of Maehara proof since it does not
need any partition of sequents. We also demonstrate for each rule how to obtain
an interpolant for the conclusion on the basis of interpolant(s) for premiss(es).
But the same strategy is presented in a significantly simpler way at the price of
changing the basic calculus13. It is based on the idea that all rules must operate
on the same side of a sequent. So it may be treated as similar in spirit to the proof
from section 1.11, where ordinary cut was replaced with symmetric cuts. Here we
do not need cut at all but symmetric versions of all rules and moreover, additional
rules for negated compound formulae. Let us call SG3 a symmetrical variant of

13Note however that it is less general than Maehara’s strategy—the example will be discussed
in section 5.1.
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G3 where all rules satisfy the condition that no formula is shifted from one side of
the premiss to the other side of the conclusion. The list of axioms consists of:

p,Γ ⇒ Γ, p ¬p,Γ ⇒ Γ,¬p p,¬p,Γ ⇒ Δ Γ ⇒ Δ, p,¬p
⊥,Γ ⇒ Δ Γ ⇒ Δ,� ¬�,Γ ⇒ Δ Γ ⇒ Δ,¬⊥

In addition to standard rules for ∧ and ∨ we have:

(¬¬⇒) ϕ,Γ⇒ Δ
¬¬ϕ,Γ⇒ Δ (⇒¬¬) Γ⇒ Δ, ϕ

Γ⇒ Δ,¬¬ϕ

(⇒→) Γ⇒ Δ,¬ϕ,ψ
Γ⇒ Δ, ϕ → ψ

(→⇒) ¬ϕ,Γ⇒ Δ ψ,Γ⇒ Δ
ϕ → ψ,Γ⇒ Δ

(¬∨⇒) ¬ϕ,¬ψ,Γ⇒ Δ
¬(ϕ∨ψ),Γ,⇒ Δ (⇒¬∨) Γ⇒ Δ,¬ϕ Γ⇒ Δ,¬ψ

Γ⇒ Δ,¬(ϕ∨ψ)

(⇒¬∧) Γ⇒ Δ,¬ϕ,¬ψ
Γ⇒ Δ,¬(ϕ∧ψ) (¬∧⇒) ¬ϕ,Γ⇒ Δ ¬ψ,Γ⇒ Δ

¬(ϕ∧ψ),Γ⇒ Δ

(¬ →⇒) ϕ,¬ψ,Γ⇒ Δ
¬(ϕ → ψ),Γ⇒ Δ (⇒ ¬ →) Γ⇒ Δ, ϕ Γ⇒ Δ,¬ψ

Γ⇒ Δ,¬(ϕ → ψ)

Exercise 3.23. Check that the new rules are normal.
Prove that general versions (with any ϕ active) of the first four axioms are

derivable.
Prove that the new rules are derivable in G3 with cut.

Clearly this SG3 (symmetric G3) is standard but not canonical. In particular,
the subformula property fails but it holds in a slightly more general way: rules are
closed under subformulae and their negations. Soundness is obvious. To show that
it is complete without any form of cut it is sufficient to demonstrate:

Theorem 3.7. If �G3 Γ ⇒ Δ, then �SG3 Γ ⇒ Δ.

Proof: By induction on the height of the proof. Every axiom of G3 is axiomatic
in SG3 and all rules for ∧ and ∨ are also primitive in SG3. So it is enough to
show that both rules for ¬ and → are admissible in SG3. This will follow from two
lemmata stated below. �

Lemma 3.13. (¬¬ ⇒) and (⇒ ¬¬) are invertible in SG3.

Proof: By induction on the height of a proof of ¬¬ϕ,Γ ⇒ Δ (Γ ⇒ Δ,¬¬ϕ
respectively). In the basis ¬¬ϕ is a parameter so we can change it into ϕ. Since
all rules are context independent we can make identical substitutions in all places
where ¬¬ϕ is parametric. Eventually, if it is principal, the premiss is what we
want. �

Now instead of proving admissibility of both G3 rules for ¬ we provide a
more general result. Let Γ¬ ⇒ Δ¬ denote any ¬-variant of Γ ⇒ Δ obtained by
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transferring any formula from one side of the sequent to the other with the addition
of negation. It holds:

Lemma 3.14. If �SG3 Γ ⇒ Δ, then �SG3 Γ¬ ⇒ Δ¬ is provable.

Proof: By induction on the height of the proof. In case a transferred formula is
parametric in the axiom or in the application of any rule it follows from context
independency of rules, so we need to check only the cases where it is a princi-
pal formula. In the basis either we directly obtain (different forms of) axioms or
sequents derivable from axioms by (¬¬ ⇒) or (⇒ ¬¬). For the induction step
consider the case of implication. There are four subcases:

1. We have �n ϕ → ψ,Γ ⇒ Δ where n is the height of a proof and we want to
show that � Γ ⇒ Δ,¬(ϕ → ψ). Since ϕ → ψ is principal we have � ¬ϕ,Γ ⇒ Δ and
� ψ,Γ ⇒ Δ, both with lower height. By the induction hypothesis � Γ ⇒ Δ,¬¬ϕ
and � Γ ⇒ Δ,¬ψ, hence, by the preceding lemma, � Γ ⇒ Δ, ϕ. Therefor we infer
� Γ ⇒ Δ,¬(ϕ → ψ).

2. In case of �n Γ ⇒ Δ, ϕ → ψ, the preceding sequent is �n1 Γ ⇒ Δ,¬ϕ,ψ.
By the induction hypothesis we get � ¬¬ϕ,¬ψ,Γ ⇒ Δ which, by lemma 3.13,
implies � ϕ,¬ψ,Γ ⇒ Δ and then � ¬(ϕ → ψ),Γ ⇒ Δ.

3. If we have �n ¬(ϕ → ψ),Γ ⇒ Δ, we want to show that � Γ ⇒ Δ,¬¬(ϕ →
ψ). Now, the premiss is � ϕ,¬ψ,Γ ⇒ Δ and by the induction hypothesis � Γ ⇒
Δ,¬ϕ,¬¬ψ, hence, by the preceding lemma, � Γ ⇒ Δ,¬ϕ,ψ. From this we obtain
� Γ ⇒ Δ,¬¬(ϕ → ψ) by (⇒→) and (⇒ ¬¬).

4. In case of �n Γ ⇒ Δ,¬(ϕ → ψ) the premisses are: � Γ ⇒ Δ, ϕ and
� Γ ⇒ Δ,¬ψ. By the induction hypothesis we get � ¬ϕ,Γ ⇒ Δ and ¬¬ψ,Γ ⇒ Δ
which yields � ψ,Γ ⇒ Δ. Eventually we derive � ¬¬(ϕ → ψ),Γ ⇒ Δ. �

Exercise 3.24. Check other cases.
Show that lemma 3.14 implies admissibility of G3 rules for ¬ and → in SG3.

Remark 3.1. One may also prove directly for SG3 the admissibility of cut by any
of the methods we used for G3. We postpone this task to chapter 5 where some
weaker versions of this calculus will be examined. But the reader may want to try
this now.

Having established the adequacy of SG3 we can prove the interpolation the-
orem in a direct way for sequents:

Theorem 3.8. If � Γ ⇒ Δ, then for some ϕ such that PROP (ϕ) ⊆ PROP (Γ�Δ),
� Γ ⇒ ϕ and ϕ ⇒ Δ.

Proof: Again by the induction on the height of proof. It is straightforward to
check that for axioms the respective interpolants are:

ϕ,⊥,�,⊥,�,⊥,�.

For all one-premiss rules if we have established an interpolant for the premiss,
it still holds for the conclusion.
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Exercise 3.25. Check three cases of interpolant-preservation for one-premiss rules.

Interpolants for two-premiss rules are built from interpolants established for
premisses. Let χ1 and χ2 be interpolants of the left and the right premiss, respec-
tively. Then, for (⇒ ∧), (⇒ ¬∨), (⇒ ¬ →) the interpolant is χ1 ∧ χ2 whereas for
(∨ ⇒).(→⇒), (¬∧ ⇒) it is χ1 ∨ χ2.

Let us check the cases of (⇒ ¬ →) and (¬∧ ⇒). In the first case we assume
that χ1 is an interpolant of Γ⇒ Δ, ϕ and χ2 is an interpolant for Γ⇒ Δ,¬ψ.
Hence we have: � Γ ⇒ χ1, � χ1 ⇒ Δ, ϕ, � Γ ⇒ χ2 and � χ2 ⇒ Δ,¬ψ. Hence
by (⇒ ∧) we have � Γ ⇒ χ1 ∧ χ2 and by (W ⇒), (⇒ ¬ →) and (∧ ⇒) we get
� χ1 ∧ χ2 ⇒ Δ,¬(ϕ → ψ). It is easy to verify that atom containment condition
for χ1 ∧ χ2 holds if they hold for χ1 and χ1, therefore it is an interpolant for
Γ⇒ Δ,¬(ϕ → ψ).

For (¬∧ ⇒) we prove that χ1∨χ2 is an interpolant. Now we have: � ¬ϕ,Γ ⇒
χ1, � χ1 ⇒ Δ, � ¬ψ,Γ ⇒ χ2 and � χ2 ⇒ Δ. We get χ1∨χ2 ⇒ Δ and ¬(ϕ∧ψ),Γ ⇒
χ1 ∨ χ2 by (⇒ W ), (¬∧ ⇒) and (⇒ ∨). Verification that it is an interpolant for
¬(ϕ ∧ ψ),Γ ⇒ χ1 ∨ χ2 is straightforward. �

Exercise 3.26. Prove the remaining cases.

Remark 3.2. One may wonder why not to use a simpler version of SC in which
only the four rules for negation and implication are replaced with their symmetric
forms. Unfortunately such a solution does not work; without rules for negated
compound formulae such a system is not complete. Try to prove, for example, ⇒
(p → q) → (¬q → ¬p). After the first application of (⇒→)′ and (⇒ ¬¬) we just
stop with ⇒ ¬(p → q), q,¬p. Hence negated rules are really indispensable.

3.6.3 Interpolation by Splitting a Proof

The above proofs of the interpolation theorem may not necessarily provide the
most economical interpolant. Moreover, Maehara’s proof is rather complex and
Smullyan’s proof requires noncanonical SC. Also both are based on induction on
the height of a proof. Can we do better? We present here an additional constructive
proof quite recently proposed by Muskens and Wintein [271]. In fact, they pro-
vided a novel proof of interpolation for some non-classical logics based on direct
construction of tableaux for both formulae from examined implication ϕ → ψ.

We adapt their method here to CPL and use G3 instead of tableaux. In
contrast to Maehara’s or Smullyan’s proof we do not need a proof by induction on
the height of a proof. But instead of one proof tree we split the work and build
separate trees for ϕ ⇒ and ⇒ ψ. Finally we construct an interpolant on the basis
of the chosen leaves in both trees. So interpolant is not built successively on the
basis of all sequents in the proof but rather directly constructed from atoms which
are derived from ϕ and ψ.

We express the interpolation theorem in the following way.
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Theorem 3.9. For any contingent formulae ϕ,ψ, if |= ϕ → ψ, then we can con-
struct an interpolant on the basis of proof trees for ϕ ⇒ and ⇒ ψ.

Proof: Assume that |= ϕ → ψ; hence by the completeness proof we have a cut-free
proof of it. Now apply a proof-search procedure to ϕ ⇒ and to ⇒ ψ and produce
completed trees for them. Let Γ1 ⇒ Δ1, ...,Γk ⇒ Δk be the list of nonaxiomatic
leaves of the tree for ϕ ⇒ and Π1, ...,Σ1, ...,Πn ⇒ Σn such a list taken from the
tree for ⇒ ψ. It holds:

Claim 3.1. For any i ≤ k and j ≤ n, Γi,Πj ⇒ Δi,Σj is an axiomatic clause.

To see this take a tree for ϕ ⇒ and add ψ to succedents of all sequents in
the tree. Due to context independence of all rule it is a correct derivation tree.
Now for each leaf Γi ⇒ Δ, ψ append a tree of ⇒ ψ but with Γi added to each
antecedent and Δi added to each succedent. In the resulting tree we have leaves
of the form Γi,Πj ⇒ Δi,Σj for all i ≤ k and j ≤ n. If at least one of them is not
axiomatic, then � ϕ ⇒ ψ. �

For every Γi ⇒ Δi, i ≤ k, define Γ′
i = {p ∈ Γi : p ∈ Σj for some Πj ⇒

Σj , j ≤ n} and Δ′
i = {p ∈ Δi : p ∈ Πj for some Πj ⇒ Σj , j ≤ n}. Since every

Γi,Πj ⇒ Δi,Σj is axiomatic we are guaranteed that Γ′
i ∪ Δ′

i �= ∅. Note also that
PROP (Γ′

i ∪ Δ′
i) ⊆ PROP ({ϕ} ∩ {ψ}).

Now we can show that:

Claim 3.2. Int(ϕ,ψ) := Γ′
1 ∧ ¬Δ′

1 ∨ ... ∨ Γ′
k ∧ ¬Δ′

k is an interpolant for ϕ → ψ.

Since for every Γ′
i ∧ ¬Δ′

i all (negated) atoms are by definition taken from
PROP ({ϕ}∩{ψ}) we must only prove that � ϕ ⇒ Int(ϕ,ψ) and � Int(ϕ,ψ) ⇒ ψ.

Again take a tree for ϕ ⇒ and add Int(ϕ,ψ) to every succedent. For every
Γi ⇒ Δi, Int(ϕ,ψ) apply (⇒ ∨) to get Γi ⇒ Δi,Γ′

i ∧ ¬Δ′
i, Int(ϕ,ψ)−i, where

Int(ϕ,ψ)−i is the rest of the disjunction (if any). By definition Γ′
i ∧ ¬Δ′

i is a
conjunction of some p ∈ Γi and ¬q for some q ∈ Δi. Hence by the application of
(⇒ ∧) and (possibly) (⇒ ¬) we obtain a set of axiomatic leaves for each conjunct.
Hence we have a proof of ϕ ⇒ Int(ϕ,ψ).

Do the same with a tree for ⇒ ψ but now adding Int(ϕ,ψ) to every an-
tecedent. For every leaf Int(ϕ,ψ),Πj ⇒ Σj apply (∨ ⇒) for each disjunct until
you get leaves: Γ′

1 ∧¬Δ′
1,Πj ⇒ Σj ... Γ′

k ∧¬Δk,Πj ⇒ Σj . In each such leaf apply
(∧ ⇒) and (possibly) (¬ ⇒). Since any Γi,Πj ⇒ Δi,Σj is axiomatic, in every leaf
either there is some p ∈ Γ′

i ∩ Σj or some q ∈ Δ′
i ∩ Πj . Hence Int(ϕ,ψ) ⇒ ψ. �

3.7 Some Related Results

Eventually we take a look at two additional results which are strongly connected
with admissibility of cut. The first is concerned with some rule which is equivalent
to cut. The second is a refinement of theorem 1.13 in the spirit of normalisation
for natural deduction systems.
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3.7.1 Tautology Elimination Rule

Let us consider the following rules of tautology elimination (TE):

�,Γ⇒ Δ
Γ⇒ Δ or ϕ → ϕ,Γ⇒ Δ

Γ⇒ Δ

Although it is a valid schema of rule for elimination of any thesis from the
antecedent of any sequent —hence the name tautology elimination—we prefer for
our purposes the more specific instance on the right. One may easily prove the
following:

Lemma 3.15 (Equivalence of TE and Cut). TE and cut are interderivable in G3.

ϕ ⇒ ϕ
(⇒→) ⇒ ϕ → ϕ ϕ → ϕ,Γ ⇒ Δ
(Cut)

Γ ⇒ Δ

Γ ⇒ Δ, ϕ ϕ,Γ ⇒ Δ
(→⇒)

ϕ → ϕ,Γ ⇒ Δ
(TE)

Γ ⇒ Δ

Exercise 3.27. Prove the equivalence also for A-cut and for multiplicative form of
(→⇒).

Such a rule was first introduced in the late 1950s by Davis and Putnam [57]
in their automated theorem prover for CPL in the form:

C1, ..., Ck−1, C[�]k, Ck+1, ..., Cn

C1, ..., Ck−1, Ck+1, ..., Cn

where C denotes a clause.
It is well known that Davis and Putnam procedure is one of the most efficient

for CPL and in particular TE was also applied in many variants of resolution as an
additional technique for improvement of performance. In the framework of sequent
calculi TE was introduced by Lyaletsky [166] under the name tautology rule and it
was used rather for building proof-search procedures. As a device for proving cut
admissibility it was applied recently by Brighton [40] and then by Tourlakis and
Gao [90]. In both cases admissibility of TE was proved for some modal logics of
provability and provided proofs were slightly complicated because of taking into
account not only proof trees but also proof-search trees. In case of CPL all such
complications may be avoided. Below we provide a simple proof of admissibility of
TE in G3 by induction on the complexity (of eliminated formula) and the height
of the proof.

We shall prove:

Theorem 3.10 (Admissibility of TE). For any ϕ,Γ,Δ, if � ϕ → ϕ,Γ ⇒ Δ, then
� Γ ⇒ Δ.
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Proof: Assume that:

(a) � ϕ → ϕ,Γ ⇒ Δ.

Immediately, by invertibility we obtain:

(b) � Γ ⇒ Δ, ϕ and
(c) � ϕ,Γ ⇒ Δ.

We prove that � Γ ⇒ Δ by induction on the complexity of ϕ.

Basis: ϕ is atomic.
Consider (c); we prove the claim that � Γ ⇒ Δ by subsidiary induction on

the height of � ϕ,Γ ⇒ Δ.
If it is an axiom, then either Γ ⇒ Δ is an axiom, or ϕ,Γ ⇒ Δ is of the form

ϕ,Γ ⇒ Δ′, ϕ. Then, by (b) we have � Γ ⇒ Δ′, ϕ, ϕ which, by contraction, reduces
to Γ ⇒ Δ′, ϕ and we are done.

For the induction step of subsidiary induction assume that the claim holds
for any proof of � ϕ,Γ ⇒ Δ of the height k < n and prove it for the height =
n. The proof is trivial since ϕ may be only a parameter and its deletion (by the
induction hypothesis) in premisses does not affect the application of any rule.

The induction step (of the main induction): Assume as the induction hypoth-
esis that the lemma holds for all formulae of lower complexity than ϕ. The proof
goes by cases. For all types of formulae it is similar and based on invertibility of
respective rules. We consider only one case as an example:

ϕ := ψ ∨ χ:
By invertibility we obtain from (b) and (c): � Γ ⇒ Δ, ψ, χ, � ψ,Γ ⇒ Δ and

� χ,Γ ⇒ Δ and we build the following proof, where IH is marking the application
of induction hypothesis:

Γ ⇒ Δ, ψ, χ

χ,Γ ⇒ Δ
(⇒ W )

χ,Γ ⇒ Δ, ψ
(→⇒)

χ → χ,Γ ⇒ Δ, ψ
IH Γ ⇒ Δ, ψ ψ,Γ ⇒ Δ
(→⇒)

ψ → ψ,Γ ⇒ Δ
IH Γ ⇒ Δ

Exercise 3.28. Provide proofs for other compound formulae.

From lemma 3.15 follows that admissibility of TE implies admissibility of
cut. Moreover, the proof is very simple and similar to Schütte’s proof of the ad-
missibility of cut.
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3.7.2 Strong Completeness in Normal Form

In section 1.11 we have proved strong completeness of K and of course this re-
sult holds also for G3. However, on the basis of results concerning admissibility of
structural rules and invertibility of logical rules we can provide even more sharp-
ened version where the only cuts are not only analytic but atomic in the strong
sense that both premisses of all cuts are clauses. Moreover, this novel proof of
strong completeness shows that every proof of S from some S1, ..., Sk may be put
into a normal form in the sense specified for natural deduction systems. Such a
result was provided by Přenosil [204] for some non-classical logics which will be
discussed in chapter 5. It holds for classical logic as well, moreover, we obtain here
much simpler proof for G3, simply as a corollary of results stated so far.

Let us recall that in the context of natural deduction, the normalisation the-
orem plays the same role as the cut-elimination theorem in the framework of SC.
In fact, Gentzen proved cut elimination for LK in order to show that natural de-
duction proofs in his system NK may be transformed into normal form14. Very
roughly, in normal natural deduction proofs elimination rules are applied before
introduction rules in order to avoid detours in proofs15. Due to the complicated
structure of many proof construction rules connected with discharge of assump-
tions and several irregularities in the shape of rules this result is both hard to
obtain and complicated to express even for systems for which it does hold. For ND
systems with uniform elimination rules it is easier to prove normal form theorem
and the structure is more transparent (see Negri and von Plato [185]). Here we
show that for every S1, ..., Sk � S we can obtain such a normal proof which consists
of three separated parts:

1. Elimination part.

2. Structural part.

3. Introduction part.

in concrete proofs at least one of these parts must be nonempty.
Let us consider G3 enriched with structural rules and inverses of all logical

rules. Moreover, instead of generalised atomic axioms of G3 we will use simple
atomic axioms of the form ϕ ⇒ ϕ for any atomic formula ϕ. We will call this
system G3E. Note that despite the fact that we have proved for G3 admissibility
of all structural rules and inverses of logical rules, these results fail for a calculus
with nonaxiomatic sequents allowed as leaves. As for cut we have commented on
this in section 1.11. but the same applies to W and C. In other words, we cannot
prove that, e.g. if S1, ..., Sn � Γ ⇒ Δ, then S1, ..., Sn � ϕ,Γ ⇒ Δ. The only thing
we can prove is that ϕ, S1, ..., ϕ, Sn � ϕ,Γ ⇒ Δ, where ϕ, Si denotes a sequent Si

with ϕ added to the antecedent, similarly for the other weakening and contractions.

14Von Plato [197] found and published the original direct proof of Gentzen obtained for intu-
itionistic system only.

15Locus classicus is still Prawitz [203], see also Negri and von Plato [185].
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Concerning the inverses of logical rules, one may prove their derivability by means
of cut on compound formulae but this is not sufficient for our purposes, since we
want to show that all cuts may be replaced by atomic cuts. So we must admit that
all structural and elimination rules (i.e. inverses of logical introduction rules) are
primitive.

It is obvious that every proof in G3 may be easily changed into a proof in
G3E just by adding over any axiomatic leaf a segment starting with simple axiom
and a series of weakenings. Thus in particular, every proof of S from S1, ..., Sn

with analytic applications of cut (see theorem 1.13 in section 1.11) may be imme-
diately transformed into a proof in G3E, also analytic. In what follows we consider
only such proofs. Let us say that a segment of a branch satisfies ESI order iff all
applications of elimination rules (if any) precede all applications of structural rules
(if any), and the latter precedes all applications of introduction rules (if any). We
will say that an application of a structural rule (including cut) is atomic based
iff all parametric formulae of premisses and conclusion are atomic, and that it is
atomic iff also active formulae are atomic. A proof is in the normal form iff all its
branches satisfy ESI order and all applications of structural rules are atomic.

We will show that on any analytic proof D of S1, ..., Sn � S we can system-
atically perform local transformations which eventually yield a normal proof of
S1, ..., Sn � S. First we prove:

Lemma 3.16. Every application of a structural rule may be changed into atomic
based and satisfying ESI order.

Proof: By induction on the number of connectives in all parametric formulae
occurring in a sequent being the premiss of the application of some structural
rule. Assume that we analyse an application of (W ⇒) and that some conjunction
is parametric, there are two subcases depending on the position of this conjunction
in the sequent.

1) We have:

ϕ ∧ ψ,Γ ⇒ Δ
(W ⇒)

χ,ϕ ∧ ψ,Γ ⇒ Δ

and it is replaced by:

ϕ ∧ ψ,Γ ⇒ Δ
(∧E ⇒)

ϕ,ψ,Γ ⇒ Δ
(W ⇒)

χ,ϕ, ψ,Γ ⇒ Δ
(∧ ⇒)

χ,ϕ ∧ ψ,Γ ⇒ Δ

Note that ESI order is preserved in the resulting segment and the same applies
to the next case:
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2)

Γ ⇒ Δ, ϕ ∧ ψ
(W ⇒)

χ,Γ ⇒ Δ, ϕ ∧ ψ

and it is replaced with:

Γ ⇒ Δ, ϕ ∧ ψ
(⇒ ∧E)

Γ ⇒ Δ, ϕ
(W ⇒)

χ,Γ ⇒ Δ, ϕ

Γ ⇒ Δ, ϕ ∧ ψ
(⇒ ∧E)

Γ ⇒ Δ, ψ
(W ⇒)

χ,Γ ⇒ Δ, ψ
(⇒ ∧E)

χ,Γ ⇒ Δ, ϕ ∧ ψ

Exercise 3.29. Provide proofs for other compound formulae on both sides of a se-
quent. Check that for (⇒ W ) and contraction the proof goes in the same way.

For cut and parametric conjunction we have:

ϕ ∧ ψ,Γ ⇒ Δ, χ χ,Π ⇒ Σ
(Cut)

ϕ ∧ ψ,Γ,Π ⇒ Δ,Σ
or

Γ ⇒ Δ, ϕ ∧ ψ, χ χ,Π ⇒ Σ
(Cut)

Γ,Π ⇒ Δ,Σ, ϕ ∧ ψ

(for the right premiss the proof is exactly the same)

The former is replaced with:

ϕ ∧ ψ,Γ ⇒ Δ, χ
(∧E ⇒)

ϕ,ψ,Γ ⇒ Δ, χ χ,Π ⇒ Σ
(Cut)

ϕ,ψ,Γ,Π ⇒ Δ,Σ
(∧ ⇒)

ϕ ∧ ψ,Γ,Π ⇒ Δ,Σ

and the latter with:

Γ ⇒ Δ, ϕ ∧ ψ, χ
(⇒ ∧E)

Γ ⇒ Δ, ϕ, χ χ, Π ⇒ Σ
(Cut)

Γ, Π ⇒ Δ, Σ, ϕ

Γ ⇒ Δ, ϕ ∧ ψ, χ
(⇒ ∧E)

Γ ⇒ Δ, ψ, χ χ, Π ⇒ Σ
(Cut)

Γ, Π ⇒ Δ, Σ, ψ
(⇒ ∧)

Γ, Π ⇒ Δ, Σ, ϕ ∧ ψ

Exercise 3.30. Complete a proof for cut with other compound formulae on both
sides of a sequent.

Repeating this procedure we must finish with a proof where all applications
of structural rules are atomic-based. �

Next we must prove:

Lemma 3.17. Every atomic-based application of a structural rule may be changed
into atomic application satisfying ESI order.
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Proof: Again we prove this by induction on the complexity, now of active formulae
in the applications of rules. For example, weakening with implication may be dealt
with as follows:

Γ ⇒ Δ(⇒ W )
Γ ⇒ Δ, ϕ → ψ

is replaced by:
Γ ⇒ Δ(⇒ W )

Γ ⇒ Δ, ψ
(W ⇒)

ϕ,Γ ⇒ Δ, ψ
(⇒→)

Γ ⇒ Δ, ϕ → ψ

and

Γ ⇒ Δ(W ⇒)
ϕ → ψ,Γ ⇒ Δ

with:

Γ ⇒ Δ(⇒ W )
Γ ⇒ Δ, ϕ

Γ ⇒ Δ (W ⇒)
ψ,Γ ⇒ Δ

(→⇒)
ϕ → ψ,Γ ⇒ Δ

Exercise 3.31. Show other cases.

For contraction let us examine a disjunction:

Γ ⇒ Δ, ϕ ∨ ψ,ϕ ∨ ψ
(⇒ C)

Γ ⇒ Δ, ϕ ∨ ψ

is replaced by:

Γ ⇒ Δ, ϕ ∨ ψ,ϕ ∨ ψ
(⇒ ∨E)

Γ ⇒ Δ, ϕ ∨ ψ,ϕ, ψ
(⇒ ∨E)

Γ ⇒ Δ, ϕ, ψ, ϕ, ψ
(⇒ C)

Γ ⇒ Δ, ϕ, ψ, ψ
(⇒ C)

Γ ⇒ Δ, ϕ, ψ
(⇒ ∨)

Γ ⇒ Δ, ϕ ∨ ψ

and

ϕ ∨ ψ,ϕ ∨ ψ,Γ ⇒ Δ
(C ⇒)

ϕ ∨ ψ,Γ ⇒ Δ
with:

ϕ ∨ ψ,ϕ ∨ ψ,Γ ⇒ Δ
(∨E ⇒)

ϕ,ϕ ∨ ψ,Γ ⇒ Δ
(∨E ⇒)

ϕ,ϕ,Γ ⇒ Δ
(C ⇒)

ϕ,Γ ⇒ Δ

ϕ ∨ ψ,ϕ ∨ ψ,Γ ⇒ Δ
(∨E ⇒)

ψ,ϕ ∨ ψ,Γ ⇒ Δ
(∨E ⇒)

ψ,ψ,Γ ⇒ Δ
(C ⇒)

ψ,Γ ⇒ Δ
(∨ ⇒)

ϕ ∨ ψ,Γ ⇒ Δ
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Exercise 3.32. Show other cases.

Finally, for cut with conjunction as the cut-formula:

Γ ⇒ Δ, ϕ ∧ ψ ϕ ∧ ψ,Π ⇒ Σ
(Cut)

Γ,Π ⇒ Δ,Σ

we have:

Γ ⇒ Δ, ϕ ∧ ψ
(⇒ ∧E)

Γ ⇒ Δ, ψ

Γ ⇒ Δ, ϕ ∧ ψ
(⇒ ∧E)

Γ ⇒ Δ, ϕ

ϕ ∧ ψ,Π ⇒ Σ
(∧ ⇒)

ϕ,ψ,Π ⇒ Σ
(Cut)

ψ,Γ,Π ⇒ Δ,Σ
(Cut)

Γ,Π,Π ⇒ Δ,Σ,Σ
(C)

Γ,Π,⇒ Δ,Σ

Exercise 3.33. Show other cases.

Note that all transformations preserve ESI order. �

Now we can see why it was better to separate transformation into atomic-
based applications from transformations into atomic ones. In the latter case a
suitable transformation of cut may lead to the introduction of new contractions.
If they were not atomic, then ESI order on the applications of structural rules is
not preserved.

Proofs obtained as a consequence of application of two preceding lemmata are
structurally atomic in the sense that all structural rules are made on atomic sequents
only. But they are not necessarily normal since our transformations were local and
we have made them in a nondeterministic fashion. It is obvious that there is no appli-
cation of introduction rule immediately above an application of a structural rule and
no application of elimination rule immediately below. But we cannot be sure that in
segments consisting of the application of logical rules only there are no introduction
rules immediately above elimination rules. In fact, we can have a situation where on
a branch there are many segments with succession of logical rules intertwined with
segments with atomic structural rules only. Hence we need:

Lemma 3.18. All introduction rules may be permuted down with respect to all elim-
ination rules.

Proof: In case where the principal formula of an application of some introduction
rule is parametric in the premiss of elimination rule we make a permutation exactly
as in the proof of lemma 2.19. Now if there is no structural part below, then after
repeating this process we are done. If there is a structural part then, since it is
atomic, we must finish with a detour where the principal formula of introduction
rule is a side formula of elimination rule, like, e.g.:

Γ ⇒ Δ, ϕ ψ,Γ ⇒ Δ
(→⇒)

ϕ → ψ,Γ ⇒ Δ
(→ E ⇒)

ψ,Γ ⇒ Δ
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but then we simply erase the immediate sequent (and in this case also a proof
of the other premiss). �

Exercise 3.34. Show two cases of permutation.

As a result of the application of these three lemmata we have:

Theorem 3.11. Every proof of S1, ..., Sn � S in G3E may be transformed into nor-
mal proof.

Note that after the last transformation if any premiss of a cut is a descendant
of (simple) axiomatic leaf it must be still a generalised axiom and we know that
such applications of cut are eliminable so we additionally have:

Corollary 3.1. All necessary cuts (if any) in a normal proof S1, ..., Sn � S in G3E
are made only on descendants of S1, ..., Sn

As a consequence of this result we may provide yet another constructive proof
of the interpolation theorem by consideration of a normal proof for ⇒ ϕ � ⇒ ψ
This time a structural part of the proof takes the role of separating device. But
first we must prove that:

Lemma 3.19. In every normal proof all applications of weakening may be permuted
down with cuts and contractions.

Proof: This is obvious. Of course in case a weakening above cut introduces cut-
formula, this cut and weakening is eliminable, and similarly with weakenings intro-
ducing one of the active formulae of contraction. All other applications of W may be
pushed down immediately above the part with logical introduction rules. �

Again this small refinement is necessary to make sure that there is no atom
which was introduced by W immediately after elimination part, such that it is not
present in PROP (ϕ) but it will be present in the interpolant. Now suppose we
have such refined normal proof for ⇒ ϕ � ⇒ ψ and call a critical sequent a clause
in the structural part of every branch starting with ⇒ ϕ which is immediately
above any applications of W. It is obvious that all atoms of any critical sequent
must be in PROP (ϕ) ∩ PROP (ψ) since only elimination rules, cut and C were
applied to ⇒ ϕ and only W and introduction rules were applied to critical sequent
on every such branch. Let S1, ...., Sk, 1 ≤ k be all critical sequents of a proof and
consider any of the interpretations defined in section 3.4, then I(S1) ∧ ... ∧ I(Sk)
is an interpolant for ϕ → ψ.

In fact, one may think also about a systematic procedure for constructing such
normal proofs; we just sketch the idea. We start with the collection of assumption-
sequents S1, ..., Sk and apply successively elimination rules to all compound for-
mulae. Since the number of compound formulae is finite and for each we have at
most two elimination rules we obtain in a finite way a collection of clauses (atomic
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sequents) S′
1, ..., S

′
n, n ≥ k where each S′

i follows from some Sj , the ancestor of S′
i.

This is the elimination part of the procedure.
On the other hand, we can apply root-first procedure from section 1.6 and

obtain completed proof tree T for S. All leaves are also clauses. This is the intro-
duction part of the procedure.

Now we must compare two collections of clauses: S′
1, ..., S

′
n and a set of leaves

of T in order to provide matching between them. Clearly, applications of W, C
and cut may be necessary for that. This is a structural part of the procedure.



Chapter 4

Sequent Calculi for Modal
Logics

Advantages of using SC as the basic syntactic tool in proof theory soon became
obvious for many logicians and inspired them to search for extensions and generali-
sations. One branch, starting with Gentzen, showed that SC may be profitably used
as a basis of formalisation of mathematical theories.1 The other, which we describe
in this and the next chapter, is connected with the need for finding decent syntactic
formulation of non-classical logics2. However, this kind of research on SC formula-
tions of non-classical logics showed also several limitations of Gentzen’s approach.
It appeared that many non-classical logics cannot be successfully formalised by
means of canonical rules and even the basic format of Gentzen’s sequents may be
in need of some changes and generalisations.

Gentzen already provided a calculus LJ as a formalisation of intuitionistic
logic. Since treatment of non-classical logics being alternative to classical one is
postponed until the next chapter, we present it in section 5.1. Here we will focus
on the applications of SC machinery to some logics which are extensions of CPL
in richer languages. Although there is a great diversity of such systems, we restrict
our attention to only one family but certainly the most important—modal logics.
In fact, many families of logics that are extensions of classical logic like epistemic,
deontic or temporal logics are, at least in a technical sense, just specific kinds of
modal logics.

We do not aim to provide a detailed survey of modal logic, since we are
only interested in showing what kind of problems may arise when we want to
extend our machinery of SC to some extensions of CPL. Nevertheless, to keep the
text self-contained, we recall the basic information necessary for further reading

1This kind of research will be dealt with in the second volume.
2In fact, both trends may be unified by treating the semantics of non-classical logics as formal

theories, e.g. via labelled systems as in Negri and von Plato [186].
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in section 4.1. We will focus on the three most representative and popular modal
logics: T, S4 and S5 and only mention in passing some other logics. In section
4.2, we describe extensions of LK and G3 to these modal logics. Although rules
for modal constants are significantly different from canonical rules for boolean
connectives, we still obtain reasonable standard formalisations of the discussed
logics. In particular, for T and S4 we obtain cut-free systems. Section 4.3 presents
proofs of cut elimination/admissibility, whereas section 4.4, deals with the problem
of proof search and decidability for these logics as formalised on the basis of G3.
As a by-product, we obtain analytic proofs of completeness for both systems. The
remaining sections are devoted to problems with obtaining a cut-free formalisation
of S5. On this occassion, we survey some generalised forms of SC. First, it will be
shown in section 4.5, that for the standard system a direct constructive proof
of cut elimination is not in general possible. We survey some proposals based
either on possible translation into other cut-free logics, or restriction put on cut
or introducing additional nonstandard rules. As a different way of overcoming this
problem, we will present some generalised SC for S5 in the remaining sections.
First, we present practically the simplest one based on the application of labelled
formulae. Then we focus on the family of solutions introduced in the framework
of hypersequent calculus. Eventually, we describe a simplified solution based on
the application of bisequents which are numerically restricted hypersequents. It
will be shown that some other generalised approaches based on the application
of structured sequents or different sorts of sequents may be translated into this
framework.

4.1 Basic Modal Logics

In the foreword, we explained the rationale behind our policy of avoiding general
treatments of wide domains and focusing rather on case studies. Thus, in this
chapter, we will not be interested in the general approach covering as many log-
ics as possible. In particular, we do not consider either weaker families of modal
logics, like congruent, regular or monotonic3, or more generalised versions like mul-
timodal systems. We will focus on the well known class of normal (alethic) modal
logics and, in particular, on three well known systems T, S4 and S5. However, we
have chosen them not only because they are important as modal logics. From the
standpoint of the methodology of SC these three logics represent three different
levels of difficulties which are encountered if we try to obtain cut-free systems and
decidability results. T is not particularly problematic; although it introduces a dif-
ferent type of rules which are context-dependent (impure), there are no problems
with proving cut elimination or decidability and standard techniques developed for
classical logic work pretty well. In case of S4, we still may prove cut elimination
in a standard way but proving decidability is harder. Finally, S5 is very problem-

3SC and cut elimination proofs for the most important of these weaker modal logics is provided
in [128, 131].
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atic in ordinary SC framework; we cannot provide a constructive cut elimination
proof. However, there are many possibilities to overcome this problem and we will
present some of them. In particular, we will see that some generalisations of the
standard SC provide very good solutions.

Let us recall briefly a standard axiomatic and semantic characterisation of
normal modal logics; the three logics we selected are particularly popular examples
from this class4.

We will use standard monomodal language with a countable set PROP
of propositional variables, �—the unary modal necessity operator, and ordinary
boolean constants. Syntactically � behaves exactly as ¬. The modal depth of a
formula is defined as the maximal number of nested occurrences of �, thus, e.g.
�(p ∧ �(q → r)) has modal depth 2. Usually, a dual modal operator of possi-
bility ♦ is used but we treat it here only as a definitional shortcut for ¬�¬, i.e:
♦ϕ := ¬�¬ϕ. Anyway, incidentally we will make some remarks on possible rules
for ♦.

The following abbreviations will be used throughout:
�Γ = {�ϕ : ϕ ∈ Γ};
Γ� = {ϕ : �ϕ ∈ Γ};
Γ� = {�ϕ : �ϕ ∈ Γ}.

4.1.1 Hilbert Systems

One can axiomatize respective modal logics by adding to the Hilbert system for
CPL from section 1.2, the following schemata:

K �(ϕ → ψ) → (�ϕ → �ψ)

T �ϕ → ϕ

4 �ϕ → ��ϕ

5 ¬�ϕ → �¬�ϕ or ♦ϕ → �♦ϕ

Sometimes it will be convenient to refer to their ♦-based converses (partial
in case of K)

K’ �(ϕ → ψ) → (♦ϕ → ♦ψ)

T’ ϕ → ♦ϕ

4’ ♦♦ϕ → ♦ϕ

5’ ♦�ϕ → �ϕ

Exercise 4.1 Prove that all axioms are equivalent with their ‘primed’-versions on
the basis of the interdefinability of � and ♦.

4For an extensive study of the subject, we advise the reader to look at some of the following
textbooks: [33, 48, 101]
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All the systems are closed under MP (modus ponens) and the additional rule
GR (Gödel’s rule) called also the necessitation rule

ϕ / �ϕ

Now, if we add K as the only modal axiom, we get the weakest normal modal
logic K. It is not particularly interesting in itself and may seem even defective if
we interpret � as ‘necessity’ and ♦ as ‘possibility’, yet it is a convenient basis. By
addition of K and T we obtain an axiomatization of T. Addition of 4 to T makes
S4, and addition of 5 yields S5. Instead of 5 one can use

B ¬ϕ → �¬�ϕ or ϕ → �♦ϕ or
B’ ♦�ϕ → ϕ.

and dispense with 4 since it is provable from B and T. Clearly one may obtain
different normal modal logics by different combinations of the respective axioms,
e.g. by addition of 4 or B directly to K we obtain logics K4 and KB, whereas
the addition of B to T is commonly known as B. In what follows we will be
concerned mainly with T, S4 and S5, since other logics either do not generate
specific problems in SC framework or the problems generated by them require
application of more general approaches (like in KB or B). In fact, S5 may be seen
as a kind of a limit case, and we will introduce some generalised systems for it by
the end of this chapter.

The closure under GR is a definitional condition for normal modal logics in
contrast to weaker logics like congruent, regular or monotonic modal logics. We
omit a presentation of these logics but record here two useful rules which define
the class of regular logics and are admissible also in normal logics

RR ϕ → ψ / �ϕ → �ψ or
RR’ ϕ → ψ / ♦ϕ → ♦ψ.

Let L denote one of the modal logics under consideration. In contrast to CPL
the relation of deducibility (provability) may be defined in two nonequivalent ways

Definition 4.1 (Local (�) and global (�) deducibility).

• Γ �L ϕ iff �L ψ1 ∧ .... ∧ ψn → ϕ, where {ψ1, ..., ψn} ⊆ Γ

• Γ �L ϕ iff there is a proof of ϕ in L, where formulae from Γ are also used as
premises for the application of rules.

If Γ is empty then ϕ is a thesis of respective logic. Although from the point of
view of thesishood, it does not matter which notion is considered (in both cases the
sets of theses coincide), in general � is a stronger relation than �. This is because
the closure under GR means that for � the deduction theorem in simple form does
not hold5. For example, already in K we have p � �p (due to closure under

5It does not mean that the deduction theorem does not hold in general for these logics. Many
theorems of this kind were established by Perzanowski [194, 195].
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GR),but p � �p (since �K p → �p). We have only one directional dependence

if Γ �L ϕ, then Γ �L ϕ

For �L, a deduction theorem is satisfied by definition. In fact, all properties
listed for � in lemma 1.1, for CPL, including extensionality principle, hold with-
out changes for �L in all considered logics. Moreover, �L satisfies the following
property:

if Γ �L ϕ, then �Γ �L �ϕ.

Note that this property covers both GR (in case Γ is empty) and K (which
is easily provable). Hence, it may be used instead of GR and K to characterise the
weakest normal logic K. Since the rules of SCs naturally generate relations of the
type � as corresponding to ⇒, in what follows we will be interested only in the
first (weaker) notion of deducibility. Accordingly, we define Γ as L-inconsistent iff
Γ �L ⊥; otherwise, Γ is L-consistent.

4.1.2 Relational Semantics

Standard semantic approach to normal modal logics is based on the use of rela-
tional frames (models) often called possible worlds semantics or Kripke frames,
although independently of Saul Kripke [152], semantics of this kind were intro-
duced by many other logicians like Kanger [146] or Hintikka [117], to mention just
a few6. The popularity of this approach follows from the fact that it offers a very
natural and philosophically motivated interpretation of modal operators. It is also
a natural tool for the interpretation of many other non-classical logics, like e.g.
intuitionistic logic which will be considered in section 5.1. The basic notions of a
frame and a model are defined in the following way:

Definition 4.2 (Frame). A modal frame is a tuple F = 〈W,R〉, where W �= ∅

is a set of states (possible worlds), and R is a binary relation on W, called the
accessibility relation.

In modal logics Rww′ means that w′ is accessible from w (possible relative
to w); R(w) = {w′ : Rww′} is the set of all alternatives for w.

Definition 4.3 (Model). A model on the frame F is a structure M = 〈F, V 〉, where
V is a valuation this time defined as a function on atoms (V : PROP −→ P(W)).
The set of all points of a model M will be denoted as WM; the set of all models
based on a frame will be denoted as MOD(F).

Intuitively, V assigns to each atom a set of states where it is true or satisfied
(in a model). Note that due to the more complicated character of the semantics,
the notion of an interpretation of a formula (and related semantical concepts)
may be defined on different levels. The most basic is the notion of satisfaction of
a formula in a state of a model, which is defined as follows:

6A detailed history of these early investigations may be found in Copeland [54].
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M, w � ϕ iff w ∈ V (ϕ) for any ϕ ∈ PROP
M, w � ¬ϕ iff M, w � ϕ
M, w � ϕ ∧ ψ iff M, w � ϕ and M, w � ψ
M, w � ϕ ∨ ψ iff M, w � ϕ or M, w � ψ
M, w � ϕ → ψ iff M, w � ϕ or M, w � ψ
M, w � �ϕ iff M, w′ � ϕ for any w′ such that Rww′

M, w � ♦ϕ iff M, w′ � ϕ for some w′ such that Rww′

In the case where a model is established, we will simply write w � ϕ. The
set of all states where ϕ is satisfied in a model will be denoted as ‖ϕ‖M. Formally,
‖ϕ‖M = {w ∈ WM : w � ϕ}. Usually, we will simply use ‖ϕ‖ when M is
established or unimportant. ‖ϕ‖ is sometimes called a proposition expressed by
ϕ. Although there are serious obstacles for considering this as a representation
of a logical proposition, we also follow this convenient habit. In case of a set of
formulae, ‖Γ‖M =

⋂ ‖ψ‖M for all ψ ∈ Γ.
The preceding definition states conditions for local (at a state in a model)

truth/satisfiability. It may be naturally generalised to various concepts of global
satisfiability, or universal truth: in a model (all its worlds), frame (all its models), or
some specified classes of frames (all models based on all frames in this class). They
may be denoted, respectively, by M � ϕ, F � ϕ and F � ϕ, where F is a class of
frames. It appears that the most important is the last notion which is accordingly
called validity (in a class of frames). Although the remaining two notions of truth
may be disregarded, we briefly comment on them. The reason for skipping the
notion of truth in a model follows from the fact that semantical characterisation
of (normal) modal logics is connected not with particular models but with frames
or sets of frames. Otherwise, we do not secure closure under substitution which is
an important feature of all logics we consider.

The reason for neglecting the notion of truth in a frame is a bit different. It
is well known that a set of formulae true in any frame is a normal logic. But a
domain of any frame (the number, or a character of objects) is of no importance
for defining logics, only properties of accessibility relations play an essential role
in this respect. So dealing with uniform (modulo accessibility relations) classes of
frames gives us the proper level of abstraction. Since the set of validities of any F
is a normal modal logic (although not every normal modal logic is characterised
by a class of frames) in what follows we will be talking about classes of frames,
or models, with the same sort of relation. The latter will be denoted as MOD(F)
or MOD(L) if it is known that F determines logic L in the sense specified below.
In particular, all normal modal logics which we are dealing with are determined
by classes of frames satisfying some properties on accessibility relations. It follows
from the fact that formulae of modal language correspond to well known relational
conditions; more precisely

Definition 4.4 (Correspondence). ϕ defines the class of structures F iff F � ϕ

The following table displays well known correspondencies for axioms listed
in subsection 4.1.1.
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name condition axiom
reflexivity ∀xRxx T
transitivity ∀xyz(Rxy ∧Ryz → Rxz) 4
symmetry ∀xy(Rxy → Ryx) B
Euclideaness ∀xyz(Rxy ∧Rxz → Ryz) 5

Note that axiom K does not correspond to any condition. In fact, K is char-
acterised (or determined) by the class of all frames in the sense that ϕ is valid (in
K) if it is true in every world of any model. On the basis of the table, we may
establish determination results for other normal logics, in particular: T is deter-
mined by the class of reflexive frames, S4 is determined by the class of frames with
a quasi-ordering accessibility relation (i.e. reflexive and transitive), since T defines
reflexivity and 4 — transitivity. If we take B instead of 5 in characterising S5, we
can see that it is determined by the class of equivalence relations and this allows
one to simplify its semantics. In fact, the simplest semantical characterisation of
S5 may be obtained by means of Kripke frames without an accessibility relation.
A Model for S5 is thus any pair M = 〈W, V 〉, W �= ∅ and V : PROP −→ P (W).
Satisfaction in a world of a model is inductively defined as in models for relational
frames but the clause for � is simpler

• M, w |= �ϕ iff M, v |= ϕ for any v ∈ WM

A formula is S5-valid iff it is true in every world of every such model.
We will say that Γ is F-satisfiable iff there is a state in a model M ∈ MOD(F)

which locally satisfies Γ, otherwise Γ is F-unsatisfiable. In a dual manner, we may
define falsifiability—formally

Definition 4.5 (Satisfiability, falsifiability). Γ is F-satisfiable in a model M ∈
MOD(F) iff ‖Γ‖ �= ∅;
Γ is F-satisfiable iff there is a model M ∈ MOD(F), where it is satisfiable;
Γ is F-falsifiable in a model M ∈ MOD(F) iff ‖Γ‖ �= WM (or: M falsifies Γ);
Γ is F-falsified iff, there is a model M ∈ MOD(F) which falsifies it

The concept of an entailment (consequence relation) may also be defined in
at least two nonequivalent ways but we restrict our interest only to local notion:

ϕ follows locally in F from Γ (Γ |=F ϕ) iff ‖Γ‖M ⊆ ‖ϕ‖M for any M ∈ MOD(F).

(or: for all w ∈ WM of any M ∈ MOD(F) it holds that if M, w � Γ, then
M, w � ϕ)

Obviously, Γ |=F ϕ iff Γ ∪ {¬ϕ} is F-unsatisfiable.
The link between syntactic formalisations and classes of frames is obtained

via soundness and completeness theorems of the form

• (Soundness) if Γ �L ϕ, then Γ |=F ϕ
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• (Completeness) if Γ |=F ϕ, then Γ �L ϕ

The last one is often formulated equivalently

• if Γ is L-consistent, then Γ is F-satisfiable

If the first theorem holds, then L is sound with respect to F , if the second
holds, then L is (strongly) complete with respect to F . If L is adequate (i.e. both
sound and complete) with respect to F , then F characterises L or L is determined
by F . Note that if Γ is empty (in the first formulation) or finite, we have weak
completeness, otherwise we have strong form (i.e. admitting infinite Γ).

Standard proofs of completeness for modal logics apply the well known con-
struction of a canonical model which is also based on the Henkin/Lindenbaum re-
sult concerning maximalization of consistent sets. As a result, we obtain a unique
infinite model belonging to MOD(L) that falsifies all formulae unprovable in L.
For questions of decidability and automated theorem proving, it is more important
that for many logics under consideration there are constructive methods of prov-
ing completeness. They show how to find for any unprovable formula some finite
falsifying model. In particular, for many normal logics, we obtain special falsifying
models based on rooted frames in the sense specified below.

Definition 4.6 (Rooted Frames). A frame F = 〈 W,R〉 is rooted if there is w0 ∈ W,
such that W = {w : R+w0w}, where R+ denotes the transitive closure of R. A
model based on such frame is called a rooted model.

So a rooted frame is generated by w0 with the help of R+. We will be dealing
further with falsifying models of this sort. Moreover, for many logics, the frames of
such models are in fact trees or they turn into trees if we take as nodes not single
points but their clusters.

Definition 4.7 (Cluster). Let F = 〈W,R〉 be any transitive frame, a cluster C is
a maximal subset of W, such that R is the universal relation in it. A cluster is
simple if it contains only one point w, such that Rww (w is reflexive), otherwise
it is proper (contains at least two different states).

The following table displays completeness results for the most important
monomodal normal logics. The middle column contains results obtainable by the
canonical model method. The right column gives determination results in terms
of finite frames. Detailed data concerning sources may be found in Goré [102] or
Indrzejczak [130].

L L-frames finite L-frames

T reflexive intransitive and reflexive trees
S4 reflexive and transitive trees of finite clusters
S5 equivalential single, finite clusters
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All modal logics under consideration are decidable. It follows from the fact
that they satisfy finite model property and are axiomatisable in finite way (a
profound result due to Segerberg [235]).

4.2 SC for Modal Logics

First applications of SC to modal logics were provided in the early 1950s, by Feys
[76], Curry [55], Ohnishi and Matsumoto [189, 190]7. This approach has shown
that modal constants cannot be treated in a similar way as Boolean constants on
the basis of standard SC. Although it did not generally preclude the possibility of
proving results such as cut elimination for many systems, the important negative
examples were found, amongst them S5, one of the most important modal log-
ics. Troubles with providing cut-free systems or just SC systems with satisfactory
rules led to the creation of generalised forms of SC. The most important general-
isations of SC include: display calculi (Belnap [25], Wansing [269]), hypersequent
calculi (Mints [177], Pottinger [202], Avron [10]), multisequent calculi (Curry [56],
Zeman [276], Indrzejczak [126]), several variants of nested SC (Došen [60], Bull
[42], Kashima [147], Stouppa [246], Brünnler [41], Poggiolesi [198]) or labelled SC
(Kanger [146], Mints [182], Negri [187]). It is not possible here to characterise them
even briefly. One can consult surveys of Fitting [87], Wansing [270] or Poggiolesi
[198].

All these approaches are interesting and usually provide more general treat-
ments of phenomena hardly tractable in standard SC framework. As an illustration
of the difficulties and ways of overcoming them, we describe the problem of search-
ing for cut-free formalisations of S5 in the last three sections. But first, we consider
a standard approach.

4.2.1 Modal Extensions of LK

One may extend any variant of SC provided for CPL to modal logics. Clearly, one
may treat SC for CPL, but in the modal language, as the weakest modal logic
and add suitable axiomatic sequents corresponding to modal axioms. Thus, for
example, to obtain such a formalisation of T, we need to add sequents of the form
�(ϕ → ψ),�ϕ ⇒ �ψ and �ϕ ⇒ ϕ. In this way, we treat modal logics as a kind
of theories over CPL. This is not enough to obtain complete results, and we also
need a counterpart of GR which in a sense destroys such a project. Since it is not
possible to avoid the addition of specific modal rules, it is better to mix K and GR
and express them both by means of a rule; the axiomatic sequent corresponding
to T may also be easily changed into a rule by the application of lemma 2.3, from
subsection 2.2.2. Moreover, the rule-based approach makes it possible to treat
modal constants like genuine logical constants. In the case of LK, the standard

7Zeman [276] provides a good summary of this early stage of research.
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solution is to use the rules proposed by Ohnishi and Matsumoto. To obtain LK
for T, which we call LKT, we must add two rules

(�⇒) ϕ,Γ⇒ Δ
�ϕ,Γ⇒ Δ (⇒�) Γ⇒ ϕ

�Γ⇒ �ϕ

(� ⇒) is unproblematic, but (⇒ �) differs significantly from canonical SC
rules. First of all, it is context-dependent in two respects. The first restriction
concerns the succedent in which no parametric formulae are admitted. The sec-
ond restriction concerns the antecedent in which all parametric formulae are also
prefixed with � in the conclusion. Moreover, in contrast to other rules considered
so far, we introduce not one but possibly many occurrences of � in the conclu-
sion. Hence, in terms of properties explained in subsection 3.5.5, this rule is only
weekly explicit and not even weekly symmetric. Since all formulae in the succe-
dent are changed into modal ones, we treat them all as active formulae of this rule
application.

One may prove an instance of the axiom K in the following way:
p ⇒ p q ⇒ q

(→⇒) p, p → q ⇒ q
(⇒ �) �p,�(p → q) ⇒ �q

(⇒→) �(p → q) ⇒ �p → �q
(⇒→) ⇒ �(p → q) → (�p → �q)

A proof of axiom T is obvious and GR is simulated by (⇒ �) with empty Γ.
Hence, we obtain

Theorem 4.1 If Γ �T ϕ, then � Γ ⇒ ϕ in LKT for any finite Γ.

The converse may be proved by adjusting a proof of lemma 1.18, from sub-
section 1.9.1. or by demonstrating in H-T the admissibility of two rules obtained
by the application of Gentzen’s transform IG to both SC rules.

Exercise 4.2 Complete a proof of lemma 1.18, by considering the cases of applica-
tions of (� ⇒) and (⇒ �).

Alternatively, one may refer to the completeness of the Hilbert system and
prove instead the soundness of LKT by showing that

Lemma 4.1 Both modal rules of LKT are validity-preserving in T.

Proof: We will demonstrate it for (⇒ �) and leave the task of checking (� ⇒)
to the reader.

Assume that |=T Γ ⇒ ϕ and consider a model M and a state w such that
w � �Γ but w � �ϕ. Hence, in some accessible state v, v � ϕ but v � Γ which
contradicts our assumption. �

Exercise 4.3 Show the validity-preservation of (� ⇒).
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This lemma implies the soundness of LKT. Since the axiomatic formulation
of T is strongly adequate and compact, LKT is also strongly adequate.

Note that showing validity-preservation for (⇒ �) does not require the ref-
erence to any frame-properties whereas in case of (� ⇒) we need to refer to
reflexivity. It follows that if we drop this rule, we obtain an adequate LK for K,
the weakest normal modal logic. It also shows that from the standpoint of the SC
framework, K is in a sense defective since we do not have a specific rule for the
introduction of � into antecedent.

What about other semantic features of the rules? It may be easily checked
that only (� ⇒) is normal, in the sense of preserving satisfiability in any world
of an arbitrary reflexive model. However, it is not (semantically) invertible. As for
(⇒ �) it is neither normal nor invertible.

Exercise 4.4 Prove that (� ⇒) is normal.
Provide countermodels showing that both rules are not invertible and that

(⇒ �) is not normal.

As for S4 and S5, we can again think of the addition of suitable axiomatic
sequents but this time on the basis of SC for T, LKT in particular. But again, it is
better to introduce suitable rules. By the lemma 2.3, (subsection 2.2.2) we could
add something like

��ϕ,Γ⇒ Δ
�ϕ,Γ⇒ Δ or Γ⇒ Δ,�ϕ

Γ⇒ Δ,��ϕ

to obtain SC for S4 (and similarly for S5). But this is not a good solution.
The left rule is an elimination rule; the right rule may be seen as a kind of (addi-
tional) introduction rule for �, but LK for S4 with such a rule does not admit cut
elimination. It is better to keep (� ⇒) but replace (⇒ �) in LKT with

(⇒�4) �Γ⇒ ϕ
�Γ⇒ �ϕ or (⇒�5) �Γ⇒ �Δ, ϕ

�Γ⇒ �Δ,�ϕ

this way obtaining LKS4 or LKS5, respectively. The rules are also context-
dependent but in a different way. Here, we must have all parametric formulae
modalised already in the premiss so they are not even weekly explicit, in contrast
to (⇒ �). Note also that (⇒ �5) seems to be less restrictive since (modalised)
parametric formulae are allowed in the succedent too. Surprisingly enough this
relaxation leads to serious troubles in case of LKS5. Since in both cases the context
is fixed, we count all formulae in �Γ (�Δ) as parametric and only ϕ as a side
formula and �ϕ as the principal formula of rule application.

The proof of axiom 4 in LKS4 is immediate, for 5 in LKS5 is a bit longer but
still simple and cut-free
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�p ⇒ �p
(⇒ ¬) ⇒ ¬�p,�p

(⇒ �) ⇒ �¬�p,�p
(¬ ⇒) ¬�p ⇒ �¬�p

(⇒→) ⇒ ¬�p → �¬�p
However, when we try to prove B, we cannot do this without cut

�p ⇒ �p
(⇒ ¬) ⇒ ¬�p,�p

(⇒ �) ⇒ �¬�p,�p

p ⇒ p
(� ⇒)�p ⇒ p

(Cut) ⇒ �¬�p, p
(¬ ⇒) ¬p ⇒ �¬�p

(⇒→) ⇒ ¬p → �¬�p

As a result of the above proofs, we have

Theorem 4.2 If Γ �L ϕ, then � Γ ⇒ ϕ in LKL.

where L is S4 or S5. The converse may also be easily proved, either by proving
the admissibility of both rules in Hilbert systems, or by showing soundness on the
basis of the validity-preservation of both rules.

Exercise 4.5 Prove validity-preservation of (⇒ �4) with respect to transitive frames.
Prove validity-preservation of (⇒ �5) with respect to euclidean or to simple frames,
or to symmetric and transitive frames.

As can be expected both rules are not normal; the reader should provide
countermodels. On the other hand, both rules are invertible in the presence of
(� ⇒); one may easily prove a premiss of any of these rules by cut on the conclusion
and �ϕ ⇒ ϕ which is directly provable.

Exercise 4.6 Show the invertibility of (⇒ �4) and (⇒ �5) semantically; note that
the assumption of reflexivity is essential.

4.2.2 Modal Extensions of G3

When one prefers to use G3 as a basis, one should use variants of the above
rules which allow the preservation of our results concerning the admissibility of
structural rules, as well as of smooth proof-search, in the absence of weakening
and contraction. For G3T we need

(�⇒) �ϕ,ϕ,Γ⇒ Δ
�ϕ,Γ⇒ Δ (⇒�) �Γ⇒ ϕ

Π,�Γ⇒ Σ,�ϕ

Here (� ⇒) is an example of contraction-absorbing rule in the sense that
one could obtain it as a derived rule in LKT by the application of (C ⇒). (⇒ �)
is weakening-absorbing in the sense that one could obtain it as a derived rule in
LKT with the help of weakening. Although both rules lack the same syntactic
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properties as their LK counterparts, in case of (� ⇒), we can notice that it is
not only normal but also invertible, although trivially, being just an instance of
(W ⇒). Suitable rules for G3S4 and G3S5 are also weakening-absorbing variants
of LK rules of the form

(⇒�4) �Γ⇒ ϕ
Π,�Γ⇒ Σ,�ϕ (⇒�5) �Γ⇒ �Δ, ϕ

Π,�Γ⇒ �Δ,Σ,�ϕ

Note that in contrast to both the rules devised as extensions of LK, these
two variants are not invertible since weakening (which is involved here) is not in-
vertible. However, all four rules are obviously validity-preserving, which is proved
exactly as for their LK counterparts from the preceding section. Hence, soundness
is guaranteed. As for completeness, we can easily apply the argument from the
preceding section as well, but for the sake of variety, we rather extend the com-
pleteness proof from section 1.10, to cover modal logics formalised as SCs. It is
a well known construction based on the application of so-called canonical models.
We follow quite closely the strategy applied for Hilbert systems with the difference
that instead of maximal consistent sets, we will use maximal consistent pairs of
sets of formulae, similarly as in the proof of Chagrov and Zakharyaschev [48]. All
definitions and results from section 1.10, apply without changes. Of course, cut is
necessary either as a primitive rule (for G3S5) or as an admissible one (which will
be proved in the next section).

In contrast to CPL, to build a model, we have to use a collection of all
maximal consistent pairs, formally

Definition 4.8 (Canonical Model). MC = 〈FC , VC〉 is based on the frame FC which
contains a set WC of all maximal consistent pairs and RC defined:

〈Γ,Δ〉RC〈Π,Σ〉 iff Γ� ⊆ Π (recall that Γ� = {ψ : �ψ ∈ Γ});
VC(p) = {〈Γ,Δ〉 ∈ WC : p ∈ Γ} for all atomic formulae p.

Before proving a truth lemma, we need some preliminary results

Lemma 4.2 �L Γ ⇒ Δ iff for every maximal consistent pair 〈Π,Σ〉, if Γ ⊆ Π, then
Δ ∩ Π �= ∅.

Proof: =⇒ Assume to the contrary that for some 〈Π,Σ〉, Γ ⊆ Π but Δ ∩ Π is
empty. By maximality Δ ⊆ Σ, but this implies, by consistency of 〈Π,Σ〉, that
�L Γ ⇒ Δ.

⇐= If �L Γ ⇒ Δ, then 〈Γ,Δ〉 is consistent, and by lemma 1.23 there is a
maximal extension of it 〈Π,Σ〉 with Γ ⊆ Π and Δ ⊆ Σ, but then Δ ∩ Π is empty.
�

Exercise 4.7 Prove that �L Γ ⇒ Δ iff for every maximal consistent pair 〈Π,Σ〉, if
Δ ⊆ Σ, then Γ ∩ Σ �= ∅.

Lemma 4.3 If �ϕ ∈ Δ for some maximal consistent pair 〈Γ,Δ〉, then 〈Γ�, {ϕ}〉 is
consistent.
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Proof: Assume that 〈Γ�, {ϕ}〉 is inconsistent, then �L Γ� ⇒ ϕ. But then (by
(⇒ �) in G3T and by (� ⇒) and (⇒ �4) or (⇒ �5) in the remaining systems)
�L �(Γ�) ⇒ �ϕ. Since �(Γ�) ⊆ Γ, by lemma 4.2 �ϕ ∈ Γ, and the lemma follows
by contraposition. �

Lemma 4.4 (Truth Lemma). For every formula ϕ and every 〈Γ,Δ〉 ∈ WC : ϕ ∈ Γ
iff 〈Γ,Δ〉 � ϕ.

Proof: in case of atoms and boolean formulae, it is the same as a proof of lemma
1.24, so we need to consider only the case of �ψ

=⇒ Assume that �ψ ∈ Γ but 〈Γ,Δ〉 � �ψ. So there is some 〈Π,Σ〉 such that
〈Γ,Δ〉RC〈Π,Σ〉 and 〈Π,Σ〉 � ψ. But by definition of RC ψ ∈ Π, hence by the
induction hypothesis 〈Π,Σ〉 � ψ—contradiction.

⇐= If 〈Γ,Δ〉 � �ψ but �ψ /∈ Γ, then by maximality �ψ ∈ Δ. Hence, by the
preceding lemma 〈Γ�, {ϕ}〉 is consistent. By lemma 1.23, it may be extended to
a maximal consistent 〈Π,Σ〉 with ψ ∈ Σ. By the induction hypothesis 〈Π,Σ〉 � ψ.
On the other hand, 〈Π,Σ〉 � ψ since 〈Γ,Δ〉RC〈Π,Σ〉. �

The last thing we must prove is a demonstration that the canonical model
for a logic L is really a model for this logic, i.e. that RC is reflexive for T, reflexive
and transitive for S4 and additionally euclidean or symmetric for S5. We prove
one case as an example

Lemma 4.5 The canonical model for G3S4 is transitive.

Proof: Assume that 〈Γ,Δ〉RC〈Π,Σ〉 and 〈Π,Σ〉RC〈Λ,Θ〉. In order to show
〈Γ,Δ〉RC〈Λ,Θ〉 we must show that Γ� ⊆ Λ. Consider an arbitrary �ϕ ∈ Γ. Since
�S4 �ϕ ⇒ ��ϕ, by lemma 4.2 ��ϕ is also in Γ. Hence �ϕ ∈ Π and ϕ ∈ Λ as
required. �

Exercise 4.8 Show that for G3T RC is reflexive. Show that for G3S5 RC is eu-
clidean (use the fact that �S5 ¬�ϕ ⇒ �¬�ϕ).

Hence completeness follows for all three SCs.

4.2.3 Rules for Diamonds

Sometimes also rules for ♦ are provided. In Ohnishi and Matsumoto [189], we have
the following pair for LKT:

(♦ ⇒) ϕ ⇒ Δ
♦ϕ ⇒ ♦Δ (⇒ ♦) Γ ⇒ Δ, ϕ

Γ ⇒ Δ,♦ϕ

Clearly, without (⇒ ♦) we obtain a formalisation of K. It is worth remarking
that although the addition of these rules to LK provides an adequate formalisation
of T in a language with ♦ as the only primitive modal constant, the addition of
rules for both � and ♦ is not sufficient for the completeness of LKT in the full
modal language, i.e. with both modal constants as primitive. It was already noted
by Kripke [153], that such rules are insufficient for proving the interdefinability of
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� and ♦. In order to remedy the problem, one should rather use the following pair
of rules:

(⇒ �′) Γ ⇒ Δ, ϕ
�Γ ⇒ ♦Δ,�ϕ

(♦ ⇒′) ϕ,Γ ⇒ Δ
♦ϕ,�Γ ⇒ ♦Δ

Both the rules are even more defective from the standpoint of well-behaved
canonical rules; they are not even separated since two different constants are in-
volved. On the other hand, they allow for proving suitable equivalences concerning
� and ♦. For example

p ⇒ p
(⇒ ¬) ⇒ ¬p, p

(⇒ �′) ⇒ �¬p,♦p
(¬ ⇒) ¬�¬p ⇒ ♦p

(⇒→) ⇒ ¬�¬p → ♦p

Exercise 4.9 Prove the converse of this implication and ¬♦¬p ↔ �p.

A formalisation of stronger logics requires at least a modification of rules (⇒
�′) and (♦ ⇒′), taking into account a type of operations admissible on parametric
formulae. In order to get LK for S4, we add to CPL (⇒ ♦), (� ⇒) and the following
variants of (♦ ⇒′) and (⇒ �′):

(⇒ �4) �Γ ⇒ ♦Δ, ϕ
�Γ ⇒ ♦Δ,�ϕ

(♦ ⇒4) ϕ,�Γ ⇒ ♦Δ
♦ϕ,�Γ ⇒ ♦Δ

And for LKS5

(⇒ �5) �Γ,♦Π ⇒ �Σ,♦Δ, ϕ
�Γ,♦Π ⇒ �Σ,♦Δ,�ϕ

(♦ ⇒5) ϕ,�Γ,♦Π ⇒ �Σ,♦Δ
♦ϕ,�Γ,♦Π ⇒ �Σ,♦Δ

The modification of these rules for G3 is obvious, and for (♦ ⇒′) and (⇒ �′),
it may be nicely summarised in general schemata due to Fitting [83]

(⇒ �F ) Γ� ⇒ Δ�, ϕ
Γ ⇒ Δ,�ϕ (♦ ⇒F ) ϕ,Γ� ⇒ Δ�

♦ϕ,Γ ⇒ Δ
where Γ� and Δ� are defined as

logic Γ� Δ�

K, T {ψ : �ψ ∈ Γ} {ψ : ♦ψ ∈ Δ}
S4 {�ψ : �ψ ∈ Γ} {♦ψ : ♦ψ ∈ Δ}
S5 {�ψ : �ψ ∈ Γ} ∪ {♦ψ : ♦ψ ∈ Γ} {�ψ : �ψ ∈ Δ} ∪ {♦ψ : ♦ψ ∈ Δ}

Of course, in case we are using only �, the rule (♦ ⇒F ) is not needed, and
for G3T and G3S4, Δ� is empty. For G3S5, we admit Δ� as nonempty but in the
definition for it (and for Γ�), we take into account only the first element of the
union.
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4.3 Cut Elimination

In this section, we will discuss necessary adjustments which must be done in prov-
ing cut eliminability for LK or cut admissibility for G3 with added rules for �.
Similar results may be obtained also for systems equipped with rules for both
modalities but with several additional minor complications of inessential charac-
ter, so we omit a presentation.

4.3.1 Mix Elimination for LKT, LKS4

The first proof of cut eliminability for LKT and LKS4 was provided by Ohnishi
and Matsumoto as an extension of Gentzen’s proof of Mix elimination. It is not
necessary to repeat all details, so we will refer to respective points in Gentzen
proof from subsection 2.4.1, and demonstrate transformations involving modal
rules. Recall that Gentzen’s proof eliminates mix.

In case the rank=2 (point 4.1 of Gentzen’s proof; point 3.1—the case of an
axiom or weakening in at least one premiss is the same as in the classical case), we
have two possible situations in LKT according to which modal rule was applied in
the right premiss. They look like that

Γ ⇒ ϕ
(⇒ �) �Γ ⇒ �ϕ

ϕ,Δ ⇒ Σ
(� ⇒)�ϕ,Δ ⇒ Σ

(Mix) �Γ,Δ ⇒ Σ
or

Γ ⇒ ϕ
(⇒ �) �Γ ⇒ �ϕ

ϕk,Δ ⇒ ψ
(⇒ �)

�ϕk,�Δ ⇒ �ψ
(Mix) �Γ,�Δ ⇒ �ψ

Note that in the second case, even if rank=2, it is possible that more than
one occurrence of the cut-formula is in the right premiss. In both the cases the
reduction of complexity is straightforward

Γ ⇒ ϕ ϕ,Δ ⇒ Σ
(Cut)

Γ,Δ ⇒ Σ
(� ⇒)

...
�Γ,Δ ⇒ Σ

or

Γ ⇒ ϕ ϕk,Δ ⇒ ψ
(Mix)

Γ,Δ ⇒ ψ
(⇒ �) �Γ,�Δ ⇒ �ψ

In case of LKS4 there is only one case of rank 2
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�Γ ⇒ ϕ
(⇒ �4) �Γ ⇒ �ϕ

ϕ,Δ ⇒ Σ
(� ⇒)�ϕ,Δ ⇒ Σ

(Mix) �Γ,Δ ⇒ Σ
which is transformed accordingly

�Γ ⇒ ϕ ϕ,Δ ⇒ Σ
(Mix) �Γ,Δ ⇒ Σ

The reduction of rank in LKT is not problematic either. First, note that
(⇒ �) cannot be the last rule in the left premiss since there are no parametric
formulae in the succedent, so part B (which was left to the reader) is not involved.
Similarly, this rule is not taken into account in proving part A since there are no
parametric formulae in the antecedent. We decided to treat them as active since
they change their form—it was, in fact, the case considered above. As for (� ⇒)
in the left or right premiss, there is no problem since it is context insensitive and
permutes with other rules. More specifically, in proving part A, we can check that
the addition of (� ⇒) as suitable subcase in cases A1 and A2 does not do any harm.
Only the case A3 calls for adjustment—in subcase A3.1 where the cut-formula is
principal we have the following situation:

Γ ⇒ Δ,�ϕk

ϕ,�ϕn,Π ⇒ Σ
(� ⇒)

�ϕn+1,Π ⇒ Σ
(Mix)

Γ,Π ⇒ Δ,Σ
which is changed into

Γ ⇒ Δ,�ϕk

Γ ⇒ Δ,�ϕk ϕ,�ϕn,Π ⇒ Σ
(Mix)

ϕ,Γ,Π ⇒ Δ,Σ
(� ⇒)�ϕ,Γ,Π ⇒ Δ,Σ
(Mix)

Γ,Γ,Π ⇒ Δ,Δ,Σ
(C)

...
Γ,Π ⇒ Δ,Σ

where both applications of mix are of lower rank.

In case of LKS4, things are slightly more complicated, since in (⇒ �4) for-
mulae from the antecedent are treated as parametric. Hence, it is possible that in
reducing the rank, a modal formula is involved which is parametric in the right
premiss obtained by the application of (⇒ �4)

Γ ⇒ Σ,�ϕk

�ϕn,�Δ ⇒ ψ
(⇒ �4)�ϕn,�Δ ⇒ �ψ
(Mix)

Γ,�Δ ⇒ Σ,�ψ

In this case, if the left premiss was obtained by the application of some
Boolean rule or (� ⇒), we cannot, in general, reduce the right rank since it will
lead to the following figure:
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Γ ⇒ Σ,�ϕk �ϕn,�Δ ⇒ ψ
(Mix)

Γ,�Δ ⇒ Σ, ψ

where the application of (⇒ �) may not be possible, if formulae in Γ are not
modalised, and Σ in the succedent of the left premiss is not empty. But in such a
case either the cut-formula in the left premiss is principal or not. If it is parametric,
we reduce the left rank instead (so a proof of part B is essentially enriched). On
the other hand, if the left premiss was obtained by (⇒ �4) we have the following:

�Γ ⇒ ϕ
(⇒ �4) �Γ ⇒ �ϕ

�ϕn,�Δ ⇒ ψ
(⇒ �4)�ϕn,�Δ ⇒ �ψ

(Mix) �Γ,�Δ ⇒ �ψ

In this case we reduce the right rank

�Γ ⇒ ϕ
(⇒ �4) �Γ ⇒ �ϕ �ϕn,�Δ ⇒ ψ
(Mix) �Γ,�Δ ⇒ ψ

(⇒ �) �Γ,�Δ ⇒ �ψ

This is possible because all formulae in the antecedent of the left premiss are
also modalised, and the list of parameters in the succedent is empty.

It is not difficult to apply other strategies of local proofs of cut elimination
considered in chapter 2. Girard’s proof needs adjustments in the proof of the mix
reduction lemma (lemma 2.7). Reductions on the height are performed in the same
way as reductions on the rank in both LKT and LKS4. The only case which looks
different is when both cut-formulae are principal. In case of �ϕ in LKT we have

Γ ⇒ ϕ
(⇒ �) �Γ ⇒ �ϕ

ϕ,�ϕk,Δ ⇒ Σ
(� ⇒)

�ϕk+1,Δ ⇒ Σ
(Mix) �Γ,Δ ⇒ Σ

which is changed into

Γ ⇒ ϕ

�Γ ⇒ �ϕ ϕ,�ϕk,Δ ⇒ Σ
(Mix)

ϕ,�Γ,Δ ⇒ Σ
(Mix)

Γ,�Γϕ,Δϕ ⇒ Σ
(� ⇒)

...
�Γ,�Γϕ,Δϕ ⇒ Σ

(C ⇒,W ⇒)
...

�Γ,Δ ⇒ Σ

where the first applications of mix is of lower height and the second of lower degree.

Exercise 4.10 Check the correctness of Girard’s proof for LKS4.
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In a similar way, we can extend the reductive proof from section 2.4.3, to
cover both LKT and LKS4. As for global proofs; one may find in the last chapter
of Curry [56], a sketch of suitable modification for S4 which works also for T.
However, Buss’ proof cannot be applied to modal logics in a straightforward way.

Exercise 4.11 Reprove Right reduction lemma (lemma 2.9) for LKT and LKS4.

Although for LKS5, we have already provided an example of a proof with
irreducible cut, after consideration of cut elimination proofs, we can also show
why in general such proofs break down in this case. Let us take the situation
where the left premiss is obtained by (⇒ �5) but the cut-formula is parametric

�Γ ⇒ �Π, ψ,�ϕ
(⇒ �5) �Γ ⇒ �Π,�ψ,�ϕ

ϕ,Δ ⇒ Σ
(� ⇒)�ϕ,Δ ⇒ Σ

(Cut) �Γ,Δ ⇒ �Π,�ψ,Σ

in this case after the reduction of the height on the left we get

�Γ ⇒ �Π, ψ,�ϕ �ϕ,Δ ⇒ Σ
(Cut) �Γ,Δ ⇒ �Π, ψ,Σ

and there is no possibility to apply (⇒ �5) if Δ and Σ are nonempty and
not modalised.

4.3.2 Admissibility of Cut in G3T and G3S4

In case of the modal versions of G3, in order to apply any proof of admissibility of
cut presented in chapter 3, we must take care of all preliminary results first. We
check them one by one.

First, lemma 3.1, i.e. height-preserving admissibility of weakening, is easy
to obtain. (� ⇒) behaves like classical rules and for (⇒ �) and (⇒ �4), we
simply add a suitable formula to conclusion with no necessity of using the induc-
tion hypothesis. Also, lemma 3.2, concerning the generalisation of axioms holds.
Γ,�ϕ ⇒ �ϕ,Δ is provable easily from ϕ ⇒ ϕ or �ϕ,ϕ ⇒ ϕ in all systems.

As for invertibility, (� ⇒) is obviously (height-preserving) invertible by (h-p
admissible) weakening, but neither (⇒ �) nor (⇒ �4) is invertible. Moreover, we
can ask if the addition of these rules to G3 does not destroy the result for other
rules. Fortunately, it does not. We must check again the case where a suitable
Boolean formula is parametric in the last step. Consider a new situation when
(⇒ �) or (⇒ �4) was applied in this step. The formula in question is not modal,
hence it must be an element of Π or Σ in the schema of the application of the
modal rule, and it was not present at all in the premiss. So it is enough to change
it into suitable subformulae and the induction hypothesis does not apply here. As
a result, lemma 3.3, still holds for all Boolean rules and for (� ⇒).

Finally, we must prove height-preserving admissibility of contraction in the
presence of the new rules. Again, we supplement the proof of lemma 3.4, from
subsection 3.2.2. In case of (� ⇒) as the last rule, it is straightforward in both
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situations, i.e. when the contracted formula was parametric and when one occur-
rence of it was principal. If the latter holds note that two occurrences of �ϕ are
already in the premiss so one is deleted by the induction hypothesis. If the last
rule was (⇒ �) or (⇒ �4), then if two occurrences of a formula are in Π or Σ,
we simply delete one. Otherwise, the only contraction in the antecedent on some
element of �Γ must be considered since in the succedent we have only one modal
formula. In case of (⇒ �) or (⇒ �4) it is reduced immediately in the premiss
by the induction hypothesis on the height. Thus, contraction is height-preserving
admissible for G3T and G3S4.

Incidentally, note that this proof does not hold for G3S5. In the case of
(⇒ �5), we have additionally the situation with two occurrences of �ϕ in the
succedent, where one is parametric and one principal. So we have in the (succedent
of the) premiss ϕ and �ϕ and there is no possibility of reduction.

Let us now consider the proof of admissibility of cut in Dragalin’s style (sub-
section 3.3.1). First, we take two cases with the modal cut-formula principal in
both premisses. Note that in this case the reduction of the complexity of the cut-
formula is connected only with the application of (⇒ �) in both premisses in
G3T

Γ ⇒ ϕ
(⇒ �)

Π,�Γ ⇒ Σ,�ϕ

ϕ,Δ ⇒ ψ
(⇒ �)�ϕ,Λ,�Δ ⇒ Θ,�ψ

(Cut)
Π,Λ,�Γ,�Δ ⇒ Σ,Θ,�ψ

which is changed into

Γ ⇒ ϕ ϕ,Δ ⇒ ψ
(Cut)

Γ,Δ ⇒ ψ
(⇒ �)

Π,Λ,�Γ,�Δ ⇒ Σ,Θ,�ψ

In case of (� ⇒) on the right we have

Γ ⇒ ϕ
(⇒ �)

Π,�Γ ⇒ Σ,�ϕ

�ϕ,ϕ,Δ ⇒ Λ
(� ⇒)�ϕ,Δ ⇒ Λ

(Cut)
Π,�Γ,Δ ⇒ Σ,Λ

and provide the following reduction

Γ ⇒ ϕ

Π,�Γ ⇒ Σ,�ϕ �ϕ,ϕ,Δ ⇒ Λ
(Cut)

ϕ,Π,�Γ,Δ ⇒ Σ,Λ
(Cut)

Π,Γ,�Γ,Δ ⇒ Σ,Λ
(� ⇒), (C ⇒)

...
Π,�Γ,Δ ⇒ Σ,Λ

where the first cut is eliminable by the induction hypothesis on the height
and the second by the induction hypothesis on the complexity of the cut-formula.

Exercise 4.12 Check that the reduction of the height (part 3 of the proof) is correct
in the presence of modal rules.
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In G3S4, we do not have any such new situation, since in (� ⇒) and (⇒ �4)
we have the cut-formula also in the premisses, so we must provide a reduction of
the height on the right premiss.

Exercise 4.13 Provide reduction of the height in the right premiss for two cases:
(⇒ �4) on the left and on the right.
(⇒ �4) on the left and (� ⇒) on the right.

Smullyan’s proof (subsection 3.3.2), of admissibility of A-cut may be also
adapted to G3T and G3S4. We illustrate it with one case for G3T. When both
cut-formulae are principal but in the right premiss (� ⇒) was applied, we have

Γ ⇒ ϕ
(⇒ �)

Π,�Γ ⇒ Σ,�ϕ

�ϕ,ϕ,Π,�Γ ⇒ Σ
(� ⇒)�ϕ,Π,�Γ ⇒ Σ

(Cut)
Π,�Γ ⇒ Σ

this is changed into

Γ ⇒ ϕ
(W )

Π,Γ,�Γ ⇒ Σ, ϕ

ϕ,Π,�Γ ⇒ Σ,�ϕ �ϕ,ϕ,Π,�Γ ⇒ Σ
(Cut)

ϕ,Π,�Γ ⇒ Σ
(W ⇒)

ϕ,Π,Γ,�Γ ⇒ Σ
(Cut)

Π,Γ,�Γ ⇒ Σ
(� ⇒), (C ⇒)

...
Π,�Γ ⇒ Σ

W is h-p admissible which guarantees that the first cut has indeed lower height.

Exercise 4.14 Complete a proof for G3T and provide a proof for G3S4.

Schütte’s proof (subsection 3.3.3), can be also used but note that now it is
not enough to make only one induction on the height of the proof of one premiss
which is performed only in the basis of the induction on complexity. Since one rule
for � is not invertible, we are forced to make a subsidiary induction on the height
of the left premiss in the inductive step when cut-formula is modal.

Exercise 4.15 Provide a proof of admissibility of cut for G3T and G3S4 using
Schütte’s strategy.

4.4 Decidability

We already know that proof-search and establishing decidability is simpler in the
setting of G3, hence in this section we will be dealing only with systems G3T and
G3S4. However, in case of modal logics even in this setting, we can find problems
already discussed in chapter 2. Since invertibility of all rules is lost, both calculi
are not confluent, and in general, we cannot avoid backtracking or some other
techniques which allow for tracking control on all possible choices. In G3S4, things
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are even worse due to the possibility of infinite branches, but we postpone this
problem and first limit considerations to G3T. For both the systems, we modify
the notation slightly to make explicit that (� ⇒) was applied to some �-formula in
the root-first proof search and need not be applied again to the repeated principal
formula in the premiss, unless some new circumstances take place. We will use �
instead of � for making it clear, so in this section (� ⇒) is represented by means
of the following schema:

�ϕ,ϕ,Γ ⇒ Δ
�ϕ,Γ ⇒ Δ

4.4.1 Proof Search in G3T

In proof search, we can basically follow a depth-first procedure described in sub-
section 1.6.3, but with some adjustments. The stage of the application of rules on
the chosen branch should be divided into two parts: first apply all boolean rules
and (� ⇒), then (⇒ �) should be applied (to some chosen boxed formula in the
succedent) when all other formulae are either atomic or boxed in the succedent and
boxed with � in the antecedent. Informally, it corresponds to the situation that
we checked all formulae in some state (saturation of a state) before we introduced
another, accessible state.

Exercise 4.16 Generalise the algorithm of proof search provided in section 1.6.3.

However, it is not enough to provide a fair procedure. Let us consider the
thesis �(¬p ∧ q) → (¬�r → �(q ∨ p)). Although it is cut-free provable, we can
miss the point as the following failed proof search tree shows:

q ⇒ r, p
(¬ ⇒) ¬p, q ⇒ r

(∧ ⇒) ¬p ∧ q ⇒ r
(⇒ �) �(¬p ∧ q), q ⇒ �(q ∨ p),�r, p
(¬ ⇒) �(¬p ∧ q),¬p, q ⇒ �(q ∨ p),�r

(∧ ⇒) �(¬p ∧ q),¬p ∧ q ⇒ �(q ∨ p),�r
(� ⇒) �(¬p ∧ q) ⇒ �(q ∨ p),�r

(¬ ⇒) �(¬p ∧ q),¬�r ⇒ �(q ∨ p)
(⇒→) �(¬p ∧ q) ⇒ ¬�r → �(q ∨ p)

(⇒→) ⇒ �(¬p ∧ q) → (¬�r → �(q ∨ p))

Since G3T is not confluent, we cannot be sure that the root sequent is un-
provable if we finish some branch with nonaxiomatic but atomic leaf. Perhaps some
other routes may lead to success. The example shows where the problem lies. We
can apply (⇒ �) only to one formula in the succedent, the remaining ones are
erased. But one may easily see that the selection of the other �-formula leads to
a proof
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¬p, q ⇒ q, p
(⇒ ∨) ¬p, q ⇒ q ∨ p

(∧ ⇒) ¬p ∧ q ⇒ q ∨ p
(⇒ �) �(¬p ∧ q), q ⇒ �(q ∨ p),�r, p
(¬ ⇒) �(¬p ∧ q),¬p, q ⇒ �(q ∨ p),�r

(∧ ⇒) �(¬p ∧ q),¬p ∧ q ⇒ �(q ∨ p),�r
(� ⇒) �(¬p ∧ q) ⇒ �(q ∨ p),�r

(¬ ⇒) �(¬p ∧ q),¬�r ⇒ �(q ∨ p)
(⇒→) �(¬p ∧ q) ⇒ ¬�r → �(q ∨ p)

(⇒→) ⇒ �(¬p ∧ q) → (¬�r → �(q ∨ p))

Incidentally, we can find even shorter proof if we resign from rigid application
of our procedure and apply (⇒ �) before all possible applications of boolean rules
and (� ⇒). The resulting proof is

¬p, q ⇒ q, p
(⇒ ∨) ¬p, q ⇒ q ∨ p

(∧ ⇒) ¬p ∧ q ⇒ q ∨ p
(⇒ �) �(¬p ∧ q),¬�r ⇒ �(q ∨ p)

(⇒→) �(¬p ∧ q) ⇒ ¬�r → �(q ∨ p)
(⇒→) ⇒ �(¬p ∧ q) → (¬�r → �(q ∨ p))

However, in general, we will follow the usual order of rule’s application.
Also, in case of unprovable sequents if we try to obtain a falsifying model

for an input, we find that in case of any (⇒ �) application all �-formulae from
the succedent must be dealt with. Otherwise, our construction is not sufficient
for building a model in which all formulae generated during a proof-search will
be satisfied. To avoid such problems, we must have a possibility of going back
to this stage of proof search where we have made a selection and try with the
next candidate. We have made some remarks on these matters in section 2.6, but
postponed a more detailed discussion until now.

Several solutions were proposed to the effect that backtracking is formally
secured somehow which may be roughly divided into two main approaches. In the
first approach, we are building a collection of proof trees for a sequent and either
at least one is a proof or all contain some nonaxiomatic leaves. In the latter case, a
falsifying model is constructed on the basis of material provided by all proof trees
in the collection. Such an approach is presented in detail by Zeman [276] and Goré
[103], for tableau systems and may be applied also to SC. The advantage of this
approach is that we do not introduce any new kind of items except proof trees
used for proof search in CPL and described in section 1.6.

The other approach generalises the notion of a proof search tree in such a
way that another kind of branching is introduced. Such trees with two types of
branching were introduced first by Beth [28], in tableau system for intuitionistic
logic. We have made some remarks on these matters in section 2.6, and proposed
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a general schema of a rule (DB) of disjunctive branching. In case of G3T, we may
simplify (DB) significantly by taking into account only alternative applications
of (⇒ �). Such a solution was applied, e.g. by Sambin [223]); also a decision
algorithm for basic monotonic logics sketched in Indrzejczak [128], is based on
such a meta-rule of Subtree Generation (SG). For G3T it has the form

(SG) ϕ1, ..., ϕl ⇒ ψ1 ..... ϕ1, ..., ϕl ⇒ ψk
Γ, �ϕ1, ...,�ϕl ⇒ �ψ1, ...,�ψk, Δ

where Γ and Δ contain only atomic formulae.
Notice that in contrast to the very general schema (DB) this schema is

strictly restricted. Only applications of (⇒ �) are taken into account, all com-
pound boolean formulae and all �-formulae in the antecedent must be used before
its application and all �-formulae in the succedent must be applied in one step.

Of course, branching occurring in (SG) has a different character than in all
branching rules of G3; it is disjunctive in the sense that for provability of the
conclusion, we need provability of at least one premiss. In case k = 1 (SG) is just
an application of (⇒ �), otherwise each premiss is a root sequent of a separate
subtree.

We can again slightly change our procedure of proof search devised in sec-
tion 1.6. Moreover, by an atomic sequent we now mean any sequent of the form:
Γ, �ϕ1, ...,�ϕl ⇒ Δ with Γ and Δ containing only atomic formulae. Sequents of
the form: Γ, �ϕ1, ...,�ϕl ⇒ �ψ1, ...,�ψk, Δ are called m-sequents (from modal).

Notice that in G3T if we run our procedure on any sequent S, and apply first
only boolean rules and (� ⇒) to all compound formulae, there are three possible
outcomes:

1. all leaves axiomatic;

2. at least one leaf nonaxiomatic but atomic;

3. all nonaxiomatic leaves being m-sequents.

Cases 1 and 2 are like in K and lead to termination with a proof or disproof of
S. In case 3, we apply our procedure again to every premiss ϕ1, ..., ϕl ⇒ ψi of the
application of (SG) in the leftmost fashion one by one and repeating application of
(SG), if case 3 holds for some subtree. If for at least one subtree generated by the
application of (SG) case 1 holds, we delete all other subtrees and obtain a proof of
S (this way our application of (SG) becomes an application of (⇒ �)). Otherwise,
we continue until all subtrees satisfy case 2. The procedure must terminate since
every application of (SG) diminishes the modal depth of formulae in the conclusion
sequent and the branching factor is bounded by k (the number of �-formulae in
the succedent).

Exercise 4.17 Describe formally an algorithm.

Let us illustrate this approach with an examination of an unprovable sequent
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p ⇒ p q ⇒ p
(∨ ⇒)

p ∨ q ⇒ p
p ⇒ q q ⇒ q

p ∨ q ⇒ q
(SG) �(p ∨ q), p ⇒ �p,�q �(p ∨ q), q ⇒ �p,�q

(∨ ⇒) �(p ∨ q), p ∨ q ⇒ �p,�q
(� ⇒) �(p ∨ q) ⇒ �p,�q

(⇒ ∨) �(p ∨ q) ⇒ �p ∨ �q

We start with (⇒ ∨), (� ⇒) and (∨ ⇒). Since the procedure works in a depth-
first fashion, we continue with the leftmost leaf which, by (SG) leads to two subtrees.
The first, by (∨ ⇒) yields two atomic leaves with one nonaxiomatic. We continue
with the rightmost subtree and obtain the same result. Since both subtrees have
one nonaxiomatic branch, we stop and do not continue with the rightmost leaf. The
countermodel has three worlds: a root w0 satisfying p and two worlds accessible from
it—w1 satisfying q (and not p) and w2 satisfying p (but not q).

Exercise 4.18 Check that a countermodel satisfies all formulae in antecedents of
subsequent sequents and falsifies all formulae from succedents.

4.4.2 Completeness of G3T

On the basis of this proof search algorithm, we can provide a constructive proof
of completeness for G3T. First, we add one more condition to the definition of
downward saturated set (see definition 1.10, in section 1.7)

9. if �ϕ ∈ Γ, then ϕ ∈ Γ.

The notion of a Hintikka tuple is now based on the above definition. Moreover,
we introduce the notion of a Hintikka system as a (finite) collection HS of Hintikka
tuples with a relation R satisfying two conditions:

(a) If (Γ,Δ)R(Π,Σ), then Γ� ⊆ Π.
(b) If �ϕ ∈ Δ, then there is some (Π,Σ) such that (Γ,Δ)R(Π,Σ) and ϕ ∈ Σ.

where Γ� = {ϕ : �ϕ ∈ Γ}
Now on the basis of any Hintikka system, we can define a T-model MHS where

possible worlds are Hintikka tuples and R is an accessibility relation. Valuation is
defined for each atom p: V (p) = {(Γ,Δ) : p ∈ Γ}. Reflexivity of R follows from
condition 9. One may easily prove

Lemma 4.6 (Truth lemma). For each (Γ,Δ) in HS

• if ϕ ∈ Γ, then MHS , (Γ,Δ) � ϕ;

• if ϕ ∈ Δ, then MHS , (Γ,Δ) � ϕ.

Proof: As the proof in section 1.7, by induction on the complexity of ϕ. We
consider the case of ϕ := �ψ. Let �ψ ∈ Γ. By condition (a) if (Γ,Δ)R(Π,Σ), then
Γ� ⊆ Π, so ψ ∈ Π. By the induction hypothesis (Π,Σ) � ψ, hence (Γ,Δ) � ϕ.
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Now let �ψ ∈ Δ. By condition (b) there is some (Π,Σ) such that (Γ,Δ)R(Π,Σ)
and ψ ∈ Σ. By the induction hypothesis (Π,Σ) � ψ, hence (Γ,Δ) � ϕ. �

Let us say that HS is a Hintikka system for Γ ⇒ Δ iff Γ ⊆ Π and Δ ⊆ Σ for
some (Π,Σ) in this HS. Now we are ready to prove

Lemma 4.7 (Saturation). For any Γ ⇒ Δ, either G3T � Γ ⇒ Δ or there is a
(finite) HS for Γ ⇒ Δ such that for each (Π,Σ) in HS, Π ∪ Σ ⊆ SF (Γ ∪ Δ).

Proof: We examine our proof search procedure for some unprovable Γ ⇒ Δ. If
the procedure finishes after the first round of saturation, i.e. with some leaf atomic,
then we take as (Π,Σ) the unions of all formulae in the antecedents, and succedents,
respectively, of sequents from this branch and define HS as having just this one
Hintikka tuple as the only world. The examination that (Π,Σ) is indeed a Hintikka
tuple is just like for K (cf. lemma 1.13). The additional condition 9 is satisfied
by demanding that all �-formulae in the antecedents are used by (� ⇒). This
requirement guarantees also that (Π,Σ)R(Π,Σ) and so R is reflexive. Otherwise,
we had at least one application of (SG) and there are k ≥ 1 subtrees each of which
also finishes with case 2 or 3. Again we define a Hintikka tuple (Πi,Σi) for every
i ≤ k from unions of formulae from antecedents and succedents of the selected
open branch. Also, it is obvious from the schema of (SG) that for each i ≤ k,
(Π,Σ)R(Πi,Σi) since there is �ψi ∈ Σ such that ψi ∈ Σi and for every �ϕ ∈ Π
we have ϕ ∈ Πi. The situation repeats with every application of (SG) so we obtain
a HS which satisfies the conditions stated and yields a model (indeed rooted one)
where a root-world is just (Π,Σ). �

This yields

Theorem 4.3 (Completeness). If T |= Γ ⇒ Δ, then G3T � Γ ⇒ Δ.

Proof: If Γ ⇒ Δ is unprovable, then we have a HS for it by the saturation
lemma. By the truth lemma in MHS there is a world (Π,Σ) such that (Π,Σ) � ϕ
for every ϕ ∈ Γ and (Π,Σ) � ψ for every ψ ∈ Δ. Hence �|= Γ ⇒ Δ. �

Exercise 4.19 Prove completeness by direct strategy also applied in section 1.7 (see
lemma 1.14).

4.4.3 Proof Search in G3S4

Since, in general, the proof search in G3S4 is similar to proof search in G3T, we
will be brief and point out only the most interesting things. One must notice that
in G3S4 things are worse than in G3T since confluency is not the only thing we
have lost. Let us consider the following proof search:
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...
�p,�¬�¬p ⇒ ¬p

(⇒ �)
p,�p,�¬�¬p ⇒ �¬p

(¬ ⇒)
p,�p,¬�¬p,�¬�¬p ⇒

(� ⇒)
p,�p,�¬�¬p ⇒

(⇒ ¬)�p,�¬�¬p ⇒ ¬p
(⇒ �)

p,�p,�¬�¬p ⇒ �¬p
(¬ ⇒)

p,�p,¬�¬p,�¬�¬p ⇒
(� ⇒)

p,�p,�¬�¬p ⇒
(� ⇒)�p,�¬�¬p ⇒
(⇒ ¬)�¬�¬p ⇒ ¬�p

(⇒ �)�¬�¬p ⇒ �¬�p,�¬p
(¬ ⇒)¬�¬p,�¬�¬p ⇒ �¬�p
(� ⇒)�¬�¬p ⇒ �¬�p

(⇒→)⇒ �¬�¬p → �¬�p

Here, we see that our systematic proof-search may lead to the generation of
an infinite tree. If we are interested only in proving completeness of our system,
this is not a problem. We should take care only of the fairness of our procedure,
i.e. we must be sure that every �-formula in the succedent is eventually used to
create a part of the tree corresponding to a new world, and that every �-formula
from the antecedent is transferred to this new world, then the saturation part of
our procedure provides sufficient information for the description of the (infinite)
model. But we know that S4 is also decidable and we can falsify each invalid
formula by means of a finite model. How to extract a finite model? One possibility
is to apply some form of loop-check. Before we state the details, let us introduce
suitable modifications. The version of (SG) for G3S4 has the following schema:

(SG) �ϕ1, ...,�ϕl ⇒ ψ1 ..... �ϕ1, ...,�ϕl ⇒ ψk
Γ, �ϕ1, ...,�ϕl ⇒ �ψ1, ...,�ψk, Δ

where Γ and Δ contain only atomic formulae.

Here, we can see that, in accordance with the definition of (⇒ �)4, we rewrite
in the premisses all �-formulae from the antecedent of the conclusion but we again
make them all ready for new applications of (� ⇒). Intuitively it corresponds to
the fact that these formulae are now in a new world of an attempted model where
they were not dealt with so far.

Although in G3S4 we may generate infinite branches, due to the subformula
property, the number of different sequents generated from the root sequent is finite
and sooner or later we run into cycles. In the example, we may notice that the
uppermost sequent is indeed a copy of a sequent generated earlier. There is no
need to continue with such branches, hence in the algorithm, we require that after
every application of (SG) we check each premiss if it has no earlier appearance. If
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this is the case, then this premiss is not considered further. Semantically, a world
corresponding to this sequent, say wk, is identified with the earlier world, say wi,
corresponding to the earlier occurrence of this sequent. Thus, we have a loop and
in the attempted model we introduce a cluster which contains all worlds occurring
between wi and wk(= wi). Hence, the final model is a tree of clusters rather than
of single worlds (single worlds are simple clusters). Details of the construction of
falsifying models are similar to the case of the completeness proof for G3T but with
one difference. Now, for every pair of saturated tuples we define R by changing a
condition (a):

If (Γ,Δ)R(Π,Σ), then Γ� ⊆ Π.

where Γ� = {�ϕ : �ϕ ∈ Γ}.
This allows for proving that R is transitive.

Exercise 4.20 Provide a completeness proof for G3S4.

The loop control mechanism described above has a rather global character.
One may also think about introducing some local syntactical constraints blocking
unwanted inferences, similar in spirit to the one of using � instead of �. We
sketch here one such solution provided by Heuerding, Seyfried and Zimmermann
[115]. They generalise the notion of a sequent by addition of a kind of ‘history’
to both sides of a sequent8. Thus, their rules are defined on sequents of the form
[Γ] Δ ⇒ Σ [Π], where a history (of modal rules’ application) is put in [ ] and each
multiset may be empty. In particular, all formulae in Γ are �-formulae.

The rules for boolean connectives are standard but performed only on the
elements of Δ and Σ. For � we have

(�⇒)1
[Γ] ϕ, Δ⇒ Σ [Π]

[Γ] �ϕ, Δ⇒ Σ [Π]
(�⇒)2

[�ϕ, Γ] ϕ, Δ⇒ Σ [ ]
[Γ] �ϕ, Δ⇒ Σ [Π]

(⇒�)
[Γ] Γ⇒ ϕ [ϕ, Θ, Π]
[Γ] Λ⇒ �Θ, �ϕ [Π]

All the rules have side conditions

for (�⇒)1, �ϕ ∈ Γ;
for (�⇒)2, �ϕ /∈ Γ;
for (⇒�), ϕ /∈ Π and there is no box-formula in Λ.

It should be clear that [Γ] is just a notationally different way of expressing
the same effect which we obtained by using �. The role of [Π] is more complicated.
It serves as a record of formulae which are freed of � in effect of the applications
of (⇒ �).

We can show that our example is blocked when applying these rules

8In fact, they are working with Schütte-style one-sided sequents, so they are just using a kind
of tripartite structures Γ ‖ Δ | Σ. We just translate their rules into standard SC.
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[�¬�¬p,�p] p ⇒ �¬p [¬p]
(¬ ⇒)

[�¬�¬p,�p] ¬�¬p, p ⇒ [¬p]
(W ⇒)

[�¬�¬p,�p] ¬�¬p, p, p ⇒ [¬p]
(⇒ ¬)

[�¬�¬p,�p] ¬�¬p, p ⇒ ¬p [¬p]
(� ⇒)1

[�¬�¬p,�p] �¬�¬p, p ⇒ ¬p [¬p]
(� ⇒)1

[�¬�¬p,�p] �¬�¬p,�p ⇒ ¬p [¬p]
(⇒ �)

[�¬�¬p,�p] p ⇒ �¬p [ ]
(¬ ⇒)

[�¬�¬p,�p] ¬�¬p, p ⇒ [ ]
(� ⇒)1

[�¬�¬p,�p] �¬�¬p, p ⇒ [ ]
(� ⇒)2

[�¬�¬p] �¬�¬p,�p ⇒ [¬�p,¬p]
(⇒ ¬)

[�¬�¬p] �¬�¬p ⇒ ¬�p [¬�p,¬p]
(⇒ �)

[�¬�¬p] ⇒ �¬�p,�¬p [ ]
(¬ ⇒)

[�¬�¬p] ¬�¬p ⇒ �¬�p [ ]
(� ⇒)2

[ ] �¬�¬p ⇒ �¬�p [ ]
(⇒→)

[ ] ⇒ �¬�¬p → �¬�p [ ]

In the leaf (⇒ �) cannot be applied since ¬p is in the history on the right. In
fact, we can finish the proof search even quicker if we select �¬p as the principal
formula in the first (from the bottom) application of (⇒ �). We obtain

[�¬�¬p] p ⇒ �¬p [¬�p,¬p]
(¬ ⇒)

[�¬�¬p] ¬�¬p, p ⇒ [¬�p,¬p]
(� ⇒)1

[�¬�¬p] �¬�¬p, p ⇒ [¬�p,¬p]
(⇒ ¬)

[�¬�¬p] �¬�¬p ⇒ ¬p [¬�p,¬p]
(⇒ �)

[�¬�¬p] ⇒ �¬�p,�¬p [ ]
(¬ ⇒)

[�¬�¬p] ¬�¬p ⇒ �¬�p [ ]
(� ⇒)2

[ ] �¬�¬p ⇒ �¬�p [ ]
(⇒→)

[ ] ⇒ �¬�¬p → �¬�p [ ]

Again, we cannot apply (⇒ �) on �¬p since ¬p is in the history.

In this system, we have an example of generalised SC based on structured
sequents. However, it is worth remarking that Heuerding, Seyfried and Zimmer-
mann use the addition of histories to sequents only as a kind of book-keeping de-
vice for obtaining a terminating proof-search procedure. They are not interested
in developing a full-fledged syntactic system, for example, they did not consider
the problem of cut admissibility. More extended theory of such a kind of SC was
proposed by Bilkova [30], to prove a generalised (uniform) interpolation theorem.
She provided a system only for T so only with the left history required, i.e. with
sequents of the form [Γ] Δ ⇒ Σ and modal rules

(�⇒) [�ϕ,Γ] ϕ,Δ⇒ Σ
[Γ] �ϕ,Δ⇒ Σ (⇒�) [ ] Γ⇒ ϕ

[�Γ] Λ⇒ Θ,�ϕ
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At first sight, it may seem that it is also only a notational device, similar in
effect to the introduction of �. But in addition to terminating proof procedure a
syntactic proof theory is developed. In particular, proofs of admissibility of struc-
tural rules, including cut, are provided. In addition to standard W and C rules,
we have two special ones

(W�⇒) [Γ] Δ⇒ Σ
[�ϕ,Γ] Δ⇒ Σ (C� ⇒) [�ϕ,�ϕ,Γ] Δ ⇒ Σ

[�ϕ,Γ] Δ ⇒ Σ

There are also two cut rules of the form

(Cut) [ ] Γ⇒ Δ, ϕ [ ] ϕ,Π⇒ Σ
[ ] Γ,Π⇒ Δ,Σ (Cut�) [Γ] Σ ⇒ Δ,�ϕ [�ϕ,Π] Λ ⇒ Θ

[Γ,Π] Σ,Λ ⇒ Δ,Θ

It is interesting to note that ordinary cut is correct only with an empty
history, otherwise we could ‘prove’ something like [�p] ⇒ p which is not a provable
sequent.

Remark 4.1 Both systems represent a kind of generalised SC based on the use of
structured, or higher-arity sequents. It is a family of systems that multiply the
number of parts of a sequent. The natural place for such a solution was of course
in many-valued logics (cf. [44, 221]), where the number of arguments corresponds
to the number of truth values (see section 5.5). But this approach has also some
representation in modal logics, where application of more arguments is not always
based on such a direct semantical motivation. In the setting of modal logics, such
an approach was for the first time proposed by Sato [224], and we briefly describe
his approach in the last section of this chapter. But other proposals should also be
mentioned briefly. In addition to systems discussed above, where additional argu-
ments in sequents serve only to encode a ‘history’ of attempted falsifying models,
there are systems with more involved motivations, where different parts of sequents
allow to distinguish formulae simply true from necessarily true (necessarily true in
the past or future in temporal case). Blamey and Humberstone [34] developed such
a generalised framework for some modal logics (including all logics discussed here)
based on sequents with four parts. Nishimura [188], proposed a similar approach
for temporal logics with 6-ary sequents. But in their system, an interpretation of
such sequents is different than in SCs described above. Informally, we say that
such a sequent is satisfied whenever, if all formulae in two parts of the antecedent
are simply true and necessarily true, respectively, then in two parts of the succe-
dent at least one formula is simply true and at least one necessarily true. Hence,
additional arguments of a sequent do not serve just as containers for keeping some
data for later use but have specific structural and logical rules. Unfortunately, cut
(or rather different forms of cut present in this system) is not eliminated in their
structured SC. One may find a more detailed description also in Wansing [270]
and Poggiolesi [198]. We will devote more attention to this approach in the next
chapter, where SC formalisations of many-valued logics will be considered.
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4.4.4 Modal Logic with Simplified Proof Search Tree

In general, the shape of rules for the introduction of � to the succedent makes
it impossible to obtain a confluent procedure of proof search. Even if some of
the variants are invertible, the lack of context independence blocks permutability
with other rules, and proof search must be always divided into iterated segments:
exhaustive proof-search by boolean rules (and (� ⇒)), then application of (⇒ �).
Loosely, this corresponds to checking a situation in one state in a model before
we go to the next one. In order not to overlook some possibility, we proposed
generalisations of (⇒ �). It certainly facilitates the control over all possible states
we must check but at the price of complication in the structure of the proof-search
tree (mixing conjunction and disjunction branching).

It is worthwhile to mention that there are modal logics for which it is possible
to avoid such problems. One example of such a logic is S4.3, an extension of S4
axiomatically characterised by the addition of

3: �(�ϕ → ψ) ∨ �(�ψ → ϕ)

to Hilbert system for S4. It is characterised by the class of frames which are
reflexive, transitive and connected, i.e. satisfy the condition

∀xyx(Rxy ∧ Rxz → Ryz ∨ Rzy)

This in effect makes S4.3, the simplest logic of frames with the linear acces-
sibility relation. It is not surprising that a lot of approaches to its formalisation
were proposed in the framework of tableau systems and SCs, both standard and
generalised. A detailed history and description of several systems may be found in
Indrzejczak [130] (see also [136]), here we briefly recall an approach based on stan-
dard SC, introduced by Zeman [276], and significantly developed by Shimura [237].
In order to obtain an adequate formalisation it suffices to change the respective
rule for (⇒ �)4 into:

(⇒ �)3 �Γ ⇒ ϕ1,�ϕ2, ...,�ϕk ... �Γ ⇒ �ϕ1, ...,�ϕk−1, ϕk

�Γ ⇒ �ϕ1, ...,�ϕk

This time the number of premisses is not fixed but depends on the num-
ber of �-formulae in the succedent of the conclusion. A proof of an axiom 3 is
straightforward in LK
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p ⇒ p
(� ⇒) �p ⇒ p

(W ⇒) �p,�q ⇒ p
(⇒→) �p ⇒ �q → p

(⇒ �)3 �p ⇒ �(�q → p)
(⇒ W ) �p ⇒ q,�(�q → p)
(⇒→) ⇒ �p → q,�(�q → p)

q ⇒ q
(� ⇒)�q ⇒ q

(W ⇒)�p,�q ⇒ q
(⇒→)�q ⇒ �p → q

(⇒ �)3�q ⇒ �(�p → q)
(⇒ W )�q ⇒ p,�(�p → q)
(⇒→)⇒ �(�p → q),�q → p
(⇒ �)3⇒ �(�p → q),�(�q → p)

(⇒ ∨)⇒ �(�p → q) ∨ �(�q → p)

Exercise 4.21 Prove validity-preservation of (⇒ �)3 in connected frames.

Shimura [237] proved cut elimination for LK formalisation with the above
rule. Hence, we can prove also a decidability result based on our proof search
procedure. Clearly it is better to base it on G3T with

(⇒ �)3 �Γ ⇒ ϕ1,�ϕ2, ...,�ϕk ... �Γ ⇒ �ϕ1, ...,�ϕk−1, ϕk

Δ,�Γ ⇒ �ϕ1, ...,�ϕk,Σ

where Δ and Σ contain only atoms.

Both variants of this rule for (⇒ �) look like a collection of all possible
premisses generated by (⇒ �)5 from the same sequent as the conclusion. But
there is one significant difference. Here, we have a conjunctive branching like in
other SC rules with more than one premiss. In other words, it means that the
conclusion is provable if all premisses are provable (not if at least one of them is
provable). In proof search for G3S4.3, we are not forced to backtracking like in
G3T or G3S4 with primitive (one-premiss) rule for (⇒ �). Again, if we introduce
in G3T or G3S4 generalised rules to avoid backtracking, we have an iteration of
two kinds of branching in one tree; we are generating not a proof tree but their
rooted family. In contrast, for G3S4.3, we avoid backtracking and two kinds of
branching from scratch.

All solutions presented in this section have direct character in the sense that
proof search is defined directly for SC and to avoid problems, we introduce addi-
tional devices which in the end change standard SC into a generalised calculus. It
is also possible to develop some procedures for proof search in other frameworks
which are free of the problems sketched above and then provide a translation
from proofs in this better-behaving system into SC. An interesting example of
such indirect approach to proof search in SC for modal logics is presented by
Leszczyńska-Jasion [164] where proofs in confluent erotetic calculi for some modal
logics are translated into standard SC proofs.
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4.5 The Case of S5

Although the rules of standard SC for S5 are simple and straightforward, we have
seen that cut elimination cannot be proved by any method which was introduced.
In fact, Lellman and Patinson [159], provided a kind of impossibility result which
implies that it is not possible to obtain a standard SC for S5 that admits standard
techniques of proving cut elimination.

So what can we obtain for S5 in the setting of standard SC? Below we briefly
describe some solutions. They may be roughly divided into direct and indirect. In
the former we deal with systems for S5 for which either cut elimination (of some
sort) was proved or cut is somewhat restricted. In fact, often such systems are not
especially good for practical applications. Indirect solutions are based on results
showing that S5 may be embedded in some other logic for which a decent SC is
defined.

4.5.1 Cut-free and Cut-restricted Solutions

Ohnishi and Matsumoto [189, 190] provided two solutions to the problem of ob-
taining cut-free LKS5, direct and indirect. The first one is based on the idea of
using only so-called modal 1M-formulae, i.e. formulae of modal depth 1 (where
no box is nested inside another box). There is a well known fact that for S5 ev-
ery modal formula may be transformed into an equivalent normal form of such
kind (see, e.g. Hughes and Cresswell [124]). Ohnishi and Matsumoto have shown
constructively that every application of cut (or rather mix) in the system having
only modal 1M-formulae may be eliminated. The bad thing is that there is no
procedure based on SC for reducing S5 M-formulae to their 1M-equivalents. It is
just shown that cut is eliminable in the calculus restricted to 1M-formulae9.

One of the earliest ordinary (but not standard) cut-free SCS5 was provided
by Mints [180], who enriched Ohnishi and Matsumoto’s system with the following
rule:

(⇒ �−) Γ⇒ Δ,�(∧Π → ∨Σ)
Γ,Π⇒ Δ,Σ

Adequacy is proved by translation from cut-free SC to a restricted form of
first-order logic. Although this rule is far from standard and even the subformula
property is lost, it is worth mentioning since many later and more general ap-
proaches are somewhat based on a similar idea of separation of some formulae by
means of a box for later use (in root-first proof search).

A different solution was proposed by Serebriannikov [236], who proposed to
introduce global side conditions for checking the correctness of the application of

9Recently, Indrzejczak [138], provided a fully formalised account of a proof search procedure
in SC based on this solution; however, some standard rules need to be slightly generalised for
this aim.
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modal rules in a few logics, including S5. His proposal is based on the strategy
applied by Prawitz in normalisation proofs for natural deduction systems. We can
find a similar solution in Bräuner [39], who provided a cut-free SC with simple
modal rules on the basis of translation from SC for monadic first-order classical
logic. In this approach, the modal rules are very simple and straightforward

(�⇒) ϕ,Γ⇒ Δ
�ϕ,Γ⇒ Δ (⇒�) Γ⇒ Δ, ϕ

Γ⇒ Δ,�ϕ

Clearly, his (⇒ �) cannot be applied with no side conditions. Following
Prawitz’ [203] natural deduction system he stated them in terms of dependency of
occurrences of formulae in a proof. (⇒ �) may be correctly applied if no occur-
rences of formulae in Γ,Δ depend on the occurrence of ϕ in this proof. We direct
the reader to Bräuner [39], for explication of the notion of dependency in his sys-
tem. In contrast to other proposals here, we obtain a direct constructive proof
of cut elimination. On the other hand, such a system does not allow for defining
a proof-search yielding a decision procedure since the control of dependency is
possible only for ready proof trees.

Many researchers provided solutions for S5 (and other modal logics) based on
the idea of restricting applications of cut, mostly in tableau framework. Following
Sonobe’s suggestions Fitting [83] developed an approach where cut-formulae are
restricted to subformulae of the root sequent but closed under prefixing of �. In
Goré [103], one may find two other, closely related tableau systems for S5 with
special versions of cut. Since Hintikka-style tableau systems are directly translat-
able into ordinary SC (see subsection 3.4.2), we can do it in this case with no
problem. In both cases we get a version of G3 but with three-premiss rules for
boolean connectives replacing two-premiss ones (see subsection 1.4.1), and added
some new rules. The first system contains both modal rules for S4, and moreover
two special rules

(Cut�) Γ⇒ Δ,�ϕ,ϕ ϕ,Γ ⇒ Δ,�ϕ
Γ⇒ Δ,�ϕ (5) �¬�ϕ,Γ⇒ Δ,�ϕ

Π,Γ⇒ Δ,�ϕ

The first one is a special form of A-cut whereas the second is a kind of
elimination rule. In the second system (⇒ �)4 is simply replaced with (⇒ �)5

and (5) is deleted. Both systems are proved complete constructively on the basis
of saturation (see Goré [103]).

However, in case of S5 even the usual analytic cut is sufficient. Takano [259]
proposed a system of Ohnishi and Matsumoto with an analytic form of cut, where
the cut-formula must be a subformula of other formulae in both premises. He
proved constructively that every proof in Ohnishi’s and Matsumoto’s system may
be transformed into a proof with only analytic cut applications. In consequence, we
obtain the subformula property of the system. Notice that a proof of B in Ohnishi’s
and Matsumoto’s system displayed in subsection 4.2.1, satisfies this restriction
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since cut is analytic there. In fact, Sato provided a semantic proof of this fact even
earlier (for a more general, epistemic multimodal variant of S5—but it is possible
to extract his result for simpler monomodal case). For the lack of space, we omit
the rather elaborated, syntactical proof of Takano and present a simplified version
of Sato’s result.

He begins with proving a kind of Lindenbaum lemma which is essentially the
analytic version of this result which we have proved in subsection 1.11.1 (lemma
1.26). For any set of formulae Θ which is closed under subformulae we consider a set
of unprovable sequents Γ ⇒ Δ which are maximal in Θ, i.e. Γ∪Δ = Θ and call it
SeqΘ. An S5-model is defined with W = SeqΘ, V (p) = {Γ ⇒ Δ ∈ SeqΘ : p ∈ Γ}
and Γ ⇒ ΔRΠ ⇒ Σ iff Γ� = Π�. It is obvious that such relation is an equivalence
on SeqΘ, hence we obtain S5-model.

Lemma 4.8 (Truth lemma). For any ϕ ∈ Θ and any Γ ⇒ Δ ∈ SeqΘ:

if ϕ ∈ Γ, then Γ ⇒ Δ � ϕ

if ϕ ∈ Δ, then Γ ⇒ Δ � ϕ

Proof: By induction on the complexity of ϕ. We provide only the case of ϕ = �ψ.

Let �ψ ∈ Γ and consider any Π ⇒ Σ which is R-related to Γ ⇒ Δ. By
definition of R �ψ ∈ Π and by maximality ψ ∈ Π ∪ Σ. If ψ ∈ Σ, then Π ⇒ Σ
would be provable, so ψ ∈ Π and by the induction hypothesis Π ⇒ Σ � ψ. Since
Π ⇒ Σ was arbitrary Γ ⇒ Δ � �ψ.

Assume that �ψ ∈ Δ, we must show that for some Π ⇒ Σ which is R-
related to Γ ⇒ Δ, ψ ∈ Σ, hence by the induction hypothesis Π ⇒ Σ � ψ. Consider
Γ� ⇒ Δ�; it must be unprovable since otherwise Γ ⇒ Δ would be provable
by W. Similarly, Γ� ⇒ Δ�, ψ must be unprovable since otherwise Γ� ⇒ Δ�
would be provable by (⇒ �). By the Lindenbaum lemma there is a maximal
extension Π ⇒ Σ of this sequent. Clearly, Γ� ⊆ Π�, otherwise for some χ such
that �χ ∈ Γ� ⊆ Π we would have by maximality χ ∈ Σ and � Π ⇒ Σ. We must
show that Π� ⊆ Γ� as well. Assume that there is χ ∈ Π� which is not in Γ�. By
maximality χ ∈ Δ and �χ ∈ Δ but then �χ ∈ Σ which yields � Π ⇒ Σ. Hence
Γ ⇒ ΔRΠ ⇒ Σ with ψ ∈ Σ and we are done. �

Completeness follows from this lemma. Moreover, we obtain also decidability;
it is enough to take Θ = SF (ϕ) for any unprovable ϕ. We can find a model with
at most 2n states, where n is the cardinality of Θ.

Avron [12] presented extension of this result to the strong completeness the-
orem, i.e. provability from sequents (see section 1.11). Of course, in this case, the
cut-formulae may be taken also from the set of formulae occurring in nonaxiomatic
leaves.
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4.5.2 Indirect Solutions

The second solution of Ohnishi and Matsumoto is indirect in the sense that it is
based on the translation of LKS5 into LKS4 which is based on the following:

Theorem 4.4 �S5 ϕ iff �S4 �♦�ϕ

Since S4 has a cut-free SC we obtain indirectly a decision procedure for S5.
Note that, in fact, it may be simplified since we know that in S4 � �ϕ iff � ϕ. We
provide a syntactic proof of this simplified version; the reader may find a semantic
proof in Fitting [83].

Proof: ⇐= is obvious since S4 is a sublogic of S5 and ♦�ϕ → ϕ is a theorem of
S5 (the converse of B).

=⇒ This direction is more involved. A proof goes by induction on the height
of a proof in the H-system for S5. We must show that for every axiom ϕ its
counterpart ♦�ϕ is provable in the H-system for S4 and that the primitive rules
preserve this feature. As for axioms K, T, 4 it is simple since they are axioms of
S4, so by GR and T’ we obtain the respective theses.

Now, we prove that �S4 ♦�(5’). By CPL �ϕ → (♦�ϕ → �ϕ) which by
GR, K and 4 yields �ϕ → �(♦�ϕ → �ϕ). By contraposition and RR, we have
�¬�(♦�ϕ → �ϕ) → �¬�ϕ and by CPL inferences we obtain �¬�(♦�ϕ →
�ϕ) → (♦�ϕ → �ϕ) which again by GR, K and 4 yields �¬�(♦�ϕ → �ϕ) →
�(♦�ϕ → �ϕ) This, by T’ yields �¬�(♦�ϕ → �ϕ) → ♦�(♦�ϕ → �ϕ) which
implies by CPL ♦�(♦�ϕ → �ϕ).

If in S5 we get �ϕ by GR, then by the induction hypothesis we have ♦�ϕ
provable in S4. Then by � ��ϕ ↔ �ϕ and closure of H-S4 with respect to the
extensionality principle, we obtain ♦��ϕ.

The last thing is to show that MP is closed under prefixing ♦� in S4. By K
and T’, we have �(ϕ → ψ) ∧ �ϕ → ♦�ψ. This is in CPL equivalent to �(ϕ →
ψ) → ¬�ϕ ∨ ♦�ψ. Since ♦ is distributive with respect to ∨ we obtain �(ϕ →
ψ) → ♦(¬ϕ ∨ �ψ) By RR’ we infer ♦�(ϕ → ψ) → ♦♦(¬ϕ ∨ �ψ) which by the
induction hypothesis yields ♦♦(¬ϕ∨�ψ). This implies by 4’ ♦(¬ϕ∨�ψ) and by
distributivity again ♦¬ϕ∨♦�ψ which is equivalent to �ϕ → ♦�ψ. Again by RR’
we obtain ♦�ϕ → ♦♦�ψ which by the induction hypothesis and 4 yields ♦�ψ.
�

On the basis of this relationship, to provide a proof for ϕ in S5 it is enough
to find a cut-free proof of �¬�ϕ ⇒ in SC for S4. For the sake of illustration, we
provide a cut-free proof of B (or rather ♦�(B)):
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p ⇒ p
(¬ ⇒) p,¬p ⇒

(⇒ W )
p,¬p ⇒ �¬�p

(⇒→)
p ⇒ ¬p → �¬�p

(� ⇒) �p ⇒ ¬p → �¬�p
(⇒ �) �p ⇒ �(¬p → �¬�p)
(¬ ⇒) ¬�(¬p → �¬�p),�p ⇒

(� ⇒) �¬�(¬p → �¬�p),�p ⇒
(⇒ ¬) �¬�(¬p → �¬�p) ⇒ ¬�p

(⇒ �) �¬�(¬p → �¬�p) ⇒ �¬�p
(W ⇒) �¬�(¬p → �¬�p),¬p ⇒ �¬�p
(⇒→) �¬�(¬p → �¬�p) ⇒ ¬p → �¬�p

(⇒ �) �¬�(¬p → �¬�p) ⇒ �(¬p → �¬�p)
(¬ ⇒) ¬�(¬p → �¬�p),�¬�(¬p → �¬�p) ⇒

(� ⇒) �¬�(¬p → �¬�p),�¬�(¬p → �¬�p) ⇒
(C ⇒) �¬�(¬p → �¬�p) ⇒

Ohnishi and Matsumoto’s result may be reasonably improved by replacing S4
with K45 which is axiomatically S5 but without axiom T, or, in semantic terms,
the logic of transitive and euclidean (but not reflexive) frames. It may be easily
proved that

Theorem 4.5 �S5 ϕ iff �K45 �ϕ

Proof: ⇐= Again simple, by containment of K45 in S5 and T.
=⇒ This is harder and goes like a proof of theorem 4.4, by induction on the

height of the proof in H-S5. Axioms K, 4, 5 and GR hold just by the application
of GR and MP by K since both �(ϕ → ψ) and �ϕ are provable in K45 by the
induction hypothesis. It remains to prove �(�ϕ → ψ) in K45. Note that both
ϕ → (�ϕ → ϕ) and ¬�ϕ → (�ϕ → ϕ) are CPL theses. By GR and K we
get �ϕ → �(�ϕ → ϕ) and �¬�ϕ → �(�ϕ → ϕ) The latter by 5 reduces to
¬�ϕ → �(�ϕ → ϕ), hence by CPL we obtain �(�ϕ → ϕ). �

But what is good for S5 in SC setting from this fact? Shvarts [240] provided
LK for K45 which is cut-free. It contains only one modal rule of the form

(⇒�)45 Γ,�Δ⇒ �Σ, ϕ
�Γ,�Δ⇒ �Σ,�ϕ

with side condition that �Δ is nonempty. One may easily show either its
derivability in H-K45 (via IG) or its validity-preservation. We take the second
option

Lemma 4.9 (⇒�)45 is validity-preserving in transitive and euclidean models.
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Proof: Assume that the premiss is valid but in some model and state w1 all
formulae in �Γ and �Δ are true whereas �ϕ and all formulae in �Σ are false.
So in some accessible w2 ϕ is false and all members of Γ and �Δ true. Since the
premiss is valid, there must be at least one formula in �Σ which is true in w2. Let
it be �ψ; since it was false in w1 there is some accessible state w3 where ψ is false.
Since by euclideaness w2 is accessible from w3, then �ψ must be false in w2 and
we have a contradiction. �

Hence soundness follows. Completeness may be easily demonstrated by prov-
ing the axioms, which we leave to the reader.

Exercise 4.22 Provide a proof of derivability of Shvarts’ rule in H-K45.
Prove K, 4 and 5 in LKK45. Note that using contraction may be necessary.

Goré [103] provided in tableau framework a simplification of Shvart’s rule of
the form

(⇒�)45’ Γ,�Γ⇒ �Δ,�ϕ,ϕ
�Γ⇒ �Δ,�ϕ

now �Δ is not required to be nonempty, since �ϕ is repeated in the premiss.

Exercise 4.23 Prove syntactically or semantically that this rule is correct for K45.

Shvarts is using LK and provides constructive proof of cut elimination for his
SC. Goré instead provides a constructive completeness proof by saturation. We
will provide a syntactic proof of cut elimination but for LK with Goré’s rule since
this simplifies a proof significantly. Only the case of reduction of the complexity
of the cut-formula in case the cut-formula is boxed will be considered. The reader
is invited to complete the proof. We apply the strategy Girard used in the proof
of the mix reduction lemma (see subsection 2.4.2, and remark 2.2 in particular).

Let us consider the following application of Mix

Γ,�Γ ⇒ �Δ,�ϕi, ϕ
(⇒ �)

�Γ ⇒ �Δ,�ϕi

ϕk,�ϕk,Π,�Π ⇒ �Σ,�ψ,ψ
(⇒ �)

�ϕk,�Π ⇒ �Σ,�ψ
(Mix) �Γ,�Π ⇒ �Δ,�Σ,�ψ

and this is replaced with
Γ, �Γ ⇒ �Δ, �ϕi, ϕ �ϕk, �Π ⇒ �Σ, �ψ

Γ, �Γ, �Π ⇒ �Δ, �Σ, �ψ, ϕ

�Γ ⇒ �Δ, �ϕi ϕk, �ϕk, Π, �Π ⇒ �Σ, �ψ, ψ
(Mix)

ϕ, �Γ, Π, �Π ⇒ �Δ, �Σ, �ψ, ψ
(Mix)

Γ, �Γ, �Π, �Γϕ, Πϕ, �Πϕ ⇒ �Δϕ, �Σϕ, �Δ, �Σ, �ψ, �ψ, ψ
(C)(P )(W )

Γ, �Γ, Π, �Π ⇒ �Δ, �Σ, �ψ, ψ
(⇒ �)

�Γ, �Π ⇒ �Δ, �Σ, �ψ

where two uppermost mixes are eliminable by the induction hypothesis. The
last one is not eliminable but it has lower degree.

Exercise 4.24 Complete the proof of cut elimination. Try different strategies.
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What we gain now is the possibility of devising a decision procedure for S5
based on cut-free proof system for K45 by using G3 with Goré’s rule (possibly
in the weakening-absorbing version) as the only modal rule and starting always
with �ϕ at the root. But it appears that we can do even better. We finish this
section with, perhaps a bit surprising result concerning the eliminability of TE (see
subsection 3.7.1), in a variant of standard SC. Fitting on the ground of tableau
calculus provided an even simpler solution which may be easily transferred to SC.
In [83] he introduced a tableau system for S5 with an extra rule for the addition of
� to formulae on the branch. It is a consequence of his completeness proof that it
is sufficient to apply such a rule only once, at the very beginning. This observation
is then exploited in [86], for two variants of this system differing in the definition of
modalised formula. In both the cases, there is no extra rule for addition of � but
only a requirement that when building a tableau for ϕ we start with �ϕ (assumed
to be false). Fitting’s solution may be easily simulated in G3S5. One may use the
following contraction-absorbing versions (and weakening-absorbing in the second
case) versions of Ohnishi’s and Matsumoto’s rules:

(�⇒) ϕ,�ϕ,Γ⇒ Δ
�ϕ,Γ⇒ Δ (⇒�) �Γ⇒ �Δ,�ϕ,ϕ

Π,�Γ⇒ �Δ,Σ,�ϕ

For such a system, we can prove the following weak adequacy result

Theorem 4.6 � ϕ iff �⇒ �ϕ

Soundness is obvious. Two different semantic proofs of completeness may
be found in Fitting and in Goré [103]. We provide a different route to show its
adequacy. First, note that all preliminary results concerning invertibility of rules
and admissibility of weakening and contraction hold also for this version of G3S5.
One may easily check that the addition of modal rules in this form does not destroy
the proofs of any of these results.

As for completeness, one may rigorously demonstrate that every tableau proof
of �ϕ (i.e. a closed tableau starting with ¬�ϕ) may be translated into a proof of
⇒ �ϕ in our system. Hence, the semantic completeness proof of Fitting applies
to this sequent system as well. This will show that we obtain a cut-free SC for S5
but we want more: a constructive syntactical proof of its admissibility. Hence, for
the moment, we assume that cut is admissible and we prove syntactically

Theorem 4.7 �H ϕ then �⇒ �ϕ

where �H denotes provability in axiomatic system for S5.

Proof: It is easy to provide proofs for all (boxed) axioms, in particular a proof
of (boxed) axiom B looks like that
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p,�p ⇒ p,�(¬p → �¬�p),�¬�p
(¬ ⇒)

p,¬p,�p ⇒ �(¬p → �¬�p),�¬�p,�¬�p
(⇒→)

p,�p ⇒ �(¬p → �¬�p),�¬�p,¬p → �¬�p
(� ⇒) �p ⇒ �(¬p → �¬�p),�¬�p,¬p → �¬�p
(⇒ �) �p ⇒ �(¬p → �¬�p),�¬�p

(⇒ ¬) ⇒ �(¬p → �¬�p),�¬�p,¬�p
(⇒ �) ¬p ⇒ �(¬p → �¬�p),�¬�p
(⇒→) ⇒ �(¬p → �¬�p),¬p → �¬�p
(⇒ �) ⇒ �(¬p → �¬�p)

We must of course also demonstrate how applications of GR and MP are
simulated on (boxed) theses. For GR, we have

⇒ �ϕ
(⇒ W ) ⇒ �ϕ,��ϕ
(⇒ �) ⇒ ��ϕ

For MP we have:

⇒ �ϕ

⇒ �(ϕ → ψ)

�(ϕ → ψ), �ϕ, ϕ ⇒ ϕ, �ψ �(ϕ → ψ), �ϕ, ψ ⇒ ψ, �ψ
(→⇒)

ϕ → ψ, �(ϕ → ψ), �ϕ, ϕ ⇒ ψ, �ψ
(� ⇒)�(ϕ → ψ), �ϕ, ϕ ⇒ ψ, �ψ

(� ⇒)�(ϕ → ψ), �ϕ ⇒ ψ, �ψ
(⇒ �)�(ϕ → ψ), �ϕ ⇒ �ψ

(Cut)�ϕ ⇒ �ψ
(Cut)⇒ �ψ

Hence, the theorem follows by induction on the height of axiomatic proofs.
�

Now we consider this SC without cut. Although there are many similarities
with the preceding result concerning the equivalence with K45, there is one im-
portant difference. In SC for K45 there was no (� ⇒), and as we noticed cut is
not eliminable if the left premiss is generated by (⇒ �) whereas the right premiss
is obtained by (� ⇒). Now both rules are again present and we cannot proceed
as in the proof for Shvarts’ system. However, for this system we can prove

Theorem 4.8 (Admissibility of TE). For any ϕ,Γ,Δ, if � ϕ → ϕ,Γ ⇒ Δ, then
� Γ ⇒ Δ.

Proof: The structure of the proof is the same as in subsection 3.7.1. Again, we
prove that � Γ ⇒ Δ by induction on the complexity of ϕ and utilising the fact
that by invertibility from (a) � ϕ → ϕ,Γ ⇒ Δ we get (b) � Γ ⇒ Δ, ϕ and (c)
� ϕ,Γ ⇒ Δ . Also, on this basis, we perform subsidiary induction on the height
of � ϕ,Γ ⇒ Δ. Now additionally, in the induction step we must consider modal
rules. For (� ⇒) the proof is trivial like for Boolean rules. In case of (⇒ �) ϕ
may be introduced only as a part of weakening of the antecedent, i.e. we have
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ϕ,Γ′,�Π ⇒ Δ′,�Σ,�ψ (where Γ = Γ′,�Π and Δ = Δ′,�Σ,�ψ) deduced from
�Π ⇒ �Σ,�ψ,ψ and it is enough to deduce Γ′,�Π ⇒ Δ′,�Σ,�ψ by the same
rule.

Induction step: Again we assume as the induction hypothesis that the lemma
holds for all formulae of lower complexity than ϕ. The proof goes by cases. For all
boolean formulae, it is the same (i.e. based on the invertibility of respective rules).

In case of ϕ := �ψ we prove the claim: If � ϕ,Γ ⇒ Δ, then � Γ ⇒ Δ by a
subsidiary induction on the height of (c).

The basis is trivial since, if � ϕ,Γ ⇒ Δ is an axiom, then � Γ ⇒ Δ is an
axiom too. In the inductive step, the cases of parametric ϕ in the application
of boolean rules and both (⇒ �) rules are also trivial—we just delete ϕ by the
induction hypothesis and apply a suitable rule. The only interesting case is when
ϕ is principal in the application of (� ⇒). The premiss is �ψ,ψ, Γ ⇒ Δ and by
the induction hypothesis, we obtain (d) ψ,Γ ⇒ Δ. In order to deduce Γ ⇒ Δ
we must additionally consider (b). Now we prove the claim: If � Γ ⇒ Δ, ϕ, then
� Γ ⇒ Δ, by subsidiary induction on the height of (b).

Again it is straightforward for the case of an axiom and ϕ parametric in
boolean and all modal rules. We must consider the case of ϕ principal in both
(⇒ �)-rules. We have Γ′,�Π ⇒ �Σ,Δ′,�ψ (where Γ = Γ′,�Π and Δ = �Σ,Δ′)
deduced from �Π ⇒ �Σ,�ψ,ψ. We use this premiss and (d) to obtain the follow-
ing proof with IH denoting the application of the induction hypothesis

�Π ⇒ �Σ,�ψ,ψ
IH Γ ⇒ Δ, ψ ψ, Γ ⇒ Δ
(→⇒)

ψ → ψ,Γ ⇒ Δ
IH Γ ⇒ Δ

This completes the proof. �

A specific feature of this proof, when compared with the proof for classical
logic, is the fact that we must perform two subsidiary inductions on the height of
both (b) and (c) in modal case. By the extension of TE admissibility to G3 for S5,
we obtain (indirect) proof of cut admissibility for this calculus.

4.6 Generalised SC

As we could see, standard SC is too weak for providing cut-free, or at least ana-
lytic formalisation of S5 without bringing some additional features into the mar-
ket. Even if we can find some (maybe even all) solutions described in the previous
section quite satisfactory, it appeared that many other modal logics which are
semantically characterised by frames with symmetric or euclidean (or other trou-
blesome) accessibility relations are hard to deal with in such a way. This was the
main motivation for the generalisation of the standard SC. A complete picture of
the proposed systems is far beyond this survey. In what follows we focus only on
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a few approaches illustrated with some systems developed for S5. A more detailed
description of other generalised SC and for other modal logics one should consult
Wansing [270] and Poggiolesi [198].

4.6.1 Labelled Sequent Calculi

One of the most important generalised approaches to formalisation of modal logics
is based on the application of labels. In fact, this technique is not only connected
with modal logics but has a really wide scope of application in several branches
of logic. Generally, labels are very handy if we deal with information that has
complex structure, especially when different sorts of data require different forms
of processing. For example, labels may be used to represent: the set of assumptions
for a formula (e.g. Anderson and Belnap [4], ND-systems for relevant logics), truth
values or the sets of truth values for a formula (e.g. Carnielli [44] or Hähnle [106],
tableau systems for many-valued logics), fuzzy reliability value n (0 ≤ n ≤ 1) used
mainly in expert systems, and many more10.

In modal logic labels extend a language with a representation of states in a
model and their addition strengthens considerably the flexibility of expression. To
understand why, notice that there is an asymmetry between the local perspective
of relational semantics and the global perspective of standard modal language.
States in a model, essential in relational semantics, are not represented in modal
syntax. In particular, standard modal languages have no mechanisms for naming
particular states in a model, asserting or denying the equality of states, talking
about accessibility of one state from another. In consequence, they do not provide
an adequate representation of many semantic features and this generates problems
with developing a suitable modal proof theory.

Labels provide a remedy for the problem of discrepancy between a syntax and
a semantics but there are a lot of possible solutions. Blackburn [32] distinguishes
between the internalised and the external approach. The former consists of an
enrichment of the object language obtained via sorting (of the atoms) and addition
of the new operators and/or modalities. It is the way of doing hybrid logic, where
labels are part of the language11.

In the external approach, labels are just an additional technical apparatus.
Even in this group, we can find a variety of different solutions, according to the
strength of semantical commitment expressed by labels. We can talk about

1. Weak labelling—labels as a very limited technical device supporting proof
construction.

2. Strong labelling—system of labels as an exact representation of an attempted
falsifying model.

10Dov Gabbay [91] considered several applications on different fields in his general theory of
LDS’s (labelled deductive systems).

11Logics of this sort and some of their SC formalisations will be dealt with in the second
volume.
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3. Medium labelling—with no special calculus for labels but still sufficient for
the construction of falsifying modelss, e.g. Fitting’s [83] prefixed tableau cal-
culi for modal logics or single-step tableaux of Massacci [173, 174], explored
by Goré [103] under the name explicit systems.

There are a lot of deductive systems where labels of several sorts are ap-
plied in a very limited way. Probably the earliest one is SC of Kanger [146] for
S5, where labels are linked only to propositional variables. For temporal logics
tableau systems of Rescher and Urquhart [213] and of Marx, Mikulas, Reynolds
[171], Mints’ [182], indexed SC for modal logics, as well as multisequent calculi for
temporal logics of Indrzejczak [127], belong to this group. Despite different rules
and interpretations of labels in all these systems labels play only a supporting role
in a deduction, separating some parts of a derivation. Their motivation is in fact
semantical but only a very modest part of interpretation is involved. The appara-
tus of labels in itself is too weak in these approaches to help building a falsifying
model, in contrast to medium and strong labelling, where we can directly extract
a model from labels.

The opposite solutions are represented by strongly labelled systems in Gab-
bay’s tradition [91]. In such an approach labels save as much as possible from
suitable semantics, but in contrast to the internalised approach, labels are not
part of a language. Instead, we have a composition of two languages: an object
language of a logic and a language of the algebra of labels. In deductive systems
of this sort in addition to rules for logical constants we have rules governing the
behaviour of labels, and usually, some rules which correlate both levels.

Such an approach is very popular. One may find several simplified variants
of easy to use tableau systems of this kind for many non-classical logics, including
modal ones, in several textbooks (cf. e.g. books of Girle [100] and of Priest [205]).
There are also more theoretically oriented works investigating labelled ND-systems
and SCs for modal logics, e.g. Russo [222] and Basin, Mathews and Vigano [21]
(also for other non-classical logics in [22] and [274])12, Castellini and Smaill [46, 47],
Negri [187] and Negri and von Plato [186].

The last solution, i.e the addition of the machinery of prefixes to formulae, due
to Fitting13 [83], is situated between the extrema of weak and strong labelling and
has a lot of advantages. It is quite simple and natural since the technical apparatus
is kept in reasonable bounds. Fitting’s labels (prefixes) are not as direct a way of
encoding semantics as strong labels or the internalised approach, but they still may
be easily used for the construction of falsifying models. Moreover, this approach is
quite extensive—Fitting’s original systems cover a lot of modal logics, Massacci’s
version formalises even more. So, in contrast to strongly labelled systems, we obtain
quite satisfactory results with the help of a relatively modest apparatus. In this

12One may mention also ND-systems with strong labelling for other kinds of temporal logics
not discussed in this book, like PLTL or CTL provided by Renteria and Hausler [211] or by
Bolotov, Basukoski, Grigoriev and Shangin in [35, 36].

13Fitting [82], in fact, refers to earlier note of Fitch [80], as a source of inspiration.
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approach, there are no operations on labels made in an extra language like in
Gabbay style systems—labels are always connected with formulae of the object
language. Intuitively σ : ϕ means that ϕ is satisfied at a state of a model denoted
by prefix σ. It is important that Fitting-style labels have a structure of their own,
which helps to build a model using them as building blocks. It is possible because
each label is not only the name of a state in a model, but its structure encodes
the place of this state (via an accessibility relation) in a falsifying model we are
attempting to build. In general, prefixes are finite sequences of natural numbers,
separated with dots, with 1 as the first digit. So 1 is the name of the root of
a model, 1.1, 1.2, are names of two worlds accessible from 1, etc. Such prefixes
can take more complex shape and contain additional semantic information, as for
example, in Indrzejczak [130].

4.6.2 Simple Labelled System

On the other hand, in case of S5, the notion of a prefix may be simplified remark-
ably, if we refer to semantics without the accessibility relation. It is enough to use
just natural numbers as names of the worlds. This solution was first applied by
Kanger [146], but with prefixes attached only to atomic formulae. Tableaux or SC
of this kind can be found in many places, e.g. Fitting [83] or Wansing [269].

The construction of such a system is extremely easy. Just add prefixes (nat-
ural numbers) to every formula. In case of boolean rules, it is important that side
and principal formulae must have the same label which means that this inference
is carried in one state denoted by this label. For example, the rules for conjunction
are

(∧⇒) k : ϕ, k : ψ,Γ⇒ Δ
k : ϕ∧ψ,Γ⇒ Δ (⇒∧) Γ⇒ Δ, k : ϕ Γ⇒ Δ, k : ψ

Γ⇒ Δ, k : ϕ∧ψ

Of course, Γ,Δ consist of labelled formulae and labels may be different than
label k of active formulae. Rules for modal formulae are

(�⇒) i : �ϕ, k : ϕ,Γ⇒ Δ
i : �ϕ,Γ⇒ Δ (⇒�) �Γ⇒ k : ϕ

Π,�Γ⇒ Σ, i : �ϕ

where k is new in (⇒ �) but in (� ⇒) it may be any prefix, including i = k.
Informally, in terms of root-first proof search, it means that if �ϕ is false in i, then
there is some k where ϕ is false. We must take a new one since we cannot assume
that it is one of the states we considered so far. On the other hand, if �ϕ is true
in i it must be true in any state of the attempted model, including i. A proof of
B is straightforward
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2 : �p, 1 : p ⇒ 1 : p
(¬ ⇒)

2 : �p, 1 : p, 1 : ¬p ⇒
(� ⇒)

2 : �p, 1 : ¬p ⇒
(⇒ ¬)

1 : ¬p ⇒ 2 : ¬�p
(⇒ �)

1 : ¬p ⇒ 1 : �¬�p
(⇒→) ⇒ 1 : ¬p → �¬�p

The soundness proof is easy. Let us say that a labelled sequent is valid iff for
every S5 model, we can provide an interpretation such that labels are mapped onto
states and at least one formula in the antecedent is false in a state correlated with
its label, or at least one in the succedent is true in its correlated state (under this
mapping). Accordingly, a sequent is falsified iff there is a model and a mapping
of labels such that all formulae in the antecedent are true in corresponding states,
and all formulae in the succedent are false in corresponding states.

Exercise 4.25 Show that modal rules are validity-preserving.

We can provide a proof of the admissibility of cut for LK or G3 with labels
(see e.g. Wansing [269]), but it needs some additional technical results concerning
substitution (of labels) which it is more natural to discuss first in the context of
first-order logic. So we only provide a sketch of the completeness proof based on
our proof search procedure. This time we define a set of labelled saturated pairs
in the following way:

Definition 4.9 Let (Γ,Δ) be an ordered pair of labelled formulae and X the set of
all occuring labels. It is downward saturated iff for every k in X it satisfies the
following conditions:

1. if k : ¬ϕ ∈ Γ, then k : ϕ ∈ Δ

2. if k : ¬ϕ ∈ Δ, then k : ϕ ∈ Γ

3. if k : ϕ ∧ ψ ∈ Γ, then k : ϕ ∈ Γ and k : ψ ∈ Γ

4. if k : ϕ ∧ ψ ∈ Δ, then k : ϕ ∈ Δ or k : ψ ∈ Δ

5. if k : ϕ ∨ ψ ∈ Γ, then k : ϕ ∈ Γ or k : ψ ∈ Γ

6. if k : ϕ ∨ ψ ∈ Δ, then k : ϕ ∈ Δ and k : ψ ∈ Δ

7. if k : ϕ → ψ ∈ Γ, then k : ϕ ∈ Δ or k : ψ ∈ Γ

8. if k : ϕ → ψ ∈ Δ, then k : ϕ ∈ Γ and k : ψ ∈ Δ

9. if k : �ϕ ∈ Δ, then i : ϕ ∈ Δ for some i ∈ X

10. if k : �ϕ ∈ Γ, then i : ϕ ∈ Γ for all i ∈ X.

Moreover, it is a Hintikka labelled pair iff it is consistent, i.e. there is no k : ϕ ∈
Γ ∩ Δ.

As one may expect we define a model for labelled Hintikka pairs taking X to
be its domain and V (p) = {k ∈ X : k : p ∈ Γ} for any atom.
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Exercise 4.26 Prove the truth lemma for this construction.

Proving completeness is routine if we can show that for every unprovable
sequent Γ ⇒ Δ we can obtain a Hintikka pair (Π,Σ) such that Γ ⊆ Π and Δ ⊆ Σ.
Clearly, Γ ⇒ Δ is falsified in state 1. It may be done by defining an exhaustive and
fair procedure of proof search or by the direct method (see section 1.7), Let us con-
sider the former approach in order to compare it with the proof-search procedures
for G3T and G3S4 described above. We can apply our proof-search procedure ba-
sically as in the case of nonlabelled G3, by taking care of the saturation of the set
of formulae with the same label before we apply (⇒ �) and introduce a new one.
But now immediately after the introduction of a new label to the sequent, we must
apply (� ⇒) to all �-formulae in the antecedent with respect to this new label.
Of course, the same formula �ϕ may occur with different labels in the antecedent
so it is enough to apply the respective rule only to one of them to avoid multiple
occurrences. Moreover, by the end of saturation of this new label, we must apply
(� ⇒) to new box-formulae with this label also with respect to all labels already
present on the branch. This, of course, forces us to check again if respective sets
of formulae are saturated. We omit the details of description of a fair proof-search
procedure; one can consult Fitting [83] or Goré [103].

Note that, similarly as in the case of G3S4, we can run into an infinite branch
while applying this procedure. If we only want to prove completeness it is not a
problem, but if we want to have decidability, we must do a little more. Let us
analyse the source of the problem. Due to the subformula property of all boolean
rules and (� ⇒) with respect to single label the set of formulae with the same
label must be finite. But because of the necessity of application of (� ⇒) with
respect to every introduced label it is possible that new boxed formulae in the
succedent will appear and generate new labels. Since the number of distinct sets
of formulae generated from the root sequent is finite, we run a loop. Hence, if we
want to have a terminating procedure to obtain finite models we must apply loop
control as in the case of S4. But things here are harder. In case of S4, it would be
enough to stop once and for all if the set of saturated formulae with prefix k is
included in the set of saturated formulae with prefix i which was saturated earlier.
In case of S5, however, such simple form of loop control does not work.

First, it is not sufficient that the set of formulae with label k is a subset of
some earlier set labelled by i—they must contain the same set of formulae. Then
we say that k is blocked by i and we can identify both sets. Second, because of
the possibility of enlargement of some (blocked or blocking) set in later stages
of proof search, we must admit that blocking will be broken. So, in contrast to
G3S4, here we must assume that blocking is provisory and may be broken if one
of the blocking set changes. This solution is similar to the technique of ‘dynamic
blocking’, devised by Horrocks [121], for the implementation of tableau system for
some versions of description logics.

Despite the complications that must be taken into account for the construc-
tion of a procedure of exhaustive proof search this kind of SC is very handy in
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practice. In particular, the nice thing is that we do not need to introduce a gen-
eralisation of (⇒ �) and disjunctive branching since all boxed formulae in the
succedent are examined one by one on the same branch.

4.7 Hypersequent Calculus

Hypersequent calculi (HC) are amongst the most interesting ones in the family
of generalised SC which we called the many-sequent approach in subsection 3.5.2.
The name derives from the fact that rules are defined on items called hypersequents
by Avron [7]. In general, hypersequents are some finite collections of ordinary se-
quents. As in the case of ordinary SC, some way of understanding this collection is
significant. Commonly hypersequents are treated as sets or multisets of sequents,
but it is also possible to interpret them as sequences of sequents. All these choices
have a great influence on the character of structural rules necessary for the devel-
opment of the system but also on the scope of its application and possibility of
using several proof strategies, in particular, for proving admissibility of cut and
other rules.

It is commonly believed that HC was originally introduced for few modal
logics in a short abstract by Pottinger [202]. However, this information should be
revised since a similar idea was earlier introduced by Mints in [177] and [179], to
formalise S5. Unfortunately, these papers were written in Russian and unknown to
the wider community. Even much later, when an English translation of [179], was
presented in Mints [181], he did not care to underline his priority in this respect14.
But it was Avron [7], who not only independently introduced such kind of SC but
developed its theory, first for relevant, then for many other non-classical logics
(see, e.g. [10]).

In fact, HC may be seen as a special simplified case of Došen’s [60], a more
general framework where one is dealing with a hierarchy of sequents of order n+1
with arguments being finite sets of sequents of order n. In particular, sequents of
order 2 consist of finite sets of ordinary sequents (of order 1) on both sides, where
elements of the antecedent are treated conjunctively, and elements of the succedent
disjunctively. In this perspective, hypersequents are just sequents of order 2 with
empty antecedents.

Došen’s general approach may be seen also as a general conceptual frame-
work for other cases of many sequent systems. In particular, all calculi based on
embedding of sequents inside other sequents which were later exploited under dif-
ferent names (e.g. deep inference, nested sequents, tree hypersequents) by Bull
[42], Kashima [147], Stouppa [246], Brünnler [41], Poggiolesi [198]. This shows a
deep relationship between these approaches. In particular, if hypersequents are
defined not as sets or multisets of sequents, but rather as their sequences, then

14In fact both the notation and applied terminology is different; hypersequents are called
tableaux by Mints in [181], and he rather stressed the similarity of his system to Kripke’s tableaux.
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HC may be interpreted as a restricted version of nested sequent calculi, called by
Lellmann [161] linear nested SC and by Indrzejczak [136] non-commutative HC.

HC is also related to other kinds of generalised SC. In particular, it may be
seen as a special kind of display calculus (DC), introduced by Belnap [25] (see also
[53]). While in DC a family of structural connectives of fixed arity is introduced,
in HC a separator of sequents may be treated as the only added structural con-
nective of nonfixed arity. One may find results concerning embeddings of HC in
DC in Wansing [269] and Ramanayake [209]. It is also easy to establish a similar
relationship of HC to the much stronger framework of labelled sequent calculi (see
Negri [187]).

It seems that HC, when compared to other generalised SC, has rather sim-
ple form, anyway it increases significantly the expressive power of ordinary SC
by allowing the additional transfer of information between different sequents. It
proved to be very useful for the construction of cut-free formalisations of many non-
classical logics including modal, temporal, many-valued, relevant, paraconsistent
and fuzzy logics (see for example Avron [7, 10], Baaz, Ciabattoni and Fermüller
[17], Metcalfe, Olivetti and Gabbay [176]). In the field of modal logics there are
surprisingly many different cut-free systems for S5 (Mints [177], Pottinger [202],
Avron [10], Restall [215], Poggiolesi [198], Lahav [156], Kurokawa [154], Bednarska,
and Indrzejczak [24]). For other modal logics the situation is worse. One can find
case studies of some logics of linear frames; there are HC for S4.3 (Indrzejczak
[132], Kurokawa [154]), later generalised to K4.3 and KD4.3 (Indrzejczak [135]).
Kurokawa [154] provided also HC for K4.2, many temporal logics of linear frames
were formalised in Indrzejczak [136]. Recently some more general approaches were
provided: Lahav [156] proposed a uniform treatment of various normal modal log-
ics based on the translation of semantic conditions. Some general approach of a
different character is developed by Lellmann [160].

In what follows we focus only on solutions provided for S5. Despite the variety
of systems, we can divide them into two types. An approach of Mints and Pot-
tinger, characteristic also for Restall’s and Poggiolesi’s system, consists in provid-
ing special modal rules introducing � and characterising S5 on the basis of HC for
CPL. On the other hand, the approach of Avron, characteristic also for Kurokawa
and Lahav, builds the system for S5 by means of a special quasi-structural rule
added to HC system which is already equipped with modal rules introducing �
that are adequate for S4. In general, we could say that the former approach is
more semantically oriented, whereas the latter approach is more syntactically ori-
ented, but this is rather an oversimplification. For example, Restall’s system has
also syntactical character manifested in using a special structural rule, and Pog-
giolesi’s system, despite semantical motivation for modal rules, is presented in
strictly proof-theoretic style. On the other hand, Lahav’s characteristic rule is ob-
tained by means of translation from semantical condition and only semantic proofs
of completeness for cut-free HC are provided.
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4.7.1 The Basic HC

Before we present a survey of these approaches and several methods of proving cut
admissibility for them, we need some conventions and a description of the basic HC
for CPL. We define hypersequents as finite multisets of ordinary Gentzen sequents.
The following notation will be applied:

• Γ1 ⇒ Δ1 | ... | Γn ⇒ Δn stand for (n-element) hypersequents.

• S | G (or Γ ⇒ Δ | G) stand for hypersequents with displayed sequent S
(Γ ⇒ Δ); hence, in particular, in the schemata of rules, G,H are used to
denote the (external) context, i.e. the remaining (possibly empty) multisets
of sequents.

• G,H alone can be also used for representing hypersequents; in this case, it is
assumed that they are nonempty.

• S ∈ G means that S is an element (possibly the only one) of G.

How to interpret hypersequents? In general, hypersequents are interpreted
as metalevel disjunctions but details vary depending on the kind of logics which
are formalised this way. In syntactical terms we can express the meaning of a
hypersequent in S5 (and other modal logics) by means of the following translation:

�(Γ1 ⇒ Δ1 | ... | Γn ⇒ Δn) = �I(Γ1 ⇒ Δ1) ∨ ... ∨ �I(Γn ⇒ Δn)

where I may be any of the possible translations for sequents considered in sec-
tion 3.4. Alternatively, we can extend suitable semantical notions to hypersequents
in the following way:,

• |= G (G is valid) iff M � G for all models M

• M � G iff there is some S ∈ G such that M � S

• M � S iff M, w � S, for all w in the domain of M

• M, w � Γ ⇒ Δ iff M, w � ∧Γ → ∨Δ.

Note, that as a consequence we have

�|= G iff there is some M such that M � G, and M � G iff for all S ∈ G,M � S
which eventually means that for every S ∈ G there is some w such that M, w � S.

HC for CPL can be introduced as a generalisation of LK or G3. In the latter
option the basic HG3 consists of generalised atomic axioms p,Γ ⇒ Δ, p | G and
the following logical rules:
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(¬⇒)
Γ ⇒ Δ, ϕ | G

¬ϕ,Γ ⇒ Δ | G
(⇒¬)

ϕ,Γ ⇒ Δ | G

Γ ⇒ Δ,¬ϕ | G

(∧⇒)
ϕ,ψ,Γ ⇒ Δ | G

ϕ ∧ ψ,Γ ⇒ Δ | G
(⇒∧)

Γ ⇒ Δ, ϕ | G Γ ⇒ Δ, ψ | G

Γ ⇒ Δ, ϕ ∧ ψ | G

(⇒∨)
Γ ⇒ Δ, ϕ, ψ | G

Γ ⇒ Δ, ϕ ∨ ψ | G
(∨⇒)

ϕ,Γ ⇒ Δ | G ψ, Γ ⇒ Δ | G

ϕ ∨ ψ,Γ ⇒ Δ | G

(⇒→)
ϕ,Γ ⇒ Δ, ψ | G

Γ ⇒ Δ, ϕ → ψ | G
(→⇒)

Γ ⇒ Δ, ϕ | G ψ, Γ ⇒ Δ | G

ϕ → ψ,Γ ⇒ Δ | G

A proof of a hypersequent G in HC is defined in the usual way as a tree
of hypersequents with G as the root and axioms as leaves. On the basis of the
specified interpretation, one may easily establish

Lemma 4.10 All rules of HC are validity-preserving in CPL.

Exercise 4.27 Prove the above lemma and soundness for HG3 either directly in
semantical terms or by using translation �.

All rules satisfy the subformula property as in the standard SC. In some
cases (e.g. Poggiolesi [198]) this basis, after addition of logical rules for �, is
sufficient for adequacy but in general structural rules are required, in particular if
the basic HC is a version of LK (call it HLK). In this case we can use axioms of
the form ϕ ⇒ ϕ | G, hypersequent versions of logical rules as stated for LK, and
hypersequent generalisations of ordinary W and C

(IW ⇒)
Γ ⇒ Δ | G

ϕ,Γ ⇒ Δ | G
(⇒ IW )

Γ ⇒ Δ | G

Γ ⇒ Δ, ϕ | G

(IC ⇒)
ϕ,ϕ,Γ ⇒ Δ | G

ϕ,Γ ⇒ Δ | G
(⇒ IC)

Γ ⇒ Δ, ϕ, ϕ | G

Γ ⇒ Δ, ϕ | G

But this is not the whole story. The above rules may be called internal struc-
tural rules (hence names IW, IC) but we can also consider external structural rules
operating on the whole sequents. The most important external structural rules are
generalisations of C and W

(EC)
Γ ⇒ Δ | Γ ⇒ Δ | G

Γ ⇒ Δ | G
(EW )

G

Γ ⇒ Δ | G

Note that if EW is primitive in HLK we can use simple axioms ϕ ⇒ ϕ.
In fact, other solutions are also possible. In particular, Restall’s system [215]

differs slightly in the selection of structural rules. Instead of (EC) he applies the
special rule of merging and both external and internal weakenings are combined
into a specific pair of rules



4.7. Hypersequent Calculus 213

(Merge)
Γ ⇒ Δ | Π ⇒ Σ | G

Γ,Π ⇒ Δ,Σ | G
(⇒ WE)

G

⇒ ϕ | G
(WE ⇒)

G

ϕ ⇒| G

It is clear that these special weakening rules allow the derivability of the
usual IW and EW rules with the help of (Merge). EC is also derivable by means
of (Merge) and IC. On the other hand, Restall’s weakening rules are just special
instances of EW, and (Merge) is derivable by IW and EC. Hence, Restall’s set of
structural rules is equivalent to the more commonly adapted set but often allows
for simpler proofs of many hypersequents. In particular, (Merge) is very handy
for constructing more compact proofs as it combines applications of IW and EC.
It should be noticed that (Merge) is based on the similar idea as the special
modal rule of Mints [180], (see subsection 4.5.1), but whereas the latter is defined
for standard SC and destroys subformula property, (Merge), due to some extra
machinery of HC, allows for the subformula property to be preserved.

What about cut? In fact, different forms of cut were encountered in the
framework of HC. The most direct adaptation of a standard (multiplicative) cut
is (H − Cut)

Γ ⇒ Δ, ϕ | G ϕ,Σ ⇒ Π | H

Γ,Σ ⇒ Δ,Π | G | H

where G | H denotes a concatenation of possibly different external contexts.
An additive version is also possible in the weaker (G and H admitted as different
contexts) or stronger (the same external context in both premisses) but we limit
our interest only to multiplicative (H − Cut). A hypersequential counterpart of
Mix is (H − Mix)

Γ ⇒ Δ, ϕi | G ϕj ,Σ ⇒ Π | H

Γ,Σ ⇒ Δ,Π | G | H

where we tacitly assume that there are no other occurrences of ϕ in Δ and
Σ.

Similarly, as in the standard sequent calculus, both rules are equivalent in
the presence of weakening and contraction, we thus have

Lemma 4.11 G is provable in HC with (H − Cut) iff G is provable in HC with
(H − Mix).

Since in HC we can have also EC or (Merge) as primitive rules, this intro-
duces additional complications analogous to those with C in ordinary SC, but now
concerning different sequents. In order to deal with them, Avron introduced a yet
more general version of (H −Mix) which we call here (SH −Mix) (S for strong):

Γ1 ⇒ Δ1, ϕ
i | ... | Γn ⇒ Δn, ϕj | G ϕk,Σ1 ⇒ Π1 | ... | ϕn,Σk ⇒ Πk | H

Γ1, ...,Γn,Σ1, ...,Σk ⇒ Δ1, ...,Δn,Π1, ...,Πk | G | H

In this way, we can cut not only multiple occurrences of a formula in one
sequent of a premiss, but in many sequents in one step. Note, however, that in



214 Chapter 4. Sequent Calculi for Modal Logics

case of this rule the situation is a bit different with respect to its strength; namely,
the following holds:

Lemma 4.12 If G is provable in HC with (SH − Mix), then G is provable in HC
with (H − Cut).

Proof: In order to simulate an application of (SH − Mix) with (H − Cut) it
is enough to apply successively IW, EC and IC to each premiss. This way from
the left premiss we obtain Γ1, ...,Γn ⇒ Δ1, ...Δn, ϕ, and similarly for the right
premiss. From these hypersequents, the result of the application of (SH − Mix)
follows by (H − Cut). �

However, not every application of (H − Cut) may be simulated by (SH −
Mix). Consider the following instance (with no other occurrences of ϕ):

Γ ⇒ Δ, ϕ | G ϕ,Σ ⇒ Π | ϕ,Λ ⇒ Θ | H

Γ,Σ ⇒ Δ,Π | ϕ,Λ ⇒ Θ | G | H

If we apply (SH−Mix), we obtain Γ,Σ,Λ ⇒ Δ,Π,Θ | G | H and there is no
possibility to derive the original conclusion (we can restore ϕ,Λ ⇒ Θ by EW but
we cannot delete Λ and Θ in the active sequent). This is rather unfortunate, since
even if we can prove elimination of (SH−Mix), it does not guarantee that all cuts
may be eliminable. In order to have equal strength of rules, we must rather use
some selective version of Mix which allows for deleting some but not necessarily
all occurrences of ϕ in both premisses. Let us call such a variant (SH−Multicut);
the above schema is sufficient for its expression, we just do not assume that all
occurrences of ϕ are displayed. Since in this case (H − Cut) is just a special case
of (SH − Multicut) we obtain

Lemma 4.13 G is provable in HC with (H − Cut) iff G is provable in HC with
(SH − Multicut).

Before we focus on systems characterising S5 it should be noted that the HC
framework may help to make life easier also in other logics which apparently do not
need generalised SC. In case of T and S4 we focused on problems with proof search
requiring either backtracking or introducing more general proof-search trees with
additional disjunctive branching regulated by meta-rules like (DB) in section 2.7 or
more specialised (SG) rules from section 4.4. But this layer of branching is implicit
in hypersequents so instead, we can formulate suitable rules of � introduction into
the succedent. For example, in case of S4, we can use the following rule:

�Γ ⇒ ϕ1 | ... | �Γ ⇒ ϕk | G

Δ,�Γ ⇒ �ϕ1, ...,�ϕk,Σ | G

Additionally, for the need of the proof search procedure, we may add side
condition that Δ,Σ consist of atomic formulae only. One may also overcome the
aforementioned difficulties in a different way and use a rule (introduced by Pot-
tinger [202]) which deals only with one selected box-formula but keeps the rest for
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later use Δ,�Γ ⇒ Σ | �Γ ⇒ ϕ | G

Δ,�Γ ⇒ �ϕ,Σ | G
If we delete Δ,�Γ ⇒ Σ in the premiss we obtain just simple (weakening-

absorbing) hypersequent version of (⇒ �) for S4. The reader may easily provide
suitable versions of all such rules for T.

Exercise 4.28 Prove S4-validity-preservation of both rules.

In fact, a kind of generalisation imposed by hypersequents may be treated on
a par with the step which is already done in ordinary SC for CPL if we take sequents
with at most one formula in the succedent as basic items. Avron [11] points out
that if we consider LK rule (⇒ ∨) in such framework (natural for intuitionistic
logic—see section 5.1), introducing multiplicative disjunction requires admissibility
of more formulae in the succedent (G3 rule for (⇒ ∨)) but for additive disjunction
instead of two rules we may use just the hypersequent rule

Γ ⇒ ϕ | Γ ⇒ ψ | G

Γ ⇒ ϕ ∨ ψ | G

4.7.2 Systems for S5

We start a description of HCs for S5 with an approach which was provisionally
called syntactical and initiated with Avron [10]. He proposed HLK with simple
axioms ϕ ⇒ ϕ and primitive structural rules of both kinds. The modal part is
based on Ohnishi and Matsumoto’s rules for S4 but in the hypersequent shape,
i.e.

(�⇒T )
ϕ,Γ ⇒ Δ | G

�ϕ,Γ ⇒ Δ | G
(⇒�S4)

�Γ ⇒ ϕ | G

�Γ ⇒ �ϕ | G

To obtain HC for S5 Avron introduced a special rule (MS) of modal splitting
which has a combined character; it is partly structural but with displayed multisets
of modal formulae:

(MS)
�Γ,Π ⇒ �Δ,Σ | G

�Γ ⇒ �Δ | Π ⇒ Σ | G

Lemma 4.14 All rules of Avron’s system are validity-preserving.

Proof: We take (MS) as an example: Assume that |= �Γ,Π ⇒ �Δ,Σ | G and
�|= �Γ ⇒ �Δ | Π ⇒ Σ | G so we know that there are w1, w2 such that w1 � �Γ ⇒
�Δ, w2 � Π ⇒ Σ and that �|= G. According to the definition of validity we know
that for all �ψ ∈ �Γ, w1 � �ψ and for all �χ ∈ �Δ, w1 � �χ which implies that
it holds for each wi, in particular for w2 but this falsifies �Γ,Π ⇒ �Δ,Σ | G,
contrary to the assumption. �
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In fact, (MS) is so strong that the system may be modified in two ways either
by changing a rule for (⇒ �) or by weakening of (MS). In the first case, (⇒�S4)
may be replaced with any of the following:

(⇒�S5)
�Γ ⇒ �Δ, ϕ | G

�Γ ⇒ �Δ,�ϕ | G
(⇒�T )

Γ ⇒ ϕ | G

�Γ ⇒ �ϕ | G
(⇒�G)

⇒ ϕ | G

⇒ �ϕ | G

The first one is stronger since it is a hypersequent version of LK rule for S5.
But the other two are weaker as they are hypersequent counterparts of the LK
rule for T (and K of course) and of Gödel’s rule. To show that it is sufficient we
can show that by means of (MS) and (⇒ �G) we can prove the derivability of the
primitive rule of Avron

�Γ ⇒ ϕ | G
(MS) �Γ ⇒|⇒ ϕ | G

(⇒�G) �Γ ⇒|⇒ �ϕ | G
IW �Γ ⇒ �ϕ | �Γ ⇒ �ϕ | G

(EC) �Γ ⇒ �ϕ | G

In general, Avron’s system strongly depends on the application of structural
rules of contraction both in internal (standard) and external versions. The proof
of 5 is a good example

�p ⇒ �p
(¬ ⇒) �p,¬�p ⇒

(MS) �p ⇒| ¬�p ⇒
(⇒ ¬) ⇒ ¬�p | ¬�p ⇒
(⇒�) ⇒ �¬�p | ¬�p ⇒

IW × 2 ¬�p ⇒ �¬�p | ¬�p ⇒ �¬�p
(EC) ¬�p ⇒ �¬�p

(⇒→) ⇒ ¬�p → �¬�p

Exercise 4.29 Prove K, 4 and B in Avron’s system. To simplify use (Merge) in-
stead of EC.

Lahav [156] and Kurokawa’s [154] systems may be seen as refinements of
Avron’s approach obtained by special rules which are weaker than (MS). Kurokawa
shows HC for some extensions of S4 including S5. His basic system is almost exactly
like Avron’s calculus but instead of (MS) he is using its weaker version:

(MSK)
�Γ,Π ⇒ Σ | G

�Γ ⇒| Π ⇒ Σ | G
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It is weaker in the sense that only boxed formulae from the antecedent are
taken into account. One should check again the proof of 5 in Avron’s system to see
that the omission of boxed formulae in the succedent of the premiss and (one of
the) conclusion sequent makes no harm. Below we put a proof of B to show that
such a solution works

p ⇒ p
(� ⇒) �p ⇒ p
(¬ ⇒) �p,¬p ⇒

(MSK) �p ⇒| ¬p ⇒
(⇒ ¬) ⇒ ¬�p | ¬p ⇒
(⇒�) ⇒ �¬�p | ¬p ⇒

IW × 2 ¬p ⇒ �¬�p | ¬p ⇒ �¬�p
(EC) ¬p ⇒ �¬�p

(⇒→) ⇒ ¬p → �¬�p

Lahav [156] presents a general method for generating hypersequent rules from
some frame. His basic system for K is defined on sequents built from sets so
contraction is implicit but both IW and EW are primitive. The only modal rule
is (⇒ �T ) and his solution for S5 is based on the addition of the following rule
encoding the property of universality:

(U)
Γ,Π ⇒ Δ | G

Λ,�Π ⇒ Σ | Γ,�Ξ ⇒ Δ | G

Closer inspection shows that Lahav’s specific rule for S5 may be seen as a
(weaker) variant of (MS) with additional deletion of � in elements of Π in the
premiss. In fact, (U) may be easily derived in Avron’s system

Γ,Π ⇒ Δ | G
(� ⇒)

Γ,�Π ⇒ Δ | G
(MS) �Π ⇒| Γ ⇒ Δ | G

IW
Λ,�Π ⇒ Σ | Γ,�Ξ ⇒ Δ | G

To derive Avron’s rules in Lahav’s system we need to use cut, which is in-
terpreted by the author as showing that his system is in a sense stronger as it
implies the admissibility of cut in Avron’s calculus. Note that the qualification of
this rule as a weaker version of (MS) is not connected with the lack of � in front
of elements of Π in the premiss but with the fact that only boxed formulae from
the antecedent (of one of the sequents in the conclusion) are put in the antecedent
of the premiss (without boxes, however).

Exercise 4.30 Show that rules of Kurokawa and Lahav are validity-preserving in
S5.

Prove the axioms of S5 in both systems.
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The approach which we provisionally called semantic was initiated by Mints
in [177] and independently by Pottinger [202]. The characteristic feature of it is
the application of rules for � which are specific for S5 (of course not all but at
least one of them). Mints [177] is using HLK for CPL with addition of EW and
the following rules:

(⇒�K)
Γ ⇒ Δ |⇒ ϕ | G

Γ ⇒ Δ,�ϕ | G
(⇒�G)

⇒ ϕ | G

⇒ �ϕ | G

(� ⇒T )
ϕ,Γ ⇒ Δ | G

�ϕ,Γ ⇒ Δ | G
(� ⇒5)

Γ ⇒ Δ | ϕ,Σ ⇒ Θ | G

�ϕ,Γ ⇒ Δ | Σ ⇒ Θ | G

Two of them are already known and (⇒�K) is, similarly like (⇒ �G) validity-
preserving for K (hence the superscript). The only rule which is specific for S5 is
(� ⇒5), hence the superscript 5.

Exercise 4.31 Prove that (⇒�K) is validity-preserving for any frame and that
(� ⇒5) is validity-preserving in S5.

Mints’ rules are canonical (see subsection 3.5.5), although (⇒ �G) is in a
sense not context independent. We can define also suitable dual rules for ♦

(♦⇒K)
Γ ⇒ Δ | ϕ ⇒| G

♦ϕ,Γ ⇒ Δ | G
(♦⇒G)

ϕ ⇒| G

♦ϕ ⇒| G

(⇒♦T )
Γ ⇒ Δ, ϕ | G

Γ ⇒ Δ,♦ϕ | G
(⇒♦5)

Γ ⇒ Δ | Σ ⇒ Θ, ϕ | G

Γ ⇒ Δ,♦ϕ | Σ ⇒ Θ | G

Here is an example of a half of the proof showing interdefinability of � and
♦

⇒| p ⇒ p
(¬ ⇒) ⇒| p,¬p ⇒

(� ⇒5) �p ⇒| ¬p ⇒
(♦ ⇒K) ♦¬p,�p ⇒

(⇒ ¬) �p ⇒ ¬♦¬p

Exercise 4.32 Prove other definitional implications for � and ♦.

On the other hand, this set of rules is redundant. (⇒�G) is derivable by
means of EW and (⇒�K) in the following way:

⇒ ϕ | G
(EW ) ⇒|⇒ ϕ | G

(⇒�G) ⇒ �ϕ | G
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In fact, also (⇒�K) is derivable by means of (⇒�G) and (Merge) (or IW
and EC) but Mints did not introduce these rules. Similarly, (� ⇒T ) is derivable
by means of EW, (� ⇒5) and either IW and EC, or (Merge) and IC. Later Mints
[179], reduced the set of rules by deleting (⇒ �G).

Exercise 4.33 Prove the derivability of the rules as stated above.

Restall [215] also uses HLK but with specific structural rules described above
and a nonredundant set of two rules for introduction of �

(�⇒R)
ϕ,Γ ⇒ Δ | G

�ϕ ⇒| Γ ⇒ Δ | G
(⇒�G)

⇒ ϕ | G

⇒ �ϕ | G

The first is a simpler version of (�⇒5) and the second is the same as in Mints’
set. Note that Restall’s (�⇒R) looks also like an extremely simplified version of
(MS), so his system may as well be seen as a drastic simplification of Avron’s
system in that it keeps only the minimal resources necessary for an adequate
characterisation of S5. Indeed both modal rules (in the presence of (Merge)) are
sufficient to obtain an adequate system for S5. Below we display a proof of K in
his system:

p ⇒ p q ⇒ q
(→⇒) p → q, p ⇒ q

(�⇒R) �(p → q) ⇒| p ⇒ q
(�⇒R) �(p → q) ⇒| �p ⇒|⇒ q

(⇒�G) �(p → q) ⇒| �p ⇒|⇒ �q
(Merge) �(p → q) ⇒| �p ⇒ �q

(⇒→) �(p → q) ⇒|⇒ �p → �q
(Merge) �(p → q) ⇒ �p → �q
(⇒→) ⇒ �(p → q) → (�p → �q)

Exercise 4.34 Prove other axioms and B.

The soundness of this system is straightforward. It is enough to demonstrate
that

Lemma 4.15 (�⇒R) is validity-preserving in S5.

Proof: Assume that |= ϕ,Γ ⇒ Δ | G and �|= �ϕ ⇒| Γ ⇒ Δ | G. Hence we
obtain that there exists some M with w1 � �ϕ ⇒, w2 � Γ ⇒ Δ and �|= G. So
w1 � �ϕ which means that w2 � ϕ which falsifies the premiss, but this is contrary
to assumption. �

Restall also provided a variant of his system in the spirit of Kleene’s solution
for a constructive semantic proof of completeness. In the case of rules for boolean
constants, it consists in repeating the principal formulae in the premisses; in the
case of modals we must repeat the whole sequents which yields the following rules:
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(�⇒5′
)

�ϕ,Π ⇒ Σ | ϕ,Γ ⇒ Δ | G

�ϕ,Π ⇒ Σ | Γ ⇒ Δ | G
(⇒�K′

)
Γ ⇒ Δ,�ϕ |⇒ ϕ | G

Γ ⇒ Δ,�ϕ | G

which are in fact contraction-absorbing versions of (� ⇒5) and (⇒ �K).

Poggiolesi [198] is using HG3, hence only logical rules are taken as primitive.
In fact, she needs structural rules like (Merge) for providing a syntactical proof
of cut elimination; however, these are not primitive but admissible, in contrast to
Restall’s system. The price for that is the presence of two rules for introducing �
in the antecedent. The only rule for introducing � in the succedent is (⇒ �K);
the remaining two rules are contraction-absorbing versions of Mints’ rules:

(� ⇒T ′
)

ϕ,�ϕ,Γ ⇒ Δ | G

�ϕ,Γ ⇒ Δ | G
(�⇒5′

)
�ϕ,Π ⇒ Σ | ϕ,Γ ⇒ Δ | G

�ϕ,Π ⇒ Σ | Γ ⇒ Δ | G

The soundness of this system is immediate and the proof of the axioms of S5
are simple.

Exercise 4.35 Prove axioms of S5.

Although Poggiolesi provides a very elegant proof of cut admissibility which
implies the adequacy of her system, we provide a different proof here which is based
on the possibility of the simulation of the labelled system presented in section 4.6.
It is easy since her system in the most direct way encodes semantical features of
S5 in terms of syntactical rules for modals. First, note that every sequent in the
labelled system may be represented in the following way: Γ1, ...,Γn ⇒ Δ1, ...,Δn

where n is a maximal label occurring in the sequent and each Γi(Δi) is the multiset
(possibly empty) of all formulae labelled with i. Define

�(Γ1, ...,Γn ⇒ Δ1, ...,Δn) = �(Γ1) ⇒ �(Δ1) | ... | �(Γn) ⇒ �(Δn)

where �(Γi) is the same multiset with deleted labels. It is straightforward
to observe that every application of (⇒ �) in the labelled system is simulated by
(⇒ �K), whereas every application of (� ⇒) is simulated either by (� ⇒T ′

) (if
the same label is preserved) or by (� ⇒5′

). Thus, it is routine to show that every
proof in labelled SC is stepwise simulated in Poggiolesi’s system. It follows that
this cut-free system is complete.

The comparison of the second variant of Restall’s system with Poggiolesi’s
system is also very instructive. At first, one might suspect that Restall’s rules
are insufficient but this is not true. One can derive (�⇒T ′

) in his system in the
following way:
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ϕ,�ϕ,Γ ⇒ Δ | G
(�⇒R) �ϕ ⇒| �ϕ,Γ ⇒ Δ | G

(Merge) �ϕ,�ϕ,Γ ⇒ Δ | G
(C ⇒) �ϕ,Γ ⇒ Δ | G

This may lead to the suspicion that Poggiolesi’s system is redundant. No, it
is not since it has no external structural rules as primitive. One can easily notice
that in Restall’s system we cannot prove axiom T without using (Merge), hence
this rule must be primitive. On the contrary, in Poggiolesi’s system, the presence
of a special rule corresponding to T makes (Merge) redundant.

One may consider if we can avoid the apparent inelegance of having two
rules for introducing � into the antecedent in the system but without the need for
such strong structural rules like (Merge) or EC. It seems that Pottinger’s system
provides a solution. It was stated very briefly in the half-page long abstract [202],
and as far as we know, was never presented in its full version. The abstract contains
rules of HC for modal logics T, S4 and S5. Essentially, it is also HG3 although with
some peculiarities which may be disregard here. Two modal rules for introduction
of � are of the form

(�⇒P )
ϕ, �ϕ, Γ ⇒ Δ | �ϕ, Γ1 ⇒ Δ1 | · · · | �ϕ, Γn ⇒ Δn

�ϕ, Γ ⇒ Δ | Γ1 ⇒ Δ1 | · · · | Γn ⇒ Δn

(⇒ �4)
Δ, �Γ ⇒ Σ | �Γ ⇒ ϕ | G

Δ, �Γ ⇒ �ϕ, Σ | G

Both the rules are rather semantically oriented on the actual search of either
a proof or a falsifying model. In contrast to several modal rules presented above
these are rather global and in effect quite redundant. Also, construction of proofs
may be rather involved; let us see a proof of K as an example

S | �(p → q),�p, p ⇒ q, p S | �(p → q),�p, p, q ⇒ q
(→⇒) �(p → q),�(p → q),�p,�p ⇒| �(p → q),�p, p → q, p ⇒ q

(�⇒P ) �(p → q),�p,�p ⇒| �(p → q),�p, p ⇒ q
(�⇒P ) �(p → q),�p ⇒| �(p → q),�p ⇒ q

(⇒�4) �(p → q),�p ⇒ �q
(⇒→) �(p → q) ⇒ �p → �q

(⇒→) �(p → q) → (�p → �q)

where S is the sequent �(p → q),�(p → q),�p,�p ⇒.

Exercise 4.36 Prove the remaining axioms of S5.

The abstract of Pottinger does not contain any proof; the system is only
claimed to be adequate in cut-free form but it is not known if it was proved
syntactically or semantically. It is easy to prove soundness; it is enough to demon-
strate:

Lemma 4.16 (�⇒P ) is validity-preserving in S5.
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Proof: Assume that |= ϕ,�ϕ,Γ ⇒ Δ | �ϕ,Γ1 ⇒ Δ1 | · · · | �ϕ,Γn ⇒ Δn and
�|= �ϕ,Γ ⇒ Δ | Γ1 ⇒ Δ1 | · · · | Γn ⇒ Δn. By definition we have that there is
M and w1, . . . , wn such that w1 � �ϕ,Γ ⇒ Δ, w2 � Γ1 ⇒ Δ1 . . . wn � Γn ⇒ Δn

thus w1 � �ϕ which implies that for all wi ∈ WM, wi � �ϕ but this falsifies every
sequent in the premiss and contradicts our assumption. �

As for completeness, it is easier to prove it semantically by a Hintikka-style ar-
gument or by translation from the labelled system like we did for Poggiolesi’s system.

Exercise 4.37 Prove completeness of Pottinger’s system.

The structure of modal rules of Pottinger make them not very suitable for
constructing a syntactic proof of cut elimination. In Bednarska and Indrzejczak
[24], a refined version of Pottinger’s HG3 was proposed which admits a proof of
cut admissibility but at the cost of having primitive IC. As a result a proof is
provided directly for (H −Mix). However, it may be further refined in such a way
that a fully logical system may be obtained exactly as in Poggiolesi and with only
two modal rules:

(�⇒P ′
)

ϕ, �ϕ, Γ ⇒ Δ | ϕ, Γ1 ⇒ Δ1 | · · · | ϕ, Γn ⇒ Δn

�ϕ, Γ ⇒ Δ | Γ1 ⇒ Δ1 | · · · | Γn ⇒ Δn
(⇒ �K′

)
Γ ⇒ Δ, �ϕ |⇒ ϕ | G

Γ ⇒ Δ, �ϕ | G

The version from Bednarska and Indrzejczak [24], used just (⇒ �K) and this
was the reason for keeping IC as a primitive rule.

4.7.3 Admissibility of Cut

A lot of different methods for proving cut elimination/admissibility in the frame-
work of HC have been offered so far. Some syntactical proofs of cut admissibility
(elimination) for HC are performed by means of a suitable technique for tracing
the cut-formula through a proof (see, e.g. the ‘history technique’ of Avron [7] or
the ‘decoration technique’ of Baaz and Ciabattoni [16]). There were also some
applications of a Schütte-style proof to HC by Baaz and Ciabattoni [16] and by
Indrzejczak [140]. These approaches were applied to logics not dealt with in this
book, so we will not discuss them below. Instead, we will focus on three strategies
which were actually applied to HC for S5.

The first strategy is based on the application of a special multicut version
suitable for hypersequents and it was proposed by Avron [10]. The proof was only
sketched in Avron [10], but it was presented in detail in Bednarska and Indrzejczak
[24]. It is rather complicated since it requires two different forms of the cut (or
rather multicut) rule. Strictly speaking, Avron did not introduce this rule (which
we call (BSH − Mix)—see the next page), or even (SH − Mix)) as a special
rule but rather demonstrated the admissibility of (H − Cut) by means of more
general theorem where both forms of Mix are involved in the induction hypothesis.
However, it seems to be most transparent to define a special HC calculus with both
rules explicitly formulated. We follow in this respect the form of presentation of
HC for Gödel logics in Baaz, Ciabattoni and Fermüller [17]. Application of two
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versions of Multicut leads in consequence to the multiplication of subcases which
must be considered. So it is not a perfect solution but may serve as an example
of the original idea peculiar to HC. Below we only briefly characterise its specific
features.

Why are two forms of multicut necessary for this proof? We already pointed
out that in order to deal with EC Avron was forced to generalise an ordinary mix.
The most interesting point with Avron’s proof is that despite the generalisation
of (H − Mix) to (SH − Mix) (or rather (SH − Multicut)) to deal with EC he
was still unable to prove cut elimination syntactically. Let us look at the following
figure:

G | Γ,�Π ⇒ Δ,�Σ,�ϕ
(MS)

G | Γ ⇒ Δ | �Π ⇒ �Σ,�ϕ H | �ϕ,Λ ⇒ Θ
(SH-Multicut)

G | H | Γ ⇒ Δ | �Π,Λ ⇒ �Σ,Θ

where we assume that Λ,Θ consist of nonmodal formulae and that �ϕ does
not belong to Δ. If we want to reduce the height of (SH-Multicut), we obtain

G | Γ,�Π ⇒ Δ,�Σ,�ϕ H | �ϕ,Λ ⇒ Θ
(SH-Multicut)

G | H | Γ,�Π,Λ ⇒ Δ,�Σ,Θ
(MS)

G | H | Γ,Λ ⇒ Δ,Θ | �Π ⇒ �Σ

From the last hypersequent, we have no way to obtain the last sequent of the
original proof. In order to deal with the problem Avron restricted the application
of (SH−Mix) (or rather (SH−Multicut)) to nonmodal formulae and introduced
one more special form of mix for cutting boxed formulae which we call (BSH −
Mix), (BSH − Multicut) (B - for boxed)

G | Γ1 ⇒ Δ1,�ϕi | ... | Γn ⇒ Δn,�ϕj H | �ϕk,Σ1 ⇒ Π1 | ... | �ϕl,Σk ⇒ Πk

G | H | Γ1 ⇒ Δ1 | ... | Γn ⇒ Δn | Σ1 ⇒ Π1 | ... | Σk ⇒ Πk

One may easily check that this rule is validity-preserving only for S5, hence
it cannot be used in general as an admissible form of cut for HC. It may be easily
demonstrated that a system with both forms of Multicut, i.e. (SH − Multicut)
and (BSH − Multicut) is equivalent to the primary system with nonrestricted
applications of (SH − Multicut)

Theorem 4.9 G is provable in the original HLKS5 iff G is provable in the modified
system.

Proof: From left to right, it is enough to show that any application of (SH −
Multicut) with modal formulae as cut-formulae may be simulated by (BSH −
Multicut). It works like that

G | Γ1 ⇒ Δ1, �ϕi | ... | Γn ⇒ Δn, �ϕj H | �ϕk, Σ1 ⇒ Π1 | ... | �ϕl, Σk ⇒ Πk
(BSHM)

G | H | Γ1 ⇒ Δ1 | ... | Γn ⇒ Δn | Σ1 ⇒ Π1 | ... | Σk ⇒ Πk
IW, EC

G | H | Γ1, ..., Γn, Σ1, ..., Σk ⇒ Δ1, ..., Δn, Π1, ..., Πk
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From right to left, it is sufficient to show that every application of (BSH −
Multicut) may be simulated by (SH − Multicut). It looks like that

G | Γ1 ⇒ Δ1, �ϕi | ... | Γn ⇒ Δn, �ϕj

(MS)
G | Γ1 ⇒ Δ1 | ... |Γn ⇒ Δn |⇒ �ϕi | ... |⇒ �αj

H | �ϕk, Σ1 ⇒ Π1 | ... | �ϕl, Σk ⇒ Πk

H | �αk ⇒| ... | �αl ⇒| Σ1 ⇒ Π1 | ... | Σk ⇒ Πk
(SHM)

G | H | Γ1 ⇒ Δ1 | ... |Γn ⇒ Δn |⇒| Σ1 ⇒ Π1 | ... | Σk ⇒ Πk
(IW )

G | H | Γ1 ⇒ Δ1 | ... |Γn ⇒ Δn | Γn ⇒ Δn | Σ1 ⇒ Π1 | ... | Σk ⇒ Πk
(EC)

G | H | Γ1 ⇒ Δ1 | ... | Γn ⇒ Δn | Σ1 ⇒ Π1 | ... | Σk ⇒ Πk

�
One can prove the cut elimination theorem for HSC with two multicuts. In or-

der to carry out a subsidiary induction on the height, not on the rank, in Bednarska
and Indrzejczak [24], a slightly generalised Girard-strategy based on cross-cuts was
applied. It has the advantage that the rank is a more complicated measure already
for ordinary SC and its adaptation to hypersequent calculi encounter further dif-
ficulties whereas such a measure like height is simpler for control.

One may ask: 1) if it is possible to deal with only one version of cut?; 2)
if it is possible to obtain a proof showing directly elimination or admissibility of
(H − Cut)? In fact, both eventualities are realisable and below we provide two
proofs of this kind.

As for the possibility of reduction to the system having only one rule, the
method of Metcalfe, Olivetti and Gabbay [176], which was presented already in
subsection 2.4.3, may be used. In fact, they introduced this strategy in the frame-
work of HC as a very general and elegant method for proving cut elimination in the
presence of contraction for numerous fuzzy logics. Let us recall that this method,
called reductive by us, is in some sense a half-way between Gentzen’s original proof
of cut elimination and proofs based on global transformations of derivations like
in Curry [56]. In contrast to Gentzen’s proof, we eliminate the cut rule, not mul-
ticut, (or Mix) which is its generalisation absorbing contraction. But the original
proof of Metcalfe, Olivetti and Gabbay [176], is strongly based on the predefined
notion of ‘substitutivity’ of rules where the result of multiple applications of cut is
absorbed. The adaptation of this method of proving cut elimination to extensions
of t-norm logic MTL and related fuzzy logics with truth stresser modalities was
provided by Ciabattoni, Metcalfe and Montagna [52]. This proof is particularly im-
portant since it deals with rules which are not ‘substitutive’ in the sense of [176],
and may be applied here although not to the original system of Avron. The key
point is that the reduction step for (SHM) fails because (MS) introduces boxed
formula on both sides of the new sequent in the conclusion. But we noticed that
we do not need such a strong form of (MS). In Kurokawa [154] (and similarly in
Lahav [156]), a weaker version is used which operates only on the antecedent. For
a system with such a rule, a special (BSHM) is not required. The modal rules of
Kurokawa enable an application of this strategy to his system for S5. His original
proof is performed for (WH −Multicut) according to the lines of proof from [52].
However, instead of reproducing here Kurokawa’s proof we will adapt this kind of
proof to Restall’s system.
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Restall’s [215] original proof applies the global strategy of elimination of
cuts in the proof, introduced by Curry [56] and refined by Belnap [25], in the
context of display calculus. His solution is based on the fact that all rules of the
system (including modal ones and (Merge)) are regular in the sense of allowing
unrestricted permutation with cuts performed on parametric formulae. It is an
elegant solution but shown in a very sketchy way which leaves some essential
points of necessary transformations open. It seems, however, that the application
of Curry’s solution based on an inductive definition of the set of ancestors of the
respective sequent may be adapted here.

In order to apply the reductive proof of cut elimination (see subsection 2.4.3),
let us recall that we defined the cut-degree dϕ as the complexity of the cut-formula
ϕ and let the proof-degree dD be defined as the complexity of the most complex
cut-formula plus 1. Hence, a cut-free derivation D has dD = 0.

As we stated in section 2.4.3, the proof is based on two reduction lemmata.
The first of them in HC framework is:

Lemma 4.17 Let D1 and D2 be derivations such that

1. D1 is a derivation of G | ϕi,Γ1 ⇒ Δ1 | ... | ϕk,Γn ⇒ Δn;

2. D2 is a derivation of H | Π ⇒ Σ, ϕ;

3. dD1 ≤ dϕ and dD2 ≤ dϕ;

4. ϕ is a principal formula of a logical rule in D2.

Then a derivation D can be constructed of H ′ = G | H | Πi,Γ1 ⇒ Δ1,Σi |
... | Πk,Γn ⇒ Δn,Σk; with dD ≤ dϕ.

Proof: The proof is by induction on the height of D1. If it is an axiom, then we
are done since either H ′ is also an axiom or is derivable from H | Π ⇒ Σ , ϕ by
external and internal weakenings. Otherwise, we must analyse the last rule applied
in D1. In case the rule is applied to some element of G, the claim follows by the
induction hypothesis and the application of the rule. If it is some nonmodal logical
rule or (� ⇒) applied to some of the displayed sequents but with all occurrences
of ϕ parametric, then the claim follows by the context independence of the rules,
the induction hypothesis, and the application of the rule, or with the application
of IW and IC in case ϕ is an auxiliary formula in the premise(s). Similarly, in case
of structural rules; it makes no difference if W or (Merge) applies.

In the case of nonmodal logical rules with ϕ principal, we must use addition-
ally one or two cuts with premiss(es) of H | Π ⇒ Σ , ϕ; here the assumption 4 of
the lemma is essential. Let us consider as an example the case of ϕ = ψ ∨ χ. We
have two premises:

G | ψ ∨ χi−1, ψ,Γ1 ⇒ Δ1 | ... | ψ ∨ χk,Γn ⇒ Δn and

G | ψ ∨ χi−1, χ,Γ1 ⇒ Δ1 | ... | ψ ∨ χk,Γn ⇒ Δn.

By the induction hypothesis, we obtain derivations of



226 Chapter 4. Sequent Calculi for Modal Logics

G | H | Πi−1, ψ,Γ1 ⇒ Δ1,Σi−1 | ... | Πk,Γn ⇒ Δn,Σk and

G | H | Πi−1, χ,Γ1 ⇒ Δ1,Σi−1 | ... | Πk,Γn ⇒ Δn,Σk

both of cut-degree ≤ dϕ. By two cuts with H | Π ⇒ Σ, ψ, χ, followed by
applications of IC and EC we obtain H ′; the derivation has cut-degree ≤ dϕ too.

The application of (Merge) is not a problem; we obtain a result by the
induction hypothesis and (Merge). Similarly, with (⇒ �).

If the last rule is (� ⇒) with ϕ = �ψ principal, we have

G | �ψi−1, ψ,Γ1 ⇒ Δ1 | ... | �ψk,Γn ⇒ Δn

G | �ψ ⇒| �ψi−1, ψ,Γ1 ⇒ Δ1 | ... | �ψk,Γn ⇒ Δn

By the induction hypothesis, we obtain H | G | ψ,Γ1 ⇒ Δ1 | ... | Γn ⇒ Δn.
This by cut with H |⇒ ψ (which by the assumption 4 of the lemma must be the
premiss of H |⇒ ϕ) yields H | H | G | Γ1 ⇒ Δ1 | ... | Γn ⇒ Δn which after
application of EC gives us the required result. Note that resulting derivation has
cut-degree ≤ dϕ.

�

Lemma 4.18 Let D1 and D2 be derivations such that

1. D1 is a derivation of G | Γ1 ⇒ Δ1, ϕ
i | ... | Γn ⇒ Δn, ϕk;

2. D2 is a derivation of H | ϕ,Π ⇒ Σ;

3. dD1 ≤ dϕ and dD2 ≤ dϕ;

Then a derivation D can be constructed of H ′ = G | H | Πi,Γ1 ⇒ Δ1,Σi |
... | Πk,Γn ⇒ Δn,Σk; with dD ≤ dϕ.

Proof: The proof is by induction on the height of D1 and is very similar to the
proof of the preceding lemma. The main difference is that when the last rule is
logical with ϕ principal we refer not only to the induction hypothesis but also to
lemma 4.17. Let us illustrate the point with (⇒ �) as the last rule. Then ϕ = �ψ
and it looks like that

G | Γ1 ⇒ Δ1, ϕ
i | ... |⇒ ψ

G | Γ1 ⇒ Δ1, ϕ
i | ... |⇒ ϕ

By the induction hypothesis and (⇒ �) we obtain a derivation of G | H |
Πi,Γ1 ⇒ Δ1,Σi | ... |⇒ �ψ. Since �ψ is principal the claim follows by lemma
4.17. �

Theorem 4.10 (Cut) is eliminable.

Proof: Consider any derivation D with dD > 0, The proof proceeds by a double
induction on dD and ndD—the number of applications of cut with cut-degree
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dD. We start with an uppermost application of cut with cut-degree dD and apply
lemma 4.18 to its premisses. As a result, we decrease either dD or ndD. �

Let us notice that from this proof of cut elimination yet another rule (or
rather a pair of rules) may be extracted which we call (WH −Mix) (W for weak)

G | Γ ⇒ Δ, ϕ H | ϕi,Σ1 ⇒ Π1 | ... | ϕj ,Σk ⇒ Πk

G | H | Γi,Σ1 ⇒ Π1,Δi | ... | Γj ,Σk ⇒ Πk,Δj

and
G | Γ1 ⇒ Δ1, ϕ

i | ... | Γn ⇒ Δn, ϕj H | ϕ,Σ ⇒ Π
G | H | Σi,Γ1 ⇒ Δ1,Πi | ... | Σj ,Γn ⇒ Δn,Πj

and again the version is possible which does not require deletion of all oc-
currences of ϕ in all sequents of one of the premisses, which we can call (WH −
Multicut). The relations between these rules and (H − Cut) are the same as in
the case of (SH − Mix) and (SH − Multicut).

Eventually, we provide a proof of admissibility of cut for HG3 with refined
Pottinger’s rules in Dragalin-style. We follow Poggiolesi’s proof as closely as pos-
sible but there are some significant differences, which will be commented on after
presentation. Despite its semantical motivation, Poggiolesi’s [198], system allows
for very elegant syntactic proof of the admissibility of cut. It is constructed along
the lines of Dragalin’s proof for G3 and avoids many complications of the two
proofs presented above. In her system (Merge) is height-preserving admissible,
which simplifies further steps in an essential way. We do not enter into details
since the proof is described in [198] in an exact way, so we only sketch it. First
of all, Poggiolesi must prove that axioms in atomic form may be generalised to
arbitrary formula ϕ on both sides. The next step is the proof that (Merge) is
height-preserving admissible. From this follows height-preserving admissibility of
IW and EW and height-preserving invertibility of logical rules. The additional
machinery of admissible tools allows for a smooth proof of (H − Cut).

As we noted the price for having a fully logical system (i.e. with no structural
primitive rules) admitting a simple proof of admissibility of (H −Cut) is a certain
inelegance of having two rules for box introduction in the antecedent. We will
finish this survey of proof methods with Dragalin-style proof for such a fully logical
system but with only one rule for (� ⇒).

One can easily check that for Pottinger’s system with refined rules (see above)
we obtain the usual preliminary results

Lemma 4.19 � ϕ,Γ ⇒ Δ, ϕ

Proof: as usual by induction on the complexity of ϕ; left to the reader. �
Lemma 4.20 IW and EW are height-preserving admissible.

Proof: By induction on the height of the proof of the premiss. Note that first we
must prove both forms of IW since it is necessary for proving h-p amissibility of
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EW. The former is straightforward since all rules, including both modal ones, are
context independent. In proving EW, it is similar but the case when the last applied
rule was (� ⇒P ′

) needs IW. In this case, our G is of the form �ϕ,Γ1 ⇒ Δ1 | ... |
Γn ⇒ Δn inferred from �ϕ,ϕ,Γ1 ⇒ Δ1 | ... | ϕ,Γn ⇒ Δn. By the induction
hypothesis, we obtain �ϕ,ϕ,Γ1 ⇒ Δ1 | ... | ϕ,Γn ⇒ Δn | Σ ⇒ Θ and then by
h-p admissibility of IW we get �ϕ,ϕ,Γ1 ⇒ Δ1 | ... | ϕ,Γn ⇒ Δn | ϕ,Σ ⇒ Θ from
which �ϕ,Γ1 ⇒ Δ1 | ... | Γn ⇒ Δn | Σ ⇒ Θ follows by (� ⇒P ′

) as required. �

Lemma 4.21 All logical rules are height-preserving invertible.

Proof: By straightforward induction on the height of the proof of the premisses.
In case of boolean rules, it goes exactly as for ordinary G3; of course, we must take
into account that modal rules are applied in the last step but it does not encounter
any complications. Both modal rules are h-p invertible just by h-p admissibility of
IW and EW. �

Having all that we can prove:

Lemma 4.22 Both forms of IC and EC is height-preserving admissible.

Proof: The proof is by induction on the height of the proof, and in general, is
similar to the proof for G3. In case of IC when the contracted formula is parametric
in both occurrences, we just apply the induction hypothesis and perform a suitable
rule on the contracted premiss(es). Again, if the last rule is modal, this does not
create any problem. When one of the occurrences of the contracted formula was
principal, then in case of boolean formulae we apply h-p invertibility. In case of
modal formulae, we need only to apply the induction hypothesis to the premiss
since both rules are contraction-absorbing. For EC the situation is similar. Again
in the case where the last rule was modal, the induction hypothesis justifies the
claim. For example

�ϕ,ϕ,Γ1 ⇒ Δ1 | �ϕ,ϕ,Γ1 ⇒ Δ1 | ... | ϕ,Γn ⇒ Δn
(� ⇒P ′

) �ϕ,Γ1 ⇒ Δ1 | �ϕ,Γ1 ⇒ Δ1 | ... | Γn ⇒ Δn

by the induction hypothesis and (� ⇒P ′
) yields

�ϕ,ϕ,Γ1 ⇒ Δ1 | ... | ϕ,Γn ⇒ Δn
(� ⇒P ′

) �ϕ,Γ1 ⇒ Δ1 | ... | Γn ⇒ Δn

In case of boolean rules, we must again apply h-p invertibility of rules. Let
us illustrate this point with the case of (⇒ ∨) as the last applied rule

G | Γ ⇒ Δ, ϕ ∨ ψ | Γ ⇒ Δ, ϕ, ψ

G | Γ ⇒ Δ, ϕ ∨ ψ | Γ ⇒ Δ, ϕ ∨ ψ

this is transformed into
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G | Γ ⇒ Δ, ϕ, ψ | Γ ⇒ Δ, ϕ, ψ

G | Γ ⇒ Δ, ϕ, ψ

G | Γ ⇒ Δ, ϕ ∨ ψ

where the first line is by height-preserving invertibility of (⇒ ∨) and the
second by the induction hypothesis, so the height of the last line is the same as in
the first proof.

Now we are ready to prove the admissibility of (H-Cut).

Theorem 4.11 (H-Cut) is admissible.

Proof: It is similar to the Dragalin-style proof for G3, by induction on the com-
plexity of the cut-formula and a subsidiary induction on the height of the proof.
In particular, the cases where one premiss is an axiom or where the cut-formula
is parametric are straightforward. The reader should check that reduction of the
height of the premiss does not make any problems when the last rule is modal. As
for the cases where in both premisses the cut-formula is principal the only differ-
ence is that we must apply EC after making cut on subformulae of cut-formula.
The essentially different point is

G | Γ ⇒ Δ,�ϕ | ⇒ ϕ

G | Γ ⇒ Δ,�ϕ

�ϕ,ϕ,Σ1 ⇒ Π1 | ... | ϕ,Σn ⇒ Πn

�ϕ,Σ1 ⇒ Π1 | ... | Σn ⇒ Πn(H-Cut)
G | Γ,Σ1 ⇒ Δ,Π1 | ... | Σn ⇒ Πn

First, we must perform two cross-cuts on �ϕ reducing the height in both
cases

G | Γ ⇒ Δ,�ϕ �ϕ,ϕ,Σ1 ⇒ Π1 | ... | ϕ,Σn ⇒ Πn(H-Cut)
G | ϕ,Γ,Σ1 ⇒ Δ,Π1 | ... | ϕ,Σn ⇒ Πn

G | Γ ⇒ Δ,�ϕ | ⇒ ϕ �ϕ,Σ1 ⇒ Π1 | ... | Σn ⇒ Πn(H-Cut)
G | Γ,Σ1 ⇒ Δ,Π1 | ... | Σn ⇒ Πn |⇒ ϕ

Now, we must apply (H-Cut) on ϕ to both hypersequents derived above

G | Γ, Σ1 ⇒ Δ, Π1 | ... | Σn ⇒ Πn |⇒ ϕ G | ϕ, Γ, Σ1 ⇒ Δ, Π1 | ... | ϕ, Σn ⇒ Πn
(H-Cut)

G | G | Γ, Σ1 ⇒ Δ, Π1 | ... | Σn ⇒ Πn | Γ, Σ1 ⇒ Δ, Π1 | ... | ϕ, Σn ⇒ Πn

We repeat (H−Cut) on this sequent again with the conclusion of the previous
(H − Cut) systematically n − 1 times to all displayed occurrences of ϕ. Since we
are cutting ϕ, all performed cuts are eliminable by the induction hypothesis on
the complexity. Finally, by EC, we obtain the desired result. �

By the way, one may notice why Pottinger’s original rules do not work for
such a proof. First when applying (⇒ �P ) if some boxed formulae are in Γ we will
have Γ� ⇒ ϕ instead of ⇒ ϕ and this sequent when mixed with some ϕ,Σi ⇒ Πi

yields Γ�,Σi ⇒ Πi. There seems to be no way to get rid of Γ� in any such case
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to obtain the desired result. Second, in the application of (� ⇒P ) we have �ϕ
instead of ϕ added to every Σi ⇒ Πi and it is impossible to perform a reduction
on cut-formula complexity in the series of steps described above.

We finish with a comparison of this proof with a proof of Poggiolesi. She
is proving h-p admissibility of (Merge) from scratch and then applies this rule
for obtaining other results. For the modified Pottinger’s rule, it is not possible.
Consider the case when the last applied rule was (� ⇒P ′

), so we have

�ϕ,ϕ,Γ1 ⇒ Δ1 | ϕ,Γ2 ⇒ Δ2 | ... | ϕ,Γn ⇒ Δn
(� ⇒P ′

) �ϕ,Γ1 ⇒ Δ1 | Γ2 ⇒ Δ2 | ... | Γn ⇒ Δn

and we want to show that �ϕ,Γ1,Γ2 ⇒ Δ1,Δ2 | ... | Γn ⇒ Δn is provable.
But by the induction hypothesis we obtain �ϕ,ϕ, ϕ,Γ1,Γ2 ⇒ Δ1,Δ2 | ... | ϕ,Γn ⇒
Δn and there is no way to derive the desired result without using IC.

4.8 Pairs of Sequents are Sufficient

We emphasised that HC is a rather weak generalisation of standard SC but still
sufficient to increase the expressive power of the ordinary Gentzen apparatus. But
for many modal logics (for example symmetric ones like B), and in general, many
non-classical logics, this is not sufficient. Nested sequents (or tree hypersequents)
introduced first by Bull [42] and Kashima [147], provide an even more general
framework but also a more complicated one. We do not aim to introduce this
approach since one may find an excellent presentation in Poggiolesi [198]15. The
general idea is that other sequents may be elements of sequents, so that such
an object corresponds to a tree of sequents. Lellman [161], noticed that in many
cases we can obtain a simpler form by allowing only one sequent to be nested.
In this way, we obtain something which may be interpreted either as a restricted
form of nested sequents or something like hypersequents with a linear ordering of
sequents. Hence, they may be called linear nested sequents (Lellmann [161]) or
non-commutative hypersequents (Indrzejczak [136]). Even this half-way solution
(between hypersequents and nested sequents) offers greater flexibility. For exam-
ple, Indrzejczak [136] provided cut-free systems for many temporal logics in this
framework. In general, providing constructive proofs of cut admissibility is difficult
for such systems, but not impossible (see e.g. Indrzejczak [140, 143], Kuznets and
Lellmann [155]). On the other hand, semantical proofs of completeness may be
easily obtained at least for some such systems since every linear nested sequent, in
fact, simulates a stage in proof search along the lines of section 4.4. (see Lellmann
[161]). Further generalisations obtained by Baelde, Lick and Schmitz [20], where
clusters of sequents are admitted as components of linear nested sequents, lead to

15Other variants of such systems were developed, for example, by Stouppa [246], on the basis
of earlier systems of deep inference of slightly different character
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decision procedures with optimal efficiency for temporal logics. All these versions
of many sequent calculi may be seen as specialised forms of the general approach
of Dos̆en [60], and it seems that the potential applications of this framework are
far from being fully examined.

However, taking into account our restricted interests in S5 only we may ask if
in this case we cannot find an even simpler solution. In the framework of labelled
calculi, the notion of a label was extremely simplified in case of S5. Perhaps for
other approaches, the situation is similar. Below we present two systems that may
be seen either as hypersequent calculi, or alternatively as nested sequent calculi of a
very modest kind, using only (ordered) pairs of sequents, which we call bisequents.
Both bisequent calculi are cut-free, moreover for one of them cut elimination is
proved constructively. To show the expressive power of this simplified version of
HC we first recall two calculi belonging to different families of generalised SCs
but we will eventually show that both may be translated into bisequents. The first
system is due to Sato and provides another example of structured SC operating on
4-argument sequents which we already introduced in section 4.4. The second is due
to Indrzejczak and belongs to the family of multisequent calculi, where different
kinds of sequents are used in one system.

4.8.1 Sato’s Structured System

The original system of Sato is formulated by means of 4-argument sequents, sim-
ilarly as the system of Heuerding, Seyfried and Zimmermann [115]. However, the
interpretation is different, and to make differences more visible we put additional
arguments of a sequent inside, i.e. immediately on two sides of ⇒ (in fact, in ac-
cordance with Sato’s original convention). So we are using sequents of the form
Γ [Π] ⇒ [Σ] Δ where arguments are defined as sets of formulae. We will call them
external (for Γ,Δ) and internal (for Π,Σ) arguments or contexts. The language
contains only ⊥,→ and �. Most of the rules are defined only for the external
arguments and they are, in fact, performed also when the internal arguments are
empty sets. So following Sato, we omit [ ] on both sides of an arrow in these cases,
i.e. instead of writing Γ [ ] ⇒ [ ] Δ we will just write Γ ⇒ Δ. Hence, sequents with
empty internal arguments are just standard sequents.

Sato’s system consists of axioms ϕ ⇒ ϕ and ⊥ ⇒ and the following rules:

(EW )
Γ ⇒ Δ

Π,Γ ⇒ Δ,Σ
(IW )

Γ [Π] ⇒ [Σ] Δ
Γ [Λ,Π] ⇒ [Σ,Θ] Δ

(E→⇒)
Γ ⇒ Δ, ϕ, ψ ϕ,Π ⇒ Σ, ψ ϕ, ψ, Λ ⇒ Θ

ϕ → ψ,Γ,Π,Λ ⇒ Δ,Σ,Θ

(E⇒→)
ϕ,Γ ⇒ Δ, ψ

Γ ⇒ Δ, ϕ → ψ
(I⇒→)

Γ [ϕ,Π] ⇒ [Σ, ψ] Δ
Γ [Π] ⇒ [Σ, ϕ → ψ] Δ
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(I→⇒)
Γ [Π] ⇒ [Σ, ϕ, ψ] Δ Γ [ϕ,Λ] ⇒ [Θ, ψ] Δ Γ [ϕ,ψ,Ξ] ⇒ [Ω] Δ

Γ [ϕ → ψ,Π,Λ,Ξ] ⇒ [Σ,Θ,Ω] Δ

(�⇒)
ϕ,Γ ⇒ Δ

�ϕ,Γ ⇒ Δ
(⇒�)

�Γ ⇒ �Δ, ϕ

�Γ ⇒ �Δ,�ϕ

(Enter ⇒)
Γ,�ϕ [Π] ⇒ [Σ] Δ
Γ [�ϕ,Π] ⇒ [Σ] Δ

(⇒ Enter)
Γ [Π] ⇒ [Σ] �ϕ,Δ
Γ [Π] ⇒ [Σ,�ϕ] Δ

(⇒[�])
Γ [ ] ⇒ [ϕ] Δ

Γ [ ] ⇒ [ ] �ϕ,Δ
(Cut)

Γ ⇒ Δ, ϕ ϕ,Π ⇒ Σ
Γ,Π ⇒ Δ,Σ

A proof is defined in a standard way but only for standard sequents as pos-
sible roots of the proof tree. Note that the treatment of external and internal (i.e.
inside [ ]) arguments is not the same. There are no rules for � inside [ ], only
the rules allowing for the transfer to external arguments, also axioms are defined
only on external arguments. So external arguments are privileged and the role of
internal context is, in fact, quite similar to the role of the respective components
in Heuerding, Seyfried and Zimmermann’s approach. However, they are not just
‘history’-boxes; we can apply in them weakening and Boolean rules but only until
we do not obtain �-formulae which may be transported back to an external con-
text. The specific form of the rules for →⇒ is not accidental, which will be evident
in the proof of completeness.

Since the rules of external context are just Ohnishi and Matsumoto’s rules
of LKS5 (in restricted boolean language) there is no problem in proving that

Lemma 4.23 If � Γ ⇒ Δ in LKS5, then � Γ ⇒ Δ in Sato’s system.

Proof: By induction on the height of a proof. Since all rules of LKS5 are directly
simulated it is enough to show that ordinary (→⇒) is provable in Sato’s system
which is left to the reader (cf. a consideration on 3−premiss variants of standard
rules in section 1.4). �

So the system is complete. But the addition of internal context allows to build
cut-free proofs of sequents (in fact, always) which in Ohnishi and Matsumoto’s sys-
tem are not cut-free provable. For example, a cut-free proof of B is straightforward
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p ⇒ p
(EW )

p ⇒ p,⊥
p ⇒ p

p,⊥ ⇒ p
⊥ ⇒

p, p,⊥ ⇒
(→⇒)

p, p → ⊥ ⇒
(� ⇒)

p,�(p → ⊥) ⇒
(IW )

p,�(p → ⊥) [ ] ⇒ [⊥]
(Enter ⇒)

p [�(p → ⊥)] ⇒ [⊥]
(⇒→)

p [ ] ⇒ [�(p → ⊥) → ⊥]
(⇒ [�])

p ⇒ �(�(p → ⊥) → ⊥)
(⇒→) ⇒ p → �(�(p → ⊥) → ⊥)

Sato provides the following interpretation of his sequents:

�(Γ [Π] ⇒ [Σ] Δ) = Γ ⇒ Δ,�(∧Π → ∨Σ)

with � representing empty Π and ⊥ empty Σ.
On the basis of this translation, we can either prove the validity-preservation

of all rules and demonstrate the soundness of the system, or provide a syntactical
proof of the converse of lemma 4.23. Following Sato, we choose the latter option

Lemma 4.24 If � Γ ⇒ Δ in Sato’s system, then � Γ ⇒ Δ in LKS5.

Proof: Again by induction on the height of a proof. We must prove that all Sato’s
rules are derivable in Ohnishi and Matsumoto’s system under translation. Let us
show the case of (Enter ⇒) which under translation is

Γ,�ϕ ⇒ Δ,�(π → σ)
Γ ⇒ Δ,�(�ϕ ∧ π → σ)

where π represents ∧Π and σ ∨Σ.

Γ, �ϕ ⇒ Δ, �(π → σ)

Γ ⇒ Δ, �ϕ → �(π → σ)

�ϕ ⇒ �ϕ
(⇒ W )

�ϕ ⇒ �ϕ, σ
(∧ ⇒)

�ϕ ∧ π ⇒ �ϕ, σ
(⇒→)

⇒ �ϕ, �ϕ ∧ π → σ
(⇒ �)

⇒ �ϕ, �(�ϕ ∧ π → σ)

π ⇒ π σ ⇒ σ
(→⇒)

π, π → σ ⇒ σ
(∧ ⇒)

�ϕ ∧ π, π → σ ⇒ σ
(⇒→)

π → σ ⇒ �ϕ ∧ π → σ
(� ⇒)�(π → σ) ⇒ �ϕ ∧ π → σ

(⇒ �)�(π → σ) ⇒ �(�ϕ ∧ π → σ)
(→⇒)

�ϕ → �(π → σ) ⇒ �(�ϕ ∧ π → σ), �(�ϕ ∧ π → σ)
(→ C)

�ϕ → �(π → σ) ⇒ �(�ϕ ∧ π → σ)
(Cut)

Γ ⇒ Δ, �(�ϕ ∧ π → σ)

�

Exercise 4.38 Complete the proof of lemma 4.24.
Show validity-preservation of Sato’s rules.

Sato did not provide a syntactic proof of cut elimination for this system (he
did it for SC presented in [225], instead) and it is not clear if we can provide
such a proof. Therefore, we present (essentially the original Sato’s) proof of the
completeness of the cut-free version of his system.
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The definition of saturated sequent is a bit different. Γ ⇒ Δ is saturated iff

1. Γ ⇒ Δ is unprovable (in the system without cut)

2. if ϕ → ψ ∈ Γ or ϕ ⇒ ψ ∈ Δ, then {ϕ,ψ} ⊆ Γ ∪ Δ

3. if �ϕ ∈ Γ, then ϕ ∈ Γ

4. if �ϕ ∈ Δ, then SF�(ϕ) ⊆ Γ ∪ Δ

where SF�(ϕ) = {�ψ : �ψ ∈ SF (ϕ)}
Lemma 4.25 If Γ ⇒ Δ is unprovable, then there is saturated Π ⇒ Σ such that
Γ ⊆ Π and Δ ⊆ Σ.

Proof: We construct a finite sequence of unprovable sequents built from SF (Γ∪
Δ) in the same way as in the proof of lemma 1.26 with Γ1 ⇒ Δ1 = Γ ⇒ Δ.

If at the stage n a sequent Γn ⇒ Δn is defined and it is saturated, then Γn ⇒
Δn = Π ⇒ Σ. Otherwise, some of the conditions 2-4 is not satisfied. If condition 2
is not satisfied then, if ϕ → ψ is in Δn, we take ϕ,Γn ⇒ Δn, ψ = Γn+1 ⇒ Δn+1.
It must be unprovable, otherwise Γn ⇒ Δn would be provable by (⇒→). If it is
in Γ, then for the same reason at least one of the Γn ⇒ Δn, ϕ, ψ or ψ,Γn ⇒ Δn, ϕ
or ϕ,ψ,Γn ⇒ Δn must be unprovable and we take it as Γn+1 ⇒ Δn+1. Condition
3 is obvious so it remains to consider condition 4.

Assume that �ϕ ∈ Δn but it does not hold that SF�(ϕ) ⊆ Γn ∪Δn. Let �ψ
be a formula of maximal complexity from SF�(ϕ)−Γn ∪Δn. Since �ϕ ∈ Δn and
�ψ ∈ SF (ϕ) there must be at least one �χ ∈ Γn∪Δn such that �ψ ∈ SF (χ) (�ϕ
is such if no other). If there is more than one, take a formula �χ with minimal
complexity. If �χ ∈ Γn, then χ,Γn ⇒ Δn is unprovable, otherwise Γn ⇒ Δn

would be provable by (� ⇒). Since �ψ ∈ SF (χ) but not in the scope of any
other � then if we apply (root-first) rules for implication and EW to χ,Γn ⇒ Δn

we obtain eventually either �ψ,Γn ⇒ Δn or Γn ⇒ Δn,�ψ. But both cannot be
provable, otherwise χ,Γn ⇒ Δn would be provable. So one of these sequents is
taken as Γn+1 ⇒ Δn+1. If �χ ∈ Δn, then Γn [ ] ⇒ [χ] Δn is unprovable, otherwise
Γn ⇒ Δn would be provable by (⇒ �). Now by the internal rules for implication
and IW, we obtain eventually either Γn [�ψ] ⇒ [ ] Δn or Γn [ ] ⇒ [�ψ] Δn.
In both the cases by Enter-rules either �ψ,Γn ⇒ Δn or Γn ⇒ Δn,�ψ must be
unprovable and is taken as Γn+1 ⇒ Δn+1. �

Remark 4.2 Careful analysis of the proof of the last condition shows why Sato used
a 3−premiss variant of (→⇒). For example, let χ := �ψ → ϕ, then applying
standard (→⇒) we obtain only Γn ⇒ Δn,�ψ and ϕ,Γn ⇒ Δn. It may be the case
that the latter is unprovable and condition 4 is still not satisfied.

Note that the model is infinite and we do not obtain a decision procedure
for S5 in this way, in contrast to the construction with analytic cut described in
section 4.5.
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4.8.2 Double Sequent Calculus

The system of Indrzejczak [125], uses two kinds of sequents. In addition to ordinary
sequents, there are modal ones of the form Γ �⇒Δ. If it is inessential whether a
standard or a modal sequent is applied both kinds are denoted as Γ (�)⇒ Δ. The
idea of using special kinds of sequents is due to Curry [56], and it was also used by
Zeman [276]. In both the cases, additional sequents were introduced to express the
modal character of suitable operations. In fact, its use in Curry’s formulation of S4
is not necessary; in Zeman it is essential for obtaining a modal rule characterising
S4.2, a logic not dealt with in this book. Two kinds of sequents were applied also in
Avron, Honsell, Miculan and Paravano [13], but in a totally different character. In
their system, two kinds of sequents correspond to two different deducibility relation
(see section 4.1). Indrzejczak introduced a general construction where several types
of modal [126], and temporal sequents [127] were applied in one SC but in case of
S5 a considerable reduction is possible to the effect that only one type of modal
sequent is required. Below we briefly describe this system; in addition to [125] one
may find a fuller account and comparison with other approaches in Poggiolesi [198]
and Wansing [270].

In addition to modal sequents, the language is enriched with a special struc-
tural operation of transition (from one argument of a sequent to another). It is
unary like negation but cannot be iterated; it is only allowed to be added in front
of a formula or to be deleted. We will use a sign − for it, so any formula ϕ may
be transformed into a shifted formula −ϕ. In the schemata we will use a conven-
tion ϕ∗ in the sense that for ordinary formula ϕ, ϕ∗ = −ϕ and (−ϕ)∗ = ϕ. Also
Γ∗ = {ϕ∗ : ϕ ∈ Γ}.

Most rules are standard and work the same way on both kinds of sequents.
However, in order to block the uncontrolled transition from one side of a sequent
to the other for negation and implication, we have symmetric variants (like in SC
used for interpolation proofs in section 3.7)

(¬⇒)
−ϕ,Γ(�)⇒ Δ
¬ϕ,Γ(�)⇒ Δ

(⇒¬)
Γ(�)⇒ Δ,−ϕ

Γ(�)⇒ Δ,¬ϕ

(⇒→)
Γ(�)⇒ Δ,−ϕ,ψ

Γ(�)⇒ Δ, ϕ → ψ
(→⇒)

−ϕ,Γ(�)⇒ Δ ψ,Γ(�)⇒ Δ
ϕ → ψ,Γ(�)⇒ Δ

Clearly, Γ and Δ may contain ordinary formulae, as well as shifted formulae;
the same remark applies to further rules. We need special rules for transition of
the form

(⇒ ∗) ϕ,Γ ⇒ Δ
Γ ⇒ Δ, ϕ∗ (∗ ⇒)

Γ ⇒ Δ, ϕ

ϕ∗,Γ ⇒ Δ
(TR)

Γ �⇒ Δ
Δ∗ �⇒ Γ∗

and modal rules
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(� ⇒)
ϕ,Γ(�)⇒ Δ

�ϕ,Γ(�)⇒ Δ
(⇒ �)

Γ �⇒ MΔ, ϕ

Γ ⇒ MΔ,�ϕ
(NC)

Γ ⇒ Δ
Γ �⇒ Δ

where MΔ contains only M-formulae of the form �ψ,−�ψ and in (NC)
one of the Γ,Δ is either empty or contains only M-formulae. If we admit ♦ as
a primitive operator, we have dual rules for it and the notion of M-formula is
extended to include ♦ψ,−♦ψ.

Similarly to Sato’s system, only standard sequents are to be proved and modal
sequents may occur only as nodes of proof trees. Here is an example of a proof

p ⇒ p
(� ⇒) �p ⇒ p
(NC) �p �⇒ p

(TR) −p �⇒ − �p
(⇒ ¬) −p �⇒ ¬�p
(⇒ �) −p ⇒ �¬�p
(¬ ⇒) ¬p ⇒ �¬�p
(⇒ ∗) ⇒ −¬p,�¬�p

(⇒→) ⇒ ¬p → �¬�p

Exercise 4.39 Prove axioms K, 4 and 5.

It is easy to prove soundness under syntactic translation where standard
sequents are dealt with as Gentzen transforms with the addition that shift formulae
are translated as negations. Modal sequents are translated as ∧Γ → �(∨Δ) with
the same proviso for shift formulae.

Exercise 4.40 Prove validity-preservation of modal rules and (NC).

This system is cut-free and has a generalised subformula property in the
sense that the only formulae which must occur in any proof of Γ ⇒ Δ are of the
form ϕ,−ϕ for every ϕ ∈ SF (Γ ∪ Δ). Completeness and decidability is proved
by Hintikka-style argument. We omit the details and only point out that for the
need of exhaustive proof search procedure (NC) is replaced with two disjunctive
branching rules (see subsection 4.4.1)

(NCG)
Γ ⇒ Σ ⇒ Δ,Σ

Γ �⇒ Δ,Σ
Γ,Σ ⇒ Σ ⇒ Δ

Γ,Σ �⇒ Δ

where Σ contains only M-formulae and Γ,Δ only atomic ones (including
shift formulae). Also, some other minor changes are needed like introducing a
contraction-absorbing version of (� ⇒) and the elimination of weakening.

4.8.3 Bisequent Calculi

Although the two systems presented above in this section differ significantly, we
can find a uniform perspective which shows hidden similarities between them. In
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both the cases, we can operate not only on single but also on pairs of states in
one sequent. It will be more transparent if we just use hypersequents but limited
to two sequents only and provide a translation. We will call such hypersequents
as just bisequents. The obvious translation to this setting is the following: Sato’s
structured sequent Γ [Π] ⇒ [Σ] Δ is represented as Γ ⇒ Δ | Π ⇒ Σ and the latter
is equivalent to modal sequent Γ,−Δ �⇒ −Π,Σ.

Exercise 4.41 Provide a translation of transitional modal rules from both SC into
bisequent framework.

In this way, we can observe an inherent similarity of these generalised calculi
to the hypersequent approach and, moreover, it shows that in case of S5 the
framework of hypersequents may be simplified in a similar way as it was done
in the labelled framework. This time there is a similarity with respect to the
cardinality of the multiset of admissible elements of any hypersequent. Below, we
provide yet another set (or rather two) of rules which are extremely simple and
easy to use.

In general, we are using bisequents but in case one component is empty we
can omit it, and a bisequent with single nonempty sequent is just a standard
sequent. But in contrast to Sato’s system in both components, we have the same
set of rules. For simplicity, but also because of some further changes in the system,
in the schemata of the rules we will state the active components always in the
left sequent but in the course of the proof, they are allowed in both sequents. For
the classical basis, we just take LK but in case of two-premiss rules, we keep the
second, non-active component the same in both premisses. On the contrary for
cut, we admit different sequents which are mixed in the conclusion, hence we have

(→⇒)
Γ ⇒ Δ, ϕ | Π ⇒ Σ ψ,Λ ⇒ Θ | Π ⇒ Σ

ϕ → ψ,Γ,Λ ⇒ Δ,Θ | Π ⇒ Σ

but

(Cut)
Γ ⇒ Δ, ϕ | Λ ⇒ Θ ϕ,Π ⇒ Σ | Ξ ⇒ Ω

Γ,Π ⇒ Δ,Σ | Λ,Ξ ⇒ Θ,Ω

Clearly, in both cases the parametric (non-active) component of a bisequent
may be put on the left or on the right; the latter is only a convention. In addition
to ordinary structural rules W and C, we have two transitional structural rules

(TR⇒)
�ϕ,Γ ⇒ Δ | Π ⇒ Σ
Γ ⇒ Δ | �ϕ,Π ⇒ Σ

(⇒TR)
Γ ⇒ Δ,�ϕ | Π ⇒ Σ
Γ ⇒ Δ | Π ⇒ Σ,�ϕ

and two modal (static) rules

(�⇒)
ϕ,Γ ⇒ Δ | Π ⇒ Σ

�ϕ,Γ ⇒ Δ |,Π ⇒ Σ
(⇒�)

⇒ ϕ | Γ ⇒ Δ
⇒ �ϕ | Γ ⇒ Δ
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This system will be called BSC1. The proof is defined as a tree of bisequents.
As we can see the only transitional rules are just the enter-rules of Sato, but in
contrast to his system both sequents in the present system are treated on a par,
hence we have an admissible transition in both directions and all rules allowed in
both components. It is interesting to compare this pair of modal rules with those
of Sato and with hypersequent rules of Mints, Poggiolesi and Restall. In Sato’s
system (⇒ [�]) is transitional but (⇒ �) is static whereas in Restall’s system it
is just the contrary. In Poggiolesi’s system, both rules are transitional (and the
former also static—we have two rules of (� ⇒)), whereas in this system both rules
are static. It makes the system more uniform and elegant; all logical rules are static
and the only transitional rules are structural. But it also has a more important
aspect—such a set of rules allows, as we will see, to obtain a cut-free system.

As we can see all rules are symmetric, explicit and separate. We can easily add
rules for ♦ which are just duals of those for � (and of course suitable transitional
rules). So we have

(⇒♦)
Γ ⇒ Δ, ϕ | Π ⇒ Σ

Γ ⇒ Δ,♦ϕ, |,Π ⇒ Σ
(♦⇒)

ϕ ⇒| Γ ⇒ Δ
♦ϕ ⇒| Γ ⇒ Δ

(TR⇒)
♦ϕ,Γ ⇒ Δ | Π ⇒ Σ
Γ ⇒ Δ | ♦ϕ,Π ⇒ Σ

(⇒TR)
Γ ⇒ Δ,♦ϕ | Π ⇒ Σ
Γ ⇒ Δ | Π ⇒ Σ,♦ϕ

Soundness is easy to prove. We proceed as in the case of hypersequents and
apply the same translation.

Exercise 4.42 Prove validity-preservation or derivability of translation of rules in
H-S5

Proofs of the axioms are very easy, for example 5

�p ⇒ �p |⇒
(TR ⇒) ⇒ �p | �p ⇒
(¬ ⇒) ¬�p ⇒| �p ⇒
(⇒ ¬) ¬�p ⇒|⇒ ¬�p

(⇒ �) ¬�p ⇒|⇒ �¬�p
(⇒ TR) ¬�p ⇒ �¬�p

(⇒→) ⇒ ¬�p → �¬�p

Exercise 4.43 Provide proofs of the remaining axioms and B.

Since (GR) is just (⇒ �) and MP is simulated by cut, we easily obtain
completeness. What with cut elimination? One may also prove that the rules of
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Indrzejczak’s system are derivable in BSC1 without cut under the translation we
have provided16.

Exercise 4.44 Show derivability of all rules of double sequent calculus in cut-free
BSC1.

Since both systems are cut-free we obtain indirectly a proof that the cut-free
version of the present calculus is also complete. Hence, we have

Theorem 4.12 Γ �S5 ϕ iff BSC1 � Γ ⇒ ϕ iff BSC1-(Cut) � Γ ⇒ ϕ.

We may do even better and prove elimination of cut constructively but first
we must modify the calculus slightly to obtain its variant BSC2. First of all,
we restrict the application of all static rules to left sequents only. So what in
BSC1 was only a convention for schemata of rules, now is a rigid requirement.
Note that in consequence of this restriction the right sequent is either empty
or modal and plays only an auxiliary role similarly to Heuerding, Seyfried and
Zimmermann’s approach; it serves for storing modal data. To simplify things we
restrict the language to � only, but the proof works also in the presence of ♦.

We also introduce (Mix) instead of (Cut) to deal with C. It is obvious that
the system with mix is equivalent to the system with cut by exactly the same
argument as stated for LK.

To deal with transitional rules we must add the second form of cut or rather
mix, similarly to the case of Avron’s HSC. Thus, let (Mix′) denote (Mix) restricted
to nonmodal cut-formulae and (MMix) denote the following rule:

(MMix)
Γ ⇒ Δ,�ϕi | Λ ⇒ Θ,�ϕj �ϕk,Π ⇒ Σ | �ϕn,Ξ ⇒ Ω

Γ,Π ⇒ Δ,Σ | Λ,Ξ ⇒ Θ,Ω

with i + j ≥ 1 and k + n ≥ 1.
Note that (MMix) similarly like TR-rules works also on the right sequents,

even if i = k = 0; if j = n = 0 it works like (Mix).

Let us call the system with these two variants of mix BSC2’. One may easily
prove that

Lemma 4.26 BSC2 � Γ ⇒ Δ iff BSC2’ � Γ ⇒ Δ

Proof: From left to right it is enough to show that the application of (Mix) on
modal formula is derivable by (MMix). If j = n = 0 it is the same. Otherwise, after
the application of (MMix) we must introduce the missing number of occurrences
of the cut-formula by W to the left sequent and then by TR move them to the
right sequent to restore its full shape.

From right to left it is enough to show that (MMix) is derivable by (Mix).
Again only the case with j ≥ 1 or n ≥ 1 needs to be considered. We apply (TR)

16Note that in the case od Sato’s system a demonstration of provability of the 3-premiss rules
for implication in BSC1 requires application of cut.
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to such occurrences of the cut-formula to move them to the left sequent in both
premisses, then we apply (Mix) so all these occurrences are deleted from resulting
bisequent. �

Before we prove the elimination of cut for BSC2 one important thing should
be noted. Clearly, with cut BSC1 and BSC2 are equivalent. It is also easy to
observe that without cut everything provable in BSC2 must be provable in BSC1
since the former is just a restricted form of the latter. But is BSC2 without cut
equivalent to BSC1? No, just try to prove B in BSC2. In BSC1 it is simple

p ⇒ p
(� ⇒) �p ⇒ p

(TR ⇒) ⇒ p | �p ⇒
(¬ ⇒) ¬p ⇒| �p ⇒
(⇒ ¬) ¬p ⇒|⇒ ¬�p

(⇒ �) ¬p ⇒|⇒ �¬�p
(⇒ TR) ¬p ⇒ �¬�p

(⇒→) ⇒ ¬p → �¬�p

But in BSC2 the application of static rules in the right sequent is forbidden
and without cut we are not able to prove B. We are in need of the solution due
to Fitting and applied in subsection 4.5.2, but now it may be done simpler due to
the use of bisequents. Note first that

Lemma 4.27 In BSC2 (without cut) �⇒ �ϕ iff �⇒ ϕ |⇒ �ϕ

Proof: From left to right we just apply (⇒ TR) and (⇒ W ); conversely we apply
(⇒ �), then (⇒ TR) (but to the right sequent) and (⇒ C). �

Exercise 4.45 Prove in BSC2 without cut ⇒ ¬p → �¬�p |⇒ �(¬p → �¬�p)

Now we can prove

Theorem 4.13 If BSC2 �⇒ ϕ |⇒ �ϕ, then BSC2-cut �⇒ ϕ |⇒ �ϕ

Proof: We will use the method of Girard (see section 2.4), based on the applica-
tion of cross-cuts. But we apply Gentzen’s overall strategy, i.e we will prove the
result for the case where both premisses of (Mix′) or (MMix) are cut-free.

The case where one premiss, say the left one, is axiomatic is simple; we show
it only for (MMix):

(MMix)
�ϕ ⇒ �ϕ �ϕi,Γ ⇒ Δ | �ϕj ,Π ⇒ Σ

�ϕ,Γ ⇒ Δ | Π ⇒ Σ

is replaced by:
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�ϕi,Γ ⇒ Δ | �ϕj ,Π ⇒ Σ
(TR ⇒)

�ϕi+j ,Γ ⇒ Δ | Π ⇒ Σ
(C ⇒)

�ϕ,Γ ⇒ Δ | Π ⇒ Σ

The cases where one cut-formula in one premiss is parametric in all occur-
rences are similar to reductions in standard SC. For illustration, we consider the
case of (MMix) when the left premiss is obtained by (→⇒)

Γ ⇒ Δ, ϕ, �χi | Π ⇒ Σ, �χj ψ, Γ ⇒ Δ, �χi | Π ⇒ Σ, �χj

(→⇒)
ϕ → ψ, Γ ⇒ Δ, �χi | Π ⇒ Σ, �χj �χk, Λ ⇒ Θ | �χn, Ξ ⇒ Υ

(MMix)
ϕ → ψ, Γ, Λ ⇒ Δ, Θ | Π, Ξ ⇒ Σ, Υ

is transformed into

Γ ⇒ Δ, ϕ,�χi | Π ⇒ Σ,�χj �χk,Λ ⇒ Θ | �χn,Ξ ⇒ Υ
(MMix)

Γ,Λ ⇒ Δ,Θ, ϕ | Π,Ξ ⇒ Σ,Υ D
(→⇒)

ϕ → ψ,Γ,Λ ⇒ Δ,Θ | Π,Ξ ⇒ Σ,Υ

where D is

ψ,Γ ⇒ Δ,�χi | Π ⇒ Σ,�χj �χk,Λ ⇒ Θ | �χn,Ξ ⇒ Υ
(MMix)

ψ,Γ,Λ ⇒ Δ,Θ | Π,Ξ ⇒ Σ,Υ

Note that in case ϕ = �χ we must additionally restore ϕ by (⇒ W ) to be
able to derive the last sequent by (→⇒).

It should be noted that when TR is performed we can always reduce the
height even if the left sequents are inactive.

The most troublesome cases are where cut-formulae are principal in both
premisses. Let us consider the case of �ϕ

⇒ ϕ | Γ ⇒ Δ,�ϕi

(⇒ �) ⇒ �ϕ | Γ ⇒ Δ,�ϕi

�ϕj , ϕ,Λ ⇒ Θ | �ϕk,Π ⇒ Σ
(� ⇒)

�ϕj+1,Λ ⇒ Θ | �ϕk,Π ⇒ Σ
(MMix)

Λ ⇒ Θ | Γ,Π ⇒ Δ,Σ

if i = j = k = 0 it is enough to perform (Mix′) on ϕ and then possibly
restore by (W ⇒) some occurences of ϕ in Λ. Moreover, if ϕ = �ψ and there
are some occurrences of it in Δ or Π we actually perform (MMix) and must also
restore deleted occurrences in these multisets by W. In case some of i, j, k ≥ 0 we
must first make cross-cuts to delete occurrences of �ϕ first. Of course, the most
difficult situation is when all of i, j, k ≥ 1; we perform

⇒ ϕ | Γ ⇒ Δ, �ϕi �ϕj+1, Λ ⇒ Θ | �ϕk, Π ⇒ Σ

Λ ⇒ Θ, ϕ | Γ, Π ⇒ Δ, Σ

⇒ �ϕ | Γ ⇒ Δ, �ϕi �ϕj, ϕ, Λ ⇒ Θ | �ϕk, Π ⇒ Σ

ϕ, Λ ⇒ Θ | Γ, Π ⇒ Δ, Σ
(Mix′)

Λ, Λϕ ⇒ Θϕ, Θ | Γ, Γ, Π, Π ⇒ Δ, Δ, Σ, Σ
(IC)

Λ, ⇒ Θ | Γ, Π ⇒ Δ, Σ
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where both applications of (MMix) have lower height and the application of
(Mix′) is of lower complexity. Again, if ϕ = �ψ and there are some occurrences
of it in Δ,Λ,Π we perform rather (MMix) and restore by W deleted occurrences
of ϕ. �

Exercise 4.46 Prove the remaining cases in the above proof.



Chapter 5

Alternatives to CPL

In the preceding chapter, we have illustrated the problems with the extension
of standard SC techniques to non-classical logics which are stronger than CPL.
But there is a huge number of non-classical logics which are weaker than CPL
like intuitionistic and intermediate (between intuitionistic and classical) logics,
many-valued logics or logics of relevant implication. Since our aim is an analysis
of applications of SC to such logics, we are not going to present them in detail,
in particular, a discussion of the reasons for deviations from classical logics will
be avoided1. As in the case of modal logic, we focus on the technical problems
connected with the adaptation of SC toolbox to this field. There is also one in-
teresting question closely related to our aim. It appeared that many non-classical
logics, originally constructed on the basis of totally different considerations, later
have shown surprising connections with the framework of SC. In fact, the search for
SC formalisations of non-classical logics being weaker than classical logic, like log-
ics of relevant implication or many-valued logics demonstrated serious limitations
of the original Gentzen’s framework, significantly different from those described in
the last chapter. In particular, for many logics, some structural rules were shown
invalid in general (e.g. weakening for relevant logic, contraction for many-valued
ones), at least in the framework of ordinary SC. This route led eventually to the
development of extensive research on these logics which can be formalised as SCs
obtained by deletion of some (or all) structural rules from the standard SC frame-
work. Nowadays these logics are commonly called substructural logics2.

In section 5.1, we will discuss briefly the earliest, and probably the most
important, weakening of CPL, namely intuitionistic logic INT. After a survey of
its basic features, we introduce some variants of standard SC for INT and prove
the most important results focusing mainly on differences with SC for CPL. Next,

1There are many good introductions to non-classical logics and some concerned with special
kinds of them will be mentioned later. For general considerations of motives which led to their
construction, one should consult Priest [205] or Beall and van Fraassen [23].

2This name was introduced first by Došen and Schroeder-Heister [62]
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we take a look at substructural logics. After the presentation of Girard’s linear
logic, some attention will be paid to a few logics of relevant implication. In the
last two sections, we present some important many-valued logics and examine the
most popular approaches to their formalisation in terms of SC. At first, we present
some ordinary SCs. In section 5.5, we introduce two kinds of generalised SCs for
them. Although originally they were presented mainly in tableau setting and in
different forms (e.g. as labelled systems), we will present them uniformly as built
from structured 4-argument sequents.

5.1 Intuitionistic Logic

The intuitionistic logic INT was proposed by Brouwer as a constructivist alterna-
tive to classical logic. We are not going to present philosophical and mathematical
motivations underlying intuitionism and constructivism in general3 We will be
concerned as usual with SCs for INT but some introductory information on the
axiomatic and semantical formulation is briefly recalled first. The syntax of the
propositional part of INT is the same as for CPL, so most of the terminology from
chapter 1 applies with no changes. INT was first presented in axiomatic form by
Heyting4. In fact, one may use the same axiomatization as stated in subsection
1.1.3, for CPL but with one different axiom; instead of axiom 7 we must use a
weaker form of the transposition law

(ϕ → ψ) → (¬ψ → ¬ϕ)

The remaining axioms yield a formalisation of positive (intuitionistic5) logic.
The only rule of inference is MP and the notion of proof/provability relation and
consistency are defined as in section 1.1.

Intuitionistic negation and implication are essentially non-classical, as a re-
sult, conjunction and disjunction, when mixed with these connectives, also lack
many classical properties. Not only such classical laws like the law of excluded
middle or the double negation elimination ¬¬ϕ → ϕ fail to hold. Also, the classi-
cal definitional equivalences do not hold in general.

Example 5.1. The following implications are not theses of INT (although their
converses are provable)

¬(ϕ ∧ ψ) → ¬ϕ ∨ ¬ψ ¬(ϕ → ¬ψ) → ϕ ∧ ψ (ϕ → ψ) → ¬ϕ ∨ ψ

3One can find many good introductions, for example in Dummett [65], Mints [183], Dragalin
[64]. More technical presentation of the results obtained for propositional INT and many of its
extensions is provided in Chagrov and Zakharyaschev [48]. Fitting’s first part of [81] and the last
chapter of [83], provide good introductions to proof methods for INT, with special attention paid
to tableau methods. Troelstra and Schwichtenberg [264], Waaler and Wallen [268] and Negri and
von Plato [185],, provide accounts of different SCs for INT.

4A slightly different formalisation of Brouwer’s ideas were proposed by Kolmogorov.
5In order to get classical positive logic one must add Peirce’s law ((ϕ → ψ) → ϕ) → ϕ to this

basis.
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This suggests that, in contrast to CPL, intuitionistic connectives are fully
independent. Of course, the fact that known classical equivalences do not hold
does not preclude the possibility that other, more complicated, ways of proving
interdefinability work. However, it was shown independently by Wajsberg and
McKinsey that intuitionistic connectives are indeed independent. An accessible
semantical proof of that fact is provided by Fitting [83].

Since intuitionistic negation is not involutive (a failure of double elimination),
one may have objections that this connective is too weak. There were proposals to
introduce a stronger negation but without destroying the constructive character of
the logic. The most important systems of this kind are Nelson’s logics of construc-
tive negation N3 and N4. One may obtain their axiomatization by the addition of
the following axioms to positive INT:

¬¬ϕ ↔ ϕ

¬(ϕ ∧ ψ) ↔ ¬ϕ ∨ ¬ψ

¬(p ∨ q) ↔ ¬p ∧ ¬q

¬(ϕ → ψ) ↔ ϕ ∧ ¬ψ

This extension gives H-system for N4 which is an example of (constructive)
paraconsistent logic6. To obtain N3 we must add Duns law: ϕ ∧ ¬ϕ → ψ.

5.1.1 Relational Semantics

The first semantic characterisations of INT were provided in terms of infinite
matrices by Gödel and Jaśkowski already in 1930s, there are also topological and
algebraic semantics of several kinds (see, e.g. Chagrov and Zakharyashev [48]).
However, the best recognised semantics for INT was introduced by Kripke in the
late 1950s (Beth [28], provided a slightly different variant). It is very similar to
the relational semantics for modal logics. A frame is a pair F = 〈 S,≤〉 where:

• the domain S 	= ∅ is usually interpreted as a set of states of knowledge;

• ≤ is a binary relation on S called an accessibility or a hereditary relation,
and satisfying conditions of reflexivity and transitivity.

A model on a frame F is a pair M = 〈 F, V 〉 with V being a valuation function
V : PROP −→ P(S) which satisfies the heredity condition:

if s ∈ V (p) and s ≤ s′, then s′ ∈ V (p).

A satisfiability of a formula ϕ in a state s of a model M ( M, s � ϕ) is defined
in the standard way:

6Paraconsistent logics are one of the most important and rich class of non-classical logics where
the explosive effects of Duns law are under control. In fact, many logics introduced later in this
chapter will be also paraconsistent. An extensive treatment, covering also SC characterisations
of many logics, is provided by Avron, Arieli and Zamansky [15].
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M, s � ϕ iff s ∈ V (ϕ) for any ϕ ∈ PROP
M, s � ¬ϕ iff M, s′ � ϕ for any s′ such that s ≤ s′

M, s � ϕ ∧ ψ iff M, s � ϕ and M, s � ψ
M, s � ϕ ∨ ψ iff M, s � ϕ or M, s � ψ
M, s � ϕ → ψ iff M, s′ � ϕ or M, s′ � ψ for any s′ ≥ s

It holds:

Claim 5.1. If s � ϕ and s ≤ s′, then s′ � ϕ, for any ϕ.

As before we write M, s � Γ iff M, s � ψ for all ψ ∈ Γ. M, s � ϕ denotes
falsity of ϕ in s; M, s � Γ denotes a falsity of at least one formula from Γ in s. In
case of the previously established model, we simply write s � ϕ (s � ϕ) or s � Γ
(s � Γ) for a set of formulae. The set of all states satisfying a formula (a set) is
denoted as

‖ϕ‖M = {s ∈ SM : s � ϕ};
‖Γ‖M =

⋂ ‖ψ‖M for all ψ ∈ Γ

Again we usually use an abbreviated form ‖ϕ‖ (‖Γ‖) if M is default or fixed. The
most important semantical notions are displayed below

Definition 5.1. • Γ is satisfiable in M iff ‖Γ‖M 	= ∅.

• Γ is satisfiable iff there exists a model in which it is satisfied.

• Γ is falsifiable iff there exists a model M in which it is false (‖Γ‖M 	= SM).

• Γ is unsatisfiable iff no model satisfies it.

• ϕ is true (globally) in a model (M � ϕ) iff for all s ∈ SM, M, s � ϕ
(or ‖ϕ‖M = SM, analogously for Γ, M � Γ iff ‖Γ‖M = SM).

• ϕ is valid (intuitionistic tautology) (|= ϕ) iff in all M, M � ϕ.

• ϕ follows from Γ (Γ |= ϕ) iff ‖Γ‖M ⊆ ‖ϕ‖M for all M
(or: for all M and all s ∈ SM, if M, s � Γ , then M, s � ϕ).

	|= ϕ is used to denote invalidity of a formula and Γ 	|= ϕ means that ϕ does not
follow from Γ.

Note that similarly as in the case of modal logics, we may introduce also the
global notion of consequence relation but it will be of no use for us.

We display without a proof some important features of INT

Theorem 5.1. The following holds:

1. INT ⊂ CPL

2. ϕ ∈ CPL iff ¬¬ϕ ∈ INT

3. ϕ ∨ ψ ∈ INT iff ϕ ∈ INT or ψ ∈ INT
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4. Γ, ϕ |= ψ iff Γ |= ϕ → ψ

5. Γ, ϕ |= ⊥ iff Γ |= ¬ϕ

6. if Γ |= ϕ, then Γ,¬ϕ |= ⊥
The second point in theorem 5.1, due to Glivenko, shows that CPL may

be embedded in INT. In fact, it may be demonstrated in many different ways;
possibly the best known translation was provided by Gödel. We will show a result
of this kind below in the framework of SC. An analysis of relational semantics
suggests other possible embeddings of INT. One may easily notice that INT is
semantically characterised by S4-frames. This connection between the two logics
may be precisely described as an embedding of INT into S4. Let � be a translation
function from FOR(INT) into FOR(S4) defined in the following way:

�(p) = �p
�(ϕ ∧ ψ) = �(ϕ) ∧ �(ψ)
�(ϕ ∨ ψ) = �(ϕ) ∨ �(ψ)
�(ϕ → ψ) = �(�(ϕ) → �(ψ))

�(¬ϕ) = �¬�(ϕ)

The following holds:

Theorem 5.2. |=INT ϕ iff |=S4 �(ϕ)

Troelstra and Schwichtenberg [264] provide syntactical proofs concerning this
translation (and some other as well).

We finish this brief presentation of propositional INT with the profound result
that the semantical characterisation coincides with the Hilbert system

Theorem 5.3. (Adequacy) Γ |= ϕ iff Γ′ � ϕ where Γ′ ⊆ Γ

5.1.2 Gentzen’s Characterisation of INT

In fact, a sequent formalisation of INT was introduced more than 20 years before
the advent of relational semantics. Gentzen [95] provided both natural deduction
and sequent calculus for INT, the latter called LJ. The main difference with LK
is in a sense structural; sequents are restricted in succedents to at most one for-
mula. This is the reason for using the name intuitionistic sequents for such single-
succedent sequents. Due to this restriction in LJ, we can dispense with structural
rules (⇒ P ) and (⇒ C) and the logical rules must be suitably redefined. Axioms
are like in LK. Here is the list of all rules of LJ with Δ empty or with one formula
only

Structural rules

(Cut)
Γ⇒ ϕ ϕ,Π⇒ Δ

Γ,Π⇒ Δ
(P⇒)

Π, ϕ, ψ,Γ⇒ Δ
Π, ψ, ϕ,Γ⇒ Δ
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(W⇒)
Γ⇒ Δ

ϕ,Γ⇒ Δ
(C⇒)

ϕ,ϕ,Γ⇒ Δ
ϕ,Γ⇒ Δ

Logical rules

(¬⇒)
Γ⇒ ϕ

¬ϕ,Γ⇒ (⇒¬)
ϕ,Γ⇒
Γ⇒ ¬ϕ

(∧⇒)
ϕ,Γ⇒ Δ

ϕ∧ψ,Γ⇒ Δ
(∧⇒)

ψ,Γ⇒ Δ
ϕ∧ψ,Γ⇒ Δ

(⇒∧)
Γ⇒ ϕ Γ⇒ ψ

Γ⇒ ϕ∧ψ
(∨⇒)

ϕ,Γ⇒ Δ ψ,Γ⇒ Δ
ϕ∨ψ,Γ⇒ Δ

(⇒∨)
Γ⇒ ϕ

Γ⇒ ϕ∨ψ
(⇒∨)

Γ⇒ ψ

Γ⇒ ϕ∨ψ

(→⇒)
Γ⇒ ϕ ψ,Π⇒ Δ
ϕ→ψ,Γ,Π⇒ Δ

(⇒→)
ϕ,Γ⇒ ψ

Γ⇒ ϕ→ψ

Now we can understand what was Gentzen’s reason for using the additive
form of rules (⇒ ∨) (and (∧ ⇒) by duality) instead of a more convenient multi-
plicative form. Due to the restriction on the succedent, only one part of a disjunc-
tion may appear in the premiss.

The notion of a proof is the same as for LK.

Exercise 5.1. Prove the converses of nonvalid implications from example 5.1. Try
to prove the implications and look why it is not possible. Prove ¬(p∨q) ↔ ¬p∧¬q,
¬(p → ¬q) → ¬¬p ∧ ¬q and ¬p → q ↔ p ∨ q.

With cut as a primitive rule, one can easily prove the equivalence of LJ with
Hilbert system for INT. What is even more interesting is the affinity of LJ with
ND formulation of INT introduced by Gentzen. Although the original form of
Gentzen’s ND (called NJ for INT) was different, we can refer to the sequent form
of ND described in subsection 3.5.4. It is enough to delete one rule for negation,
namely (⇒ ¬E) to obtain ND in a sequent form for INT:

Theorem 5.4. If Γ �NJ ϕ, then �LJ Γ ⇒ ϕ

Proof: Formally, it is an induction on the height of a proof in NJ. It is enough to
demonstrate that every rule of NJ is simulated in LJ. Note that the introduction of
assumptions corresponds to axiomatic sequents. All introduction rules are already
present in LJ as rules of introduction to the succedent. There is only a slight
difference between (∧I) and (⇒ ∧), since the former has a multiplicative form,
so we must first apply W to both premisses to unify the antecedents. In case of
elimination rules, we must use suitable rules of introduction to the antecedent and
cut. As an example, we demonstrate the case of MP (i.e. (→ E))
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Δ ⇒ ϕ → ψ

Γ ⇒ ϕ

ϕ ⇒ ϕ ψ ⇒ ψ
(→⇒)

ϕ,ϕ → ψ ⇒ ψ
(Cut)

ϕ → ψ,Γ ⇒ ψ
(Cut)

Γ,Δ ⇒ ψ

�

Exercise 5.2. Prove the remaining cases.

Instead of proving the converse of theorem 5.4, we prove

Theorem 5.5. If �LJ Γ ⇒ ϕ then Γ |= ϕ.

Proof: It is enough to prove validity-preservation of all rules. The only cases
which are different from classical counterparts involve implication and negation.
Let us analyse (⇒→). If the conclusion is not valid, then in some state s of some
model all formulae from Γ are satisfied but s � ϕ → ψ. Hence in some accessible
s′, ϕ is satisfied but ψ is not. However, Γ is also satisfied in s′ hence s′ falsified
the premiss, contrary to our assumption. �

Exercise 5.3. Prove the remaining cases.

It is rather not surprising that the cut elimination theorem holds for LJ and
the proof is similar to the classical case. Gentzen in fact proved his Hauptsatz
simultaneously for LJ and LK. We leave the reader to check the details.

Exercise 5.4. Prove mix elimination for LJ using Gentzen’s original strategy. Prove
cut elimination for LJ by means of other strategies from chapter 2.

Things stated so far suggest that LJ, being only a restricted form of LK,
preserves almost all features of LK and the results which were previously proved
for it. For example, a proof of cut elimination for LJ does not require new tech-
niques and is in fact a bit simpler. To some extent it is true but there are also
significant differences. Consistency follows immediately and decidability of INT
may be proved by exactly the same method which was presented in chapter 2
for LK. In fact, Gentzen provided the first proof of decidability of propositional
INT by means of LJ, before any semantic method was accessible for that. Also,
the interpolation theorem may be proved constructively in a similar way as for
CPL when using Maehara’s method. But if we try to apply Smullyan’s strategy
we encounter problems with defining a symmetric version of SC for INT (although
Fitting [83] provides a solution based on some exceptions to the general format of
symmetric rules).

Exercise 5.5. Prove the interpolation theorem for INT by means of Maehara’s
method. Note that it is simpler than for CPL due to single-succedent sequents.

Even more significant differences appear when we consider the problem of per-
mutability of rules. Kleene’s results concerning permutability of rules have shown
the problem in the early 1950s [151]. One may easily check that, in contrast to
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LK, not all rules are permutable in LJ7. For example, although ϕ ∨ ψ ⇒ ψ ∨ ϕ is
provable, we can do it only if we apply root-first (∨ ⇒) and then (⇒ ∨) in each
branch. Changing the order leads to unprovable sequent ϕ∨ψ ⇒ ϕ or ϕ∨ψ ⇒ ψ.
In case of implication rules, we have the opposite situation: one must first apply
(⇒→), then (→⇒). Consider the following proof (we disregard applications of P):

q ⇒ q
(W ⇒) q, p ⇒ q

p ⇒ p
(¬ ⇒)¬p, p ⇒

(⇒ ¬), (W ⇒)r, q, p ⇒ ¬¬p
(→⇒)q, p, q → r ⇒ ¬¬p

(⇒→)p, q → r ⇒ q → ¬¬p

In fact, we could even forget about the application of (→⇒) and obtain a
simpler proof just by the application of W and negation rules. However, if we apply
first (→⇒), we obtain the following:

p ⇒ q

p ⇒ p
(¬ ⇒)¬p, p ⇒

(⇒ ¬), (W ⇒)q, r, p ⇒ ¬¬p
(⇒→)r, p ⇒ q → ¬¬p
(→⇒)p, q → r ⇒ q → ¬¬p

where the left leaf is not axiomatic.

Exercise 5.6. Prove the contraction law ((p → (p → q)) → (p → q)). Try to do it
with (→⇒) applied (root-)first as soon as possible.

The above considerations show that rules for disjunction and implication do
not permute. This has certainly an impact on proof search, since in particular, we
must take into account that (∨ ⇒) must be applied before (⇒ ∨) and (⇒→) before
(→⇒). Also (⇒ ¬) must be applied before (¬ ⇒) for obvious reason. However, we
know already that LK is not good for proof search, so perhaps it is not surprising
that LJ is even worse. Perhaps with some other versions of SC for INT we can
improve the situation. Before checking this we consider one more question: how
to use LJ to prove the embedding of CPL into INT? A solution provided below is
based on Kolmogorov’s and Glivenko’s idea. As indicated in the point 2 of theorem
5.1, every classical thesis, when doubly negated, becomes a thesis of INT.

Example 5.2. Let us consider a proof of ¬¬(p ∨ ¬p) in LJ

7Actually Kleene was using a bit different versions of SC for CPL and INT but the problem
remains the same even if in some variants of SC we are able to improve the results—see Waaler
and Wallen [268].
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p ⇒ p
(⇒ ∨)

p ⇒ p ∨ ¬p
(¬ ⇒) ¬(p ∨ ¬p), p ⇒
(P ⇒)

p,¬(p ∨ ¬p) ⇒
(⇒ ¬) ¬(p ∨ ¬p) ⇒ ¬p

(⇒ ∨) ¬(p ∨ ¬p) ⇒ p ∨ ¬p
(¬ ⇒) ¬(p ∨ ¬p),¬(p ∨ ¬p) ⇒
(C ⇒) ¬(p ∨ ¬p) ⇒

(⇒ ¬) ⇒ ¬¬(p ∨ ¬p)

In fact, for any classical thesis ϕ, its double negation can be provable in LJ
in a similar way, i.e. by using C immediately after (⇒ ¬). However, we provide
below a formal proof of embedding of CPL into INT, by means of the translation
enabling a step-by-step simulation of a proof in LK by a proof of the translated
sequent in LJ. This will serve as an illustration of one more technique applied
successfully in the framework of SC. Let us consider the following translation:

�(p) = p
�(¬ϕ) = ¬�(ϕ)

�(ϕ ∧ ψ) = ¬¬�(ϕ) ∧ ¬¬�(ψ)
�(ϕ ∨ ψ) = ¬¬�(ϕ) ∨ ¬¬�(ψ)
�(ϕ → ψ) = ¬¬�(ϕ) → ¬¬�(ψ)

It naturally extends to sequences in the sense that �(Γ) is the sequence of
translations of all its elements. It holds that

Theorem 5.6. If �LK Γ ⇒ Δ, then �LJ ¬¬�(Γ),¬�(Δ) ⇒
Proof: By induction on the height of a proof in LK (with applications of P
disregarded). For axioms we have the following LJ proof:

�(ϕ) ⇒ �(ϕ)
(¬ ⇒) ¬�(ϕ),�(ϕ) ⇒
(⇒ ¬) ¬�(ϕ) ⇒ ¬�(ϕ)

(¬ ⇒) ¬¬�(ϕ),¬�(ϕ) ⇒
Applications of all structural rules are straightforward to simulate. For cut,

we have

¬¬�(Γ),¬�(ϕ) ⇒
(⇒ ¬) ¬¬�(Γ) ⇒ ¬¬�(ϕ) ¬¬�(ϕ),¬¬�(Π),¬�(Δ) ⇒
(Cut) ¬¬�(Γ),¬¬�(Π),¬�(Δ) ⇒

where both leaves are provable by the induction hypothesis.
For (¬ ⇒), we get
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¬¬�(Γ),¬�(ϕ) [= �¬(ϕ)],¬�(Δ) ⇒
(⇒ ¬) ¬¬�(Γ),¬�(Δ) ⇒ ¬�¬(ϕ)

(¬ ⇒) ¬¬�¬(ϕ),¬¬�(Γ),¬�(Δ) ⇒
For (⇒ ¬) there is nothing to prove, since ¬¬�(ϕ) = ¬�¬(ϕ). Both rules for

implication are simulated as follows:

¬¬�(ϕ),¬¬�(Γ),¬�(ψ),¬�(Δ) ⇒
(⇒ ¬) ¬¬�(ϕ),¬¬�(Γ),¬�(Δ) ⇒ ¬¬�(ψ)

(⇒→) ¬¬�(Γ),¬�(Δ) ⇒ ¬¬�(ϕ) → ¬¬�(ψ) [= �(ϕ → ψ)]
(¬ ⇒) ¬¬�(Γ),¬�(ϕ → ψ),¬�(Δ) ⇒

¬�(ϕ),¬¬�(Γ),¬�(Δ) ⇒
(⇒ ¬) ¬¬�(Γ),¬�(Δ) ⇒ ¬¬�(ϕ) ¬¬�(ψ),¬¬�(Π),¬�(Σ) ⇒

(→⇒) ¬¬�(ϕ) → ¬¬�(ψ) [= �(ϕ → ψ)],¬¬�(Γ),¬¬�(Π),¬�(Δ),¬�(Σ) ⇒
(⇒ ¬) ¬¬�(Γ),¬¬�(Π),¬�(Δ),¬�(Σ) ⇒ ¬�(ϕ → ψ)

(¬ ⇒) ¬¬�(ϕ → ψ),¬¬�(Γ),¬¬�(Π),¬�(Δ),¬�(Σ) ⇒
�

Exercise 5.7. Prove translations of the applications of rules for ∧ and ∨.

Goubault-Larrecq and Mackie [104] present a formal proof of embedding by
means of a very similar translation. The only difference is that the clause for
implication is �(ϕ → ψ) = ¬�(ψ) → ¬�(ϕ) and they prove that if �LK Γ ⇒ Δ,
then �LJ �(Γ),¬�(Δ) ⇒. Other examples of translations are considered by Bimbo
[31].

5.1.3 Other Variants of SC

One may characterise INT also in Ketonen’s style and obtain G3i which consists of
logical rules only. Such a calculus was introduced by Troelstra and Schwichtenberg
[264], under influence of Dragalin’s calculus [64], which we characterise below. At
first, it may seem that to obtain purely logical SC for INT it is sufficient to put
the same restriction on the succedents of G3 rules as it was done on sequents of
LK to obtain LJ. Clearly, two rules of (⇒ ∨) are needed due to this restriction
but the rest should work. However, it is not enough to dispense with contraction.
Let us look at the example 5.2, where the application of (C ⇒) was essential.
The same problem appears also in G3i with negation as primitive and other rules
unmodified. One may overcome a difficulty by introducing ⊥ as primitive instead
of ¬ which is now definable: ¬ϕ := ϕ → ⊥. Hence for ⊥ we have additional axiom:
⊥,Γ ⇒ Δ. We also restrict axioms to atomic ones, i.e. of the form Γ, p ⇒ p. Note
that when proving that Γ, ϕ ⇒ ϕ is provable for any ϕ, we must take care of the
order of applied rules. In this respect, G3i is not so much different from LJ.

Exercise 5.8. Prove that �G3i Γ, ϕ ⇒ ϕ
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But this is still not enough and we must also modify (→⇒) in the contraction-
absorbing style

(→⇒)
ϕ → ψ,Γ⇒ ϕ ψ,Γ⇒ Δ

ϕ→ψ,Γ⇒ Δ

Note that we need to repeat the principal formula only in the left premiss.
In such a calculus the law of doubly negated excluded middle may be proved

in the following way:

p ⇒ p
(⇒ ∨)

p ⇒ p ∨ (p → ⊥) ⊥ ⇒ ⊥
(→⇒)

p, p ∨ (p → ⊥) → ⊥ ⇒ ⊥
(⇒→)

p ∨ (p → ⊥) → ⊥ ⇒ p → ⊥
(⇒ ∨)

p ∨ (p → ⊥) → ⊥ ⇒ p ∨ (p → ⊥) ⊥ ⇒ ⊥
(→⇒)

p ∨ (p → ⊥) → ⊥ ⇒ ⊥
(⇒→) ⇒ (p ∨ (p → ⊥) → ⊥) → ⊥

For such a version of G3i, we can provide Dragalin-style proof of cut ad-
missibility, of course, on the basis of the previously demonstrated auxiliary re-
sults concerning the admissibility of other structural rules and invertibility of
logical rules. Note that the last result does not hold for all cases but only for
(∧ ⇒), (⇒ ∧), (∨ ⇒), (⇒→) and for (→⇒) but only with respect to the right
premiss, i.e: if � ϕ → ψ,Γ ⇒ Δ, then � ψ,Γ ⇒ Δ

Exercise 5.9. Show semantically that (→⇒) is not invertible with respect to its left
premiss.

However, even this limited set of invertible rules allows for proving admissi-
bility of (C ⇒) (in fact, invertibility of (⇒ ∧) and (⇒→) are dispensable) and then
for the proof of admissibility of cut. We do not provide this proof; one can try to
do it alone or consult Negri and von Plato [185] or Troelstra and Schwichtenberg
[264].

Exercise 5.10. Prove admissibility of cut. Take care of the case of implication being
the principal formula in both premisses of cut.

Having shown that cut is admissible for G3i we can obtain also some original
features of INT which do not hold for CPL. For LJ it is also possible but in some
cases not so straightforward due to contraction. First of all one may constructively
show in G3i the underivability of classical theses which are not intuitionistically
valid. For example, to get a proof of ⇒ p∨¬p in LK, one must first apply (⇒ C),
but already in LJ this is impossible and neither ⇒ p nor ⇒ ¬p are provable.

Exercise 5.11. Show that the implications from example 5.1. are underivable in
G3i.
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Such considerations allow for demonstration of one of the interesting features
of INT which is called the disjunction property and does not hold for CPL (prov-
ablity of the excluded middle law in the above form provides a counterexample)

Lemma 5.1. �INT ϕ ∨ ψ iff �INT ϕ or �INT ψ

Proof =⇒: Without cut and (⇒ C) the only way of proving a disjunction is to
apply (⇒ W ) or (⇒ ∨). The former is impossible since INT is consistent and ⇒
is not provable. Hence, either ⇒ ϕ or ⇒ ψ must be provable. ⇐=: By (⇒ ∨) from
any of the disjuncts. �

Let us focus briefly on the problem of decidability and proof search in G3i.
Since we know that G3 is a better tool for defining proof search procedures than
LK we may try with G3i as well. However, things are still more complicated here.
G3i is not confluent which is evident because of the lack of invertibility of all rules.
In particular, we cannot avoid backtracking even in G3i, since (⇒ ∨) is additive.
Moreover, the shape of the contraction-absorbing (→⇒) leads to loops in proof
search, similarly as in SC for modal logics. Due to these obstacles (backtrack-
ing, restricted permutation) even in G3i a proof search is harder than in G3 and
decidability proof is more complicated.

One may consider if all rules really need restriction to at most one formula in
the succedent. After all, conjunction and disjunction are characterised classically
in the semantics. In fact, only two rules: (⇒ ¬) and (⇒→) need such restriction
which is not surprising if we again take a look at satisfiability conditions. Such a
multisuccedent version of LJ was introduced by Maehara [168]. Only (⇒→) and
(⇒ ¬) (if negation is primitive) are restricted to one formula in the succedent.
This improves permutability features, since we have classical rules for disjunction.
But still, not all problems are resolved. In particular, structural rules are primitive
and (C ⇒) must be applied to implications in the antecedent before (→⇒) will be
used, and the same is needed for negations in antecedents, if negation is primitive.
This reflects the semantical fact that all true formulae must be kept for use in all
accessible states. In case of conjunction and disjunction, side formulae of (∧ ⇒)
and (∨ ⇒) are also in the antecedent so repetition of principal formulae is not
needed. In case of implication and negation, the situation is different, since at
least one side formula is transferred to the succedent. Also, rules for implication
(and negation) are still not permutable which suggests that (⇒→) has a priority.
But from the standpoint of proof search, it is not so obvious, since before that,
other formulae in the succedent must be deleted by (⇒ W ) and sometimes their
presence may lead to finding a proof. So backtracking may be unavoidable anyway.
A discussion of several subtleties connected with such kind of SC (called there LB
from Beth) may be found in Waaler and Wallen [268].

The same relaxation of rules may be applied to G3i. In fact, such calculi were
first provided by Beth [28] and Dragalin [64], and the latter was then reformulated
by Troelstra and Schwichtenberg [264], as a single-succedent calculus. Dragalin’s
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SC has two axioms: Γ, p ⇒ p,Δ and ⊥,Γ ⇒ Δ and standard G3 rules for ∨ and
∧. For implication we have (negation is not concerned)

(→⇒)
ϕ → ψ,Γ⇒ ϕ ψ,Γ⇒ Δ

ϕ→ψ,Γ⇒ Δ
(⇒→)

ϕ,Γ⇒ ψ

Γ⇒ Δ, ϕ→ψ

One of the rules is a contraction-(in the left premiss) and the second is a
weakening-absorbing rule. Thus, we are putting into the format of logical rules all
necessary applications of structural rules. Note that the repetition of implication
in the right premiss of (→⇒) is not necessary since one of its side formula is kept in
the antecedent. It is also important to note that the weakening-absorbing version
of (⇒→) is not invertible.

Exercise 5.12. Prove � ϕ,Γ ⇒ Δ, ϕ in Dragalin’s system. Note that in case of
implication the order of the application of rules is still essential.

Prove invertibility of all rules, except (→⇒) with respect to the left premiss,
and (⇒→).

Prove admissibility of W, C and cut.

Dragalin provides only syntactic account of the features of his calculus and
does not consider proof search. It seems that in this respect this calculus may be
improved. Let us call it GD and add rules for negation. Since we discuss it as a
system suitable for better proof search it is enough to take axioms ϕ,Γ ⇒ Δ, ϕ.
Rules for ∨,∧ are taken from G3, and for ¬ and → we have

(¬⇒)
¬ϕ,Γ⇒ Δ, ϕ

¬ϕ,Γ⇒ Δ
(⇒¬)

ϕ,Γ⇒
Γ⇒ ¬ϕ,Δ

(→⇒)
ϕ → ψ,Γ⇒ Δ, ϕ ψ,Γ⇒ Δ

ϕ→ψ,Γ⇒ Δ
(⇒→)

ϕ,Γ⇒ ψ

Γ⇒ Δ, ϕ→ψ

GD corresponds to one of the tableau calculus of Fitting [81] based on Beth
rules [28]. Note that all the rules are invertible except weakening-absorbing versions
of (⇒ ¬) and (⇒→). (→⇒) is invertible with respect to the left premiss because
Δ is present in the succedent. From all versions of SC defined so far GD is the
simplest system for proving Hintikka-style constructive completeness proof.

Exercise 5.13. Provide Hintikka-style completeness proof for GD.

For proof search and decidability, not all discussed problems can be removed.
Due to (⇒ ¬) and (⇒→), backtracking is still unavoidable. Due to (¬ ⇒) and
(→⇒), a loop may be generated. We can try to dissolve backtracking in the
way similar to solutions presented in chapter 3 and 4, by the addition of some
disjunctive-branching rule of the form

(SG)
Γ, ϕ1 ⇒, ...,Γ, ϕl ⇒, Γ, ψ1 ⇒ χ1.....Γ, ψk ⇒ χk

Γ ⇒ ¬ϕ1, ...,¬ϕl, ψ1 → χ1, ..., ψk → χk, Δ
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where Γ and Δ contain only atomic formulae, l + k ≥ 1.
Clearly, such a solution may be developed in the framework of hypersequent

calculi in the way analogous to our treatment of modal logics in section 4.4. Then
(SG) is rewritten as one-premiss rule operating on hypersequents. In fact, Mints
[183], developed such a system for INT but instead he introduced the following
rule:

(⇒→M )
G | Γ ⇒ Δ, ϕ → ψ | Γ, ϕ ⇒ ψ

G | Γ ⇒ Δ, ϕ → ψ

In his system, ⊥ is primitive, hence this is the only rule introducing additional
component in the premiss; otherwise we need an analogous rule for negated formula
in the succedent.

Now, we can define an algorithm which exploits all other rules before we apply
(⇒→) and (⇒¬). Informally, it corresponds to the situation where we decompose all
formulae in one state before we proceed with generation of all new states forced by
the presence of falsified implications and negations in the current state. Note that
this solution does not eliminate loops since they are connected with the application
of contraction-absorbing versions of (→⇒) and (¬⇒). Hence, to obtain termination
we must introduce some loop check or to propose a refinement of contraction-
absorbing rules.

In order to provide SC for INT which is terminating without the need for
loop control, Vorobeev [275] introduced a system where instead of one (→⇒) we
have a collection of rules dealing with implication in the antecedent of a sequent,
depending on the shape of its antecedent. Similar idea was independently devel-
oped in sequent systems of Dyckhoff [70] and Hudelmaier [123]. All these calculi
have interesting properties but the special rules for implication lack the subfor-
mula property. They are not standard although they are ordinary variants of SC.
We omit the presentation of these approaches; one may find a description of Dy-
ckhoff’s solution in many places, e.g. in Waaler and Wallen [268], Troelstra and
Schwichtenberg [264] and Negri and von Plato [185].

Many proposals defined particularly for better proof search avoiding loops
are based on the use of structured sequents with the addition of several forms of
history (Heuerding, Seyfried and Zimmermann [115], Dyckhoff and Pinto [72]) or
some focused formulae (Herbelin [110]). A comparison (from the point of view of
their efficiency) of Dyckhoff’s and Pinto’s with Heuerding, Seyfried and Zimmer-
mann’s approach, is provided by Howe [122], who uses Herbelin’s calculus as the
basis. Recently Ferrari, Fiorentini and Fiorino [75] provided an interesting and
very efficient SC with the additional set of formulae in the antecedent which does
not work as a history.

One may easily provide SC for N3 and N4; we will examine only the case of
LJ. It is enough to get rid of rules for negation but instead to add the following
negated rules:
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(¬¬⇒)
ϕ,Γ⇒ Δ

¬¬ϕ,Γ⇒ Δ
(⇒¬¬)

Γ⇒ ϕ

Γ⇒ ¬¬ϕ

(⇒¬∧)
Γ⇒ ¬ϕ

Γ⇒ ¬(ϕ∧ψ)
(⇒¬∧)

Γ⇒ ¬ψ

Γ⇒ ¬(ϕ∧ψ)
(¬∧⇒)

¬ϕ, Γ⇒ Δ ¬ψ, Γ⇒ Δ

¬(ϕ∧ψ), Γ⇒ Δ

(¬∨⇒)
¬ϕ,¬ψ,Γ⇒ Δ
¬(ϕ∨ψ),Γ⇒ Δ

(⇒¬∨)
Γ⇒ ¬ϕ Γ⇒ ¬ψ

Γ⇒ ¬(ϕ∨ψ)

(¬ →⇒)
ϕ,¬ψ,Γ⇒ Δ

¬(ϕ → ψ),Γ⇒ Δ
(⇒ ¬ →)

Γ⇒ ϕ Γ⇒ ¬ψ

Γ⇒ ¬(ϕ → ψ)

This is sufficient for N4; to get N3 one must add axioms of the form ϕ,¬ϕ ⇒.
It is also important to note that if we consider a version of N4 based on G3i with
atomic axioms, we must add also axioms of the form Γ,¬p ⇒ ¬p, otherwise, we
are unable to prove that the general form of axiomatic sequent is provable (for N3
Γ, p,¬p ⇒ Δ is enough).

Exercise 5.14. Prove axioms of N3 and N4 in this system.

It is clear that such a system is just a weaker version of Smullyan’s symmet-
ric SC presented in section 3.6. However, two differences are important: Smullyan’s
system was equivalent to standard SCs for CPL and completely symmetric, whereas
the present one provides a formalisation of logics stronger than INT and treats
implication in the standard way, by nonsymmetric rules.

Kamide and Wansing [145] provide an indirect proof of cut elimination for
such system by embedding into ordinary cut-free system for INT. But it is possible
also to prove cut elimination for these calculi in a similar way as for LJ. The only
difference is in the complexity reduction step when negated formulae must be
additionally dealt with. We illustrate this with one example and leave the rest
to the reader. Let us suppose that we apply Girard’s strategy and consider the
following application of mix:

Γ ⇒ ¬ϕ
(⇒ ¬∧)

Γ ⇒ ¬(ϕ ∧ ψ)

¬ϕ,¬(ϕ ∧ ψ)i, Σ ⇒ Δ ¬ψ,¬(ϕ ∧ ψ)i, Σ ⇒ Δ
(¬∧ ⇒)¬(ϕ ∧ ψ)i+1, Σ ⇒ Δ

(Mix)
Γ, Σ ⇒ Δ

we proceed as follows:

Γ ⇒ ¬ϕ

Γ ⇒ ¬(ϕ ∧ ψ) ¬ϕ,¬(ϕ ∧ ψ)i,Σ ⇒ Δ
(Mix)¬ϕ,Γ,Σ ⇒ Δ

(Mix)
Γ,Γ¬ϕ,Σ¬ϕ ⇒ Δ

C,W
Γ,Σ ⇒ Δ

where first the height is reduced and then the complexity.

Exercise 5.15. Provide a proof of mix elimination for LJN3 and LJN4. Try to use
different strategies.
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5.2 Substructural Logics

What do we obtain if we get rid of all, or some, of the structural rules? Of course, we
think about such form of SC in which these rules are not even admissible. Clearly,
such restrictions must lead to some weaker logics; our considerations concerning
SCs for INT may serve as an example. But can we expect that such experiments
performed on LK or LJ will lead to some reasonable logics? The answer is positive
and the family of logics which may be obtained by restricting, or modifying the
set of structural rules is commonly called substructural logics. The systematic
investigations on such kind of logics started not so long ago; in fact, the term was
invented by Dos̆en and Schroeder-Heister in 1993 [62]. This approach certainly
offers a fruitful research perspective which is evident from the fact that some
new interesting logics were invented in this way. Perhaps even more interesting is
the fact that a lot of important non-classical logics which were developed much
earlier, like several relevant or many-valued logics, appeared to be substructural,
at least if formalised in the framework of standard SC. It is a nice feature of SC
that it provides a general syntactic framework for capturing several logics which
come from different sources and traditions; briefly—they are very different in many
respects, yet SC introduces a new perspective for their comparison. On the other
hand, the overall picture is not so clear as we would like to see. In well developed
classes of logics mentioned above, i.e. in relevant and many-valued logics, many
important systems are hardly dealt with in standard SC just by taming structural
rules. And sometimes even if such substructural formalisation is possible it behaves
badly, in particular cut may be not eliminable. These problems naturally lead
to developing generalised SCs but in many cases, generalised calculi allow for
reintroduction of some structural rules which were forbidden in standard SC. This
makes the notion of substructural logic somewhat relative to the kind of applied
formal framework. We will provide several examples of this irregular behaviour in
this and the next sections. In fact, this is the main reason that (some) relevant
logics and many-valued logics will be treated separately and not in this section
devoted to substructural logics in the strict sense. However, we will point out in
suitable places which formalisations have such a substructural character.

As usual, we are not going to provide a fuller description of substructural
logics. In particular, we omit a discussion of several semantics provided for these
logics, since for us they are interesting mainly as an illustration of the explanative
power of standard SC. There is a lot of comprehensive books and papers which may
be consulted for more information. In particular, Dos̆en and Schroeder-Heister [62]
and two monographs due to Restall [214] and Paoli [193]. Girard [98], Troelstra
[263] and Roorda [220], offer excellent presentations of linear logics. For relevant
logics, the two-volume massive work of Anderson and Belnap [4] (with many other
contributors), may be still treated as the fundamental, and very readable, source.
If we are concerned mainly with the proof theory of these logics, the good starting
point is Ono [191], concise but very informative, and the comprehensive treatment
in Bimbo [31].
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5.2.1 The Significance of Structural Rules

To understand what is the sense and power of substructural logics let us consider
first LK or LJ with all structural rules deleted. We already introduced (following
Girard) the names: additive for rules characterising ∧, and ∨ and multiplicative for
rules characterising → in LK. The characteristic feature of the first type of rules is
that many-premiss rules are context-sharing but one-premiss rule(s) display(s) only
one argument of the principal formula in the premiss. In the second type, many-
premiss rules are context-free, whereas one-premiss rules display both arguments
of the principal formula in the premiss. The additive rules for (⇒→) in LK have
the form (in LJ Δ is empty)

(⇒→)
ϕ,Γ⇒ Δ

Γ⇒ Δ, ϕ→ψ

Γ⇒ Δ, ψ

Γ⇒ Δ, ϕ→ψ

Note that Ketonen-style systems, like K or G3, mix both kinds of rules (many-
premiss additive, and one-premiss multiplicative). In the context of SC for CPL or
INT it does not matter which kind of rules we use since any combination defines
the same connective. It may be seen by showing that additive rules are provable
by means of multiplicative ones and vice versa. We will show it for respective rules
for ∨ in the context of LK.

Example 5.3. (a) Additive =⇒ multiplicative

Γ ⇒ Δ, ϕ, ψ
(⇒ ∨)

Γ ⇒ Δ, ϕ, ϕ ∨ ψ
(⇒ P )

Γ ⇒ Δ, ϕ ∨ ψ,ϕ
(⇒ ∨)

Γ ⇒ Δ, ϕ ∨ ψ,ϕ ∨ ψ
(⇒ C)

Γ ⇒ Δ, ϕ ∨ ψ

ϕ,Γ ⇒ Δ
(W ), (P )

ϕ,Γ,Π ⇒ Δ,Σ

ψ,Π ⇒ Σ
(W ), (P )

ψ,Γ,Π ⇒ Δ,Σ
(∨ ⇒)

ϕ ∨ ψ,Γ,Π ⇒ Δ,Σ

(b) Multiplicative =⇒ additive

Γ ⇒ Δ, ψ
(⇒ W )

Γ ⇒ Δ, ψ, ϕ
(⇒ P )

Γ ⇒ Δ, ϕ, ψ
(⇒ ∨)

Γ ⇒ Δ, ϕ ∨ ψ

the second one similarly (but without (⇒ P ))
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ϕ,Γ ⇒ Δ ψ,Γ ⇒ Δ
(∨ ⇒)

ϕ ∨ ψ,Γ,Γ ⇒ Δ,Δ
(P ), (C)

ϕ ∨ ψ,Γ ⇒ Δ
Exercise 5.16. Prove that the rules for ∧ and → are also interderivable.

It is evident that structural rules play a crucial role in these proofs. In fact,
in the absence of weakening and contraction, we obtain a characterisation of two
different connectives. The additive ones are also called extensional (in particular in
the context of relevant logics) or lattice-theoretical, since their behaviour is similar
to the behaviour of lattice operations of join and meet. The multiplicative rules
are also called intensional or group-theoretical.

Let us keep ∧ and ∨ for additive conjunction and disjunction, and introduce
⊗ and ⊕ for their multiplicative counterparts (we do not consider the additive
implication). The latter are in some sense better-behaving then the former since
they still correspond to the role of a comma in the antecedent and the succedent.
To be more precise, one can still prove (in LK without contraction and weakening)
that

� ϕ1, ..., ϕk ⇒ ψ1, ..., ψn iff � ϕ1 ⊗ ... ⊗ ϕk ⇒ ψ1 ⊕ ... ⊕ ψn

whereas

� ϕ1, ..., ϕk ⇒ ψ1, ..., ψn iff ϕ1 ∧ ... ∧ ϕk ⇒ ψ1 ∨ ... ∨ ψn is not provable.

Exercise 5.17. Prove the first equivalence above.

In the framework of substructural logics one more extension of terminology
is useful. In addition to � and ⊥ (lattice-theoretical constants) which are char-
acterised by axioms ⊥,Γ ⇒ Δ and Γ ⇒ Δ,�, one may need more ‘sensitive’
constants. In LK, we can without problems prove that � ↔ ϕ, for any provable
ϕ but in the absence of (W ⇒) we cannot prove � → ϕ. To repair the problem
we add new (group-theoretical) constants t and f which denote something like
the weakest provable and the strongest contradictory formula. Thus, we add new
axioms ⇒ t and f ⇒ and two rules:

(t ⇒)
Γ⇒ Δ

t,Γ⇒ Δ
(⇒ f)

Γ⇒ Δ
Γ⇒ Δ, f

These rules have the effect of a very restricted weakening.

Exercise 5.18. Prove in LK by means of weakening ⇒ � ↔ t and ⇒ ⊥ ↔ f .

5.2.2 Linear Logic

If we take LJ without structural rules but with added axioms and rules for �,⊥, t, f
and ⊗8 we obtain a calculus FL characterising so-called Full Lambek Calculus

8We cannot add rules for ⊕ due to the restriction upon succedents in LJ.
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which is often treated as the basic substructural logic9 If we use LK instead of
LJ, we get a calculus CFL, where we can add also rules for ⊕. However, the
most popular substructural logic is undoubtedly Linear Logic LL10 introduced by
Girard [98], which is just CFL with added permutation (but without t and f).
Since most of non-classical logics which were discovered earlier and then shown to
be in some sense substructural admit also permutation, linear logic LL (except its
own advantages) seems to be the most convenient basis. Hence, in the remaining
sections, we will be dealing mostly with calculi using sequents built from finite
multisets (or even sets) for convenience.

Before we will go to some well known logics of this sort, we also consider
some further extensions of LL. Formulae in LL are treated as concrete pieces
of information hence neither contraction nor weakening is reasonable as such.
However, one may recover the application of these rules in a controlled way by
introducing a special kind of modal functors called exponentials. We use standard
notation � and ♦ instead of Girard’s ! and ?; informally we can read them as ‘of
course’ and ‘why not’. They are characterised by the following rules:

(� ⇒)
ϕ,Γ⇒ Δ

�ϕ,Γ⇒ Δ
(⇒ �)

�Γ⇒ ♦Δ, ϕ

�Γ⇒ ♦Δ,�ϕ

(♦ ⇒)
ϕ,�Γ⇒ ♦Δ
♦ϕ,�Γ⇒ ♦Δ

(⇒ ♦)
Γ⇒ Δ, ϕ

Γ⇒ Δ,♦ϕ

(W ⇒)
Γ⇒ Δ

�ϕ,Γ⇒ Δ
(⇒ W )

Γ⇒ Δ
Γ⇒ Δ,♦ϕ

(C ⇒)
�ϕ,�ϕ,Γ⇒ Δ

�ϕΓ⇒ Δ
(⇒ C)

Γ⇒ Δ,♦ϕ,♦ϕ

Γ⇒ Δ,♦ϕ

One can easily recognise that we obtain S4 modalities plus structural rules in
restricted form. Such extension is connected with the original idea of Girard that
LL is not just a new alternative to classical logic but a system allowing for better
analysis of proofs by a stricter control over data.

What happens to cut admissibility in LL? We can expect that removing C
may only improve the matters. But on the other hand, we may be afraid that
the lack of W leads to problems. However, it is not so, at least in LL without
modalities. One may directly prove

Theorem 5.7. Cut is admissible in LL.

Proof: It may be carried in Dragalin-style but without proving auxiliary results
first. The reader should check that the cases with axioms (including the new ones)
and with reduction of the height are performed in the same manner as in G3 for

9Not necessarily the weakest one. One may consider nonassociative Lambek Calculus which
requires even more sensitive data structures as arguments of sequents, since lists are associative.

10In this case, we simply do not distinguish between a calculus and a logic it defines, hence we
write LL not LL.
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CPL. To show that the lack of W and C does not lead to problems in cases with
both principal cut-formulae, we compare the transformation for ∨ and ⊕. For the
former, we have

Γ ⇒ Δ, ϕ
(⇒ ∨)

Γ ⇒ Δ, ϕ ∨ ψ

ϕ,Π ⇒ Σ ψ,Π ⇒ Σ
(∨ ⇒)

ϕ ∨ ψ,Π ⇒ Σ
(Cut)

Γ,Π ⇒ Δ,Σ

which is replaced with:

Γ ⇒ Δ, ϕ ϕ,Π ⇒ Σ
(Cut)

Γ,Π ⇒ Δ,Σ

That’s all. For the latter, we have

Γ ⇒ Δ, ϕ, ψ
(⇒ ⊕)

Γ ⇒ Δ, ϕ ⊕ ψ

ϕ,Π ⇒ Σ ψ,Λ ⇒ Θ
(⊕ ⇒)

ϕ ⊕ ψ,Π,Λ ⇒ Σ,Θ
(Cut)

Γ,Π,Λ ⇒ Δ,Σ,Θ

which is replaced with

Γ ⇒ Δ, ϕ, ψ ϕ,Π ⇒ Σ
(Cut)

Γ,Π ⇒ Δ,Σ, ψ ψ,Λ ⇒ Θ
(Cut)

Γ,Π,Λ ⇒ Δ,Σ,Θ

As we can see there are no problems with the lack of structural rules. In the
additive case, only one premiss of the two-premiss rule is used after transformation
but no W is needed, since all parametric formulae are in both premisses. On
the other hand, in the multiplicative case, we must use both premisses of the
two-premiss rule but no C is needed, since both have independent multisets of
parameters. �

Exercise 5.19. Complete the proof.

If we consider additional modal operators and restricted structural rules, we
must again take care of C and use one of the strategies from chapter 2. We direct
the reader to Troelstra [263], for full account of such a proof.

5.3 Relevant Logics

One of the most important class of non-classical logics which may be naturally
placed in the family of substructural logics is the class of relevant logics. The point
of departure from classical logic is the notion of material implication. Consider the
following theses of CPL: p → (q → p), p ∧ ¬p → q or p → (q → q)

In all of them, the condition of relevancy between the antecedent and the
succedent of implication is somewhat broken. It may be stated as the requirement
that for every provable implication at least one propositional symbol is common to
the antecedent and the succedent, although other formulations are also proposed.
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The prehistory of such logics is connected with Orlov’s logic from 1928, and
Parry’s analytic implication from 1932. In 1950s, Church and Ackermann con-
structed axiomatic systems of so-called strong implication. However, the great
project of the development of such kind of logics started in 1960s, thanks to An-
derson and Belnap. They first developed several systems of relevant implication
and (the weaker) connective of entailment. In 1970s, Routley and Meyer provided a
kind of relational semantics for such logics. A detailed treatment of relevant logics
may be found in the works mentioned in the introductory paragraph of the previ-
ous section. We restrict our consideration only to the basic systems R (of relevant
implication) and E (of entailment) and their so- called mingle-versions. A presen-
tation of some weaker relevant logics which were investigated by the Australian
team of researchers will be omitted.

Let us start with implicational language only. Such restricted system of rel-
evant implication R→ may be axiomatised by means of the following axioms:

• ϕ → ϕ

• (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))

• (ϕ → (ψ → χ)) → (ψ → (ϕ → χ))

• (ϕ → (ϕ → ψ)) → (ϕ → ψ)

The only rule is MP.

Other connectives may be characterised by means of the following axioms:

• ¬¬ϕ → ϕ (ϕ → ¬ψ) → (ψ → ¬ϕ)

• ϕ ∧ ψ → ϕ ϕ ∧ ψ → ψ (ϕ → χ) ∧ (ψ → χ) → (ϕ ∧ ψ → χ)

• ϕ → ϕ ∨ ψ ψ → ϕ ∨ ψ (ϕ → χ) ∧ (ψ → χ) → (ϕ ∨ ψ → χ)

• ϕ ⊕ ψ → (¬ϕ → ψ) (¬ϕ → ψ) → ϕ ⊕ ψ

• ϕ ⊗ ψ → ¬(¬ϕ ⊕ ¬ψ) ¬(¬ϕ ⊕ ¬ψ) → ϕ ⊗ ψ

• ϕ∧ (ψ∨χ) → (ϕ∧ψ)∨ (ϕ∨χ) (or in simpler form ϕ∧ (ψ∨χ) → (ϕ∧ψ)∨ϕ)

Note that in case of addition of ∧ we need also the rule of adjunction

ϕ, ψ / ϕ ∧ ψ

in this way, we obtain the Hilbert system for R. It is quite characteristic
that we need the last axiom (of distribution) to full characterisation of ∨ and ∧.
Otherwise, we are unable to prove the laws of distribution. We will see that this
is not only an inelegance of axiomatisation; it has also a strong impact on SC
for relevant logics and even deeper consequences concerning decidability. In what
follows R− and R+ will be applied to denote R without distribution axiom and
positive variant of R, i.e. without negation.
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System R (in different language variants) may be weakened by the replace-
ment of relevant implication with the connective of entailment which is both rele-
vant and strict, like strict implication in modal logics. The basic system of entail-
ment E may be axiomatised by replacement of the third axiom (the permutation
of antecedents) with its weaker form

((ϕ → ϕ) → ψ) → ψ

Both R and E may be also strengthtened by the addition of the axiom Mingle:

ϕ → (ϕ → ϕ)

In this way, we obtain two mingle-logics RM, EM.

5.3.1 SC for Relevant Logics

SCs for these relevant logics may be obtained by selection of suitable rules from
LL (or FLC) with the addition of contraction rules. We can easily characterise R→

by using appropriate rules from LJ, namely both rules for →, (C ⇒), (Cut) and
axiom ϕ ⇒ ϕ. For E→ we must replace (⇒→) with the weaker (context-sensitive)
rule:

(⇒→)′
ϕ,Γ→⇒ ψ

Γ→⇒ ϕ → ψ

where Γ→ contains only implicational formulae.

SC for mingle systems requires the addition of the expansion rule which is
the converse of contraction (and in fact a restricted form of weakening).

(E ⇒)
ϕ,Γ⇒ Δ

ϕ,ϕ,Γ⇒ Δ

If we add ¬ to implicational versions of these logics, we must admit classical
sequents, i.e. change the rules taken from LJ into their counterparts from LK.
The extension to other connectives is not problematic. They are just like rules for
LL, we also assume that cut is a primitive rule. The most troublesome thing with
this LK-like ordinary SC for relevant logic is that it is not complete, i.e. it is not
sufficiently strong to cover full R characterised as Hilbert system. The above SC
is adequate with respect to the distributionless relevant logic R−, i.e. the system
without the last axiom. For this variant a demonstration of the equivalence with
Hilbert systems is easy.

Exercise 5.20. Prove axioms of H-R−.

What about cut elimination? It is not so unproblematic as in the case of LL,
since we have again C as the primitive rule. Recall that the original Gentzen’s
proof for LK and LJ to avoid problems with contraction introduced mix instead
of cut. But in case of relevant systems, such a rule is too strong since we do not
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have weakening to recover missing occurrences of deleted formulae. In order to
avoid problems, we must use the rule of multicut, often called a selective mix,
which deletes at least one occurrence of cut-formula from both premisses but not
necessarily all. Recall that similar solution was examined also in case of HSC for S5
in the previous chapter (subsection 4.7.3). The reader is invited to examine again
Gentzen’s proof of mix elimination in chapter 2 and check in which cases after
reduction we must restrict an application of mix to only one formula displayed in
the schema. This is rather straightforward and we omit the details.

It was proved by Urquhart [265], in 1984, that both E and R are undecidable.
However, the restricted versions of these logics are decidable. Decidability of R→

was proved already by Kripke in 1950s, then other systems were proved decidable
by a similar method. Since one may find numerous descriptions of these proofs in
many places11 we do not reproduce them here.

Difficulties with relevant logics based on the language with disjunction and
negation destroy the clear proof-theoretic picture of this family of logics. Despite
that, one should remember that stronger languages allow for obtaining many im-
portant results not accessible in weaker versions. We finish this subsection with a
brief presentation of one such result. It is quite interesting that CPL is contained
in a rather straightforward way in E. To prove an embedding consider the ver-
sion of CPL in the language without (primitive) implication and a Schütte-style
system S which is expressed by means of the following rules (where Γ,Δ denote
disjunctions):

(P )
Γ ∨ ϕ ∨ ψ ∨ Δ
Γ ∨ ψ ∨ ϕ ∨ Δ

(C)
Γ ∨ ϕ ∨ ϕ

Γ ∨ ϕ
(W )

Γ
Γ ∨ ϕ

(¬∨)
Γ ∨ ¬ϕ Δ ∨ ¬ψ

Γ ∨ Δ ∨ ¬(ϕ∨ψ)
(¬¬)

Γ ∨ ϕ

Γ ∨ ¬¬ϕ

(∧)
Γ ∨ ϕ Δ ∨ ψ

Γ ∨ Δ ∨ (ϕ ∧ ψ)
(¬∧)

Γ ∨ ¬ϕ ∨ ¬ψ

Γ ∨ ¬(ϕ ∧ ψ)

Proofs are defined as trees with leaves of the form ϕ ∨ ¬ϕ. This system is
adequate for CPL in the sense that |= ϕ iff �S ϕ. We can prove:

Theorem 5.8. If �S ϕ, then �E⇒ ϕ.

Proof: It is just a consequence of the fact that the law of excluded middle is a
thesis of E and all rules of calculus S correspond to sequents provable in E. �

Exercise 5.21. Complete the proof of theorem 5.8

11For example, in Anderson and Belnap [4], Dunn [68], Paoli [193], Ono [191]. A particularly
detailed treatment of Kripke’s proof is provided by Bimbo [31].
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5.3.2 Generalised Sequent Calculi for Relevant Logics

In order to get an adequate formalisation of R or RM in the full language, without
ad hoc rules expressing distributivity, we must use some generalised version of SC.
As for RM and some of its extensions, Avron [7], showed how to apply hypersequent
calculus. The version of HC suitable for this task has simple axioms ϕ ⇒ ϕ and
the following logical rules:

(¬⇒)
Γ ⇒ Δ, ϕ | G

¬ϕ,Γ ⇒ Δ | G
(⇒¬)

ϕ,Γ ⇒ Δ | G

Γ ⇒ Δ,¬ϕ | G

(∧⇒1)
ϕ,Γ ⇒ Δ | G

ϕ ∧ ψ,Γ ⇒ Δ | G
(∧⇒2)

ψ,Γ ⇒ Δ | G

ϕ ∧ ψ,Γ ⇒ Δ | G

(⇒∧)
Γ ⇒ Δ, ϕ | G Γ ⇒ Δ, ψ | G

Γ ⇒ Δ, ϕ ∧ ψ | G
(∨⇒)

ϕ,Γ ⇒ Δ | G ψ,Γ ⇒ Δ | G

ϕ ∨ ψ,Γ ⇒ Δ | G

(⇒∨1)
Γ ⇒ Δ, ϕ | G

Γ ⇒ Δ, ϕ ∨ ψ | G
(⇒∨2)

Γ ⇒ Δ, ψ | G

Γ ⇒ Δ, ϕ ∨ ψ | G

(⇒→)
ϕ,Γ ⇒ Δ, ψ | G

Γ ⇒ Δ, ϕ → ψ | G
(→⇒)

Γ ⇒ Δ, ϕ | G ψ,Γ ⇒ Δ | G

ϕ → ψ,Γ ⇒ Δ | G

(⊗ ⇒)
ϕ,ψ,Γ ⇒ Δ | G

ϕ ⊗ ψ,Γ ⇒ Δ | G
(⇒ ⊗)

Γ ⇒ Δ, ϕ | G Γ ⇒ Δ, ψ | G

Γ ⇒ Δ, ϕ ⊗ ψ | G

(⇒ ⊕)
Γ ⇒ Δ, ϕ, ψ | G

Γ ⇒ Δ, ϕ ⊕ ψ | G
(⊕⇒)

ϕ,Γ ⇒ Δ | G ψ,Γ ⇒ Δ | G

ϕ ⊕ ψ,Γ ⇒ Δ | G

One may easily observe that this is just a hypersequential version of LK, or
rather LL since richer language is considered. As for structural rules cut and both
EW and EC (i.e. external versions of weakening and contraction—see section (4.7),
are present but only internal contraction is primitive. Internal weakening is not a
sound rule in this system so Avron’s HSC is indeed a substructural hypersequent
system. Only two additional structural rules of splitting and combining are needed
to get an adequate formalisation of RM:

(Split)
Γ,Π ⇒ Δ,Σ | G

Γ ⇒ Δ | Π ⇒ Σ | G
(Com)

G | Γ ⇒ Δ Π ⇒ Σ | H

Γ,Π ⇒ Δ,Σ | G | H

The following interpretation of hypersequents is used to prove equivalency
with axiomatic system:

�(Γ1 ⇒ Δ1 | ... | Γn ⇒ Δn) = (⊗Γ1 → ⊕Δ1) ∨ ... ∨ (⊗Γn → ⊕Δn),

where ⊗Γ and ⊕Δ are intensional conjunction and disjunction of all elements
of Γ,Δ, respectively. Cut is proved eliminable but by means of rather complicated
history method which we do not consider here.
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On the other hand, the problem of distributivity is still not dealt within
the framework of HSC. There is some specific nonstandard form of SC devised
particularly for relevant logics which provides a solution. It was developed inde-
pendently by Mints [178] and Dunn [67], and often called the consecutive calculus.
We present rules for R+. The basic idea is to distinguish between two kinds of com-
posing formulae in the antecedent (in the succedent only one formula is present).
In ordinary sequents formulae are just separated by a comma, now we add the
second separator ‘;’. Formally, one introduces the notion of a structure which will
be denoted by means of X,Y,Z,W and is defined as follows:

• Every formula is a structure;

• the empty antecedent is a structure;

• if X and Y are structures, then (X,Y ) is an extensional structure;

• if X and Y are structures, then (X;Y ) is an intensional structure;

• nothing more is a structure.

Now, sequents are of the form X ⇒ ϕ, and X may represent a complicated
nested structure. For example, ((p, (q∧r; s)); ((p → s, r); q) ⇒ p is a sequent where
X is an intensional structure whose left argument is extensional (with the right
argument again intensional) and the right is intensional (with the left extensional).
We will use a convention X[Y ] ⇒ ϕ to represent that Y is a substructure of
the structure X (which may be empty as well) and in general we omit outer
parentheses. X ◦ Y means that both separators may be used in this rule or, what
comes to the same, that we have a pair of rules for both kinds of a structure. As
can be expected, the set of structural rules is much richer. As axioms we have
ϕ ⇒ ϕ and ⇒ t and the following basic set of structural rules

(P )
X[Y ◦ Z] ⇒ ϕ

X[Z ◦ Y ] ⇒ ϕ
(A)

X[(Y ◦ Z) ◦ W ] ⇒ ϕ

X[Y ◦ (Z ◦ W )] ⇒ ϕ
(C)

X[Y ◦ Y ] ⇒ ϕ

X[Y ] ⇒ ϕ

(W )
X[Y ] ⇒ ϕ

X[Y,Z] ⇒ ϕ
(Cut)

X ⇒ ϕ Y [ϕ] ⇒ ψ

Y [X] ⇒ ψ

The last two rules are with elaborate side conditions. (W ) is admitted only
for making extensional structure; moreover, Y must be nonempty. This restricted
use of (W ) is sufficient for proving distributivity but (in connection with suitably
defined logical rules) still blocks derivation of unwanted sequents like, e.g. ϕ ⇒
ψ → ϕ.

In the case of cut, if X is empty we substitute ϕ with t in the conclusion,
otherwise we could ‘prove’, e.g. ϕ ⇒ ψ → ψ. In fact, without this side condition,
the rule is not correct. The set of logical rules contains
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(⇒→)
X;ϕ ⇒ ψ

X ⇒ ϕ → ψ
(→⇒)

X ⇒ ϕ Y [ψ] ⇒ χ

Y [X;ϕ → ψ] ⇒ χ

(⊗⇒)
X[ϕ;ψ] ⇒ χ

X[ϕ ⊗ ψ] ⇒ χ
(⇒⊗)

X ⇒ ϕ Y ⇒ ψ

X;Y ⇒ ϕ ⊗ ψ

(∧⇒)
X[ϕ,ψ] ⇒ χ

X[ϕ ∧ ψ] ⇒ χ
(⇒∧)

X ⇒ ϕ Y ⇒ ψ

X, Y ⇒ ϕ ∧ ψ

(⇒∨1)
X ⇒ ϕ

X ⇒ ϕ ∨ ψ
(⇒∨2)

X ⇒ ψ

X ⇒ ϕ ∨ ψ

(t⇒)
X[ϕ] ⇒ ψ

X[ϕ; t] ⇒ ψ
(∨⇒)

X[ϕ] ⇒ χ X[ψ] ⇒ χ

X[ϕ ∨ ψ] ⇒ χ

We provide a proof of the distribution law as an example (an analogous proof
of the rightmost branch is omited)

ϕ ⇒ ϕ
(W )

ϕ,ψ ⇒ ϕ
(∧ ⇒)

ϕ ∧ ψ ⇒ ϕ

ψ ⇒ ψ
(⇒ ∨1)

ψ ⇒ ψ ∨ χ
(W )

ψ,ϕ ⇒ ψ ∨ χ
(P )

ϕ,ψ ⇒ ψ ∨ χ
(∧ ⇒)

ϕ ∧ ψ ⇒ ψ ∨ χ
(⇒ ∧)

ϕ ∧ ψ ⇒ ϕ ∧ (ψ ∨ χ)

...
ϕ ∧ χ ⇒ ϕ ∧ (ψ ∨ χ)

(∨ ⇒)
(ϕ ∧ ψ) ∨ (ϕ ∧ χ) ⇒ ϕ ∧ (ψ ∨ χ)

Dunn [67] proved cut elimination for this calculus. Consecution calculus pro-
vided a solution to the problem of controlled use of weakening in relevant logic.
Still in this calculus, a proper treatment of negation is problematic. To deal with
this question a more refined structure was needed. The solution was provided by
Belnap [25], who introduced display calculi (often, rather mistakenly, called display
logics). This is a class of very general SCs where the whole family of structural op-
erations is introduced to characterise precisely different classes of logics. We omit
the presentation of this calculi and direct the reader to works containing a detailed
treatment of these calculi for several non-classical logics. One should consult, in
particular, Belnap [26], Wansing [269] or Bimbo [31].

5.3.3 First-Degree Entailment

We finish this section with the presentation of nonstandard SC for a common
fragment of both E and R which is called FDE—first-degree entailment. It will
be evident soon that it may be treated as a kind of transition to the next sec-
tions devoted to many-valued logics. But for now, we stay in the realm of relevant
logics. FDE is the set of theses of E of the form ϕ → ψ where in ϕ and ψ there is no
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occurrence of →. These fragments of R and E coincide and the resulting logic is a
very interesting system which has connections to many other logics, in particular
to CPL.

In his first version, FDE was presented by Anderson and Belnap [4], as a kind
of axiom system but if we use ⇒ instead of → it may be just treated as a kind of
ordinary SC of mixed type with sequents restricted to one formula on both sides.
Such a system consists of the following axioms and rules:

• ϕ ⇒ ¬¬ϕ ¬¬ϕ ⇒ ϕ

• ϕ ∧ ψ ⇒ ϕ ϕ ∧ ψ ⇒ ψ

• ϕ ⇒ ϕ ∨ ψ ψ ⇒ ϕ ∨ ψ

• ϕ ∧ (ψ ∨ χ) ⇒ (ϕ ∧ ψ) ∨ (ϕ ∨ χ) (or simply ϕ ∧ (ψ ∨ χ) ⇒ (ϕ ∧ ψ) ∨ χ)

(TR)
ϕ ⇒ ψ ψ ⇒ χ

ϕ ⇒ χ
(CTP )

ϕ ⇒ ψ

¬ψ ⇒ ¬ϕ

(⇒∧)
χ ⇒ ϕ χ ⇒ ψ

χ ⇒ ϕ∧ψ
(∨ ⇒)

ϕ ⇒ χ ψ ⇒ χ

ϕ ∨ ψ ⇒ χ

The notion of proof may be defined in the standard way as a tree starting
with the instances of axioms. Note that ϕ ⇒ ϕ is not an axiom but it may be
easily derived from ϕ ⇒ ¬¬ϕ and ¬¬ϕ ⇒ ϕ by (TR) which is just a simplified
form of cut. In order to grasp some familiarity with this system, we suggest the
reader to:

Exercise 5.22. Prove sequents expressing laws of commutativity, association, idem-
potency.

For the sake of illustration, we provide a schema of the proof of one of the
remaining laws of distribution

ϕ ∧ ψ ⇒ ϕ

ψ ⇒ ψ ∨ χ

ϕ ∧ ψ ⇒ ψ ∨ χ
(⇒ ∧)

ϕ ∧ ψ ⇒ ϕ ∧ (ψ ∨ χ)
ϕ ∧ χ ⇒ ϕ

χ ⇒ ψ ∨ χ

ϕ ∧ χ ⇒ ψ ∨ χ
(⇒ ∧)

ϕ ∧ χ ⇒ ϕ ∧ (ψ ∨ χ)
(∨ ⇒)

(ϕ ∧ ψ) ∨ (ϕ ∧ χ) ⇒ ϕ ∧ (ψ ∨ χ)

Note that in two places we used lemma 2.3, and replaced axiomatic sequent
ϕ ∧ ψ ⇒ ψ (ϕ ∧ χ ⇒ χ, respectively) and (TR) with derived rule to provide more
compact tree. We will be using such shortcuts also below.

Several variants of this calculus were proposed which change the balance
between the number of axioms and rules. In particular

Lemma 5.2. SC for FDE is equivalent to the system where the contraposition rule
is replaced with four axioms expressing De Morgan laws.

Proof: =⇒ this is easy; we display the proof of one de Morgan law as an example
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ϕ ∧ ψ ⇒ ϕ
(CTP ) ¬ϕ ⇒ ¬(ϕ ∧ ψ)

ϕ ∧ ψ ⇒ ψ
(CTP )¬ψ ⇒ ¬(ϕ ∧ ψ)

(∨ ⇒) ¬ϕ ∨ ¬ψ ⇒ ¬(ϕ ∧ ψ)

Exercise 5.23. Prove the remaining De Morgan laws.

⇐= We must prove, by induction on the height of proof, that contraposition rule
is admissible in the presence of De Morgan laws. First, we prove that it holds for
each schema of an axiom. In case of double negation axioms, it is straightforward.
For those concerning ∧ and ∨ it is easy.

The only difficult task is with ϕ ∧ (ψ ∨ χ) ⇒ (ϕ ∧ ψ) ∨ (ϕ ∧ χ). We prove
admissibility of it. First note that the following distributivity law is provable (in
the simplest way by means of De Morgan laws)

(ϕ ∨ ψ) ∧ (ϕ ∨ χ) ⇒ ϕ ∨ (ψ ∧ χ);

It will be used in the proof, together with other abbreviations implied by
lemma 2.3, to shorten the proof. By De Morgan laws and the instance of the
above stated distributivity law we have

¬((ϕ ∧ ψ) ∨ (ϕ ∧ χ)) ⇒ ¬(ϕ ∧ ψ) ∧ ¬(ϕ ∧ χ)

¬((ϕ ∧ ψ) ∨ (ϕ ∧ χ)) ⇒ ¬(ϕ ∧ ψ)

¬((ϕ ∧ ψ) ∨ (ϕ ∧ χ)) ⇒ ¬ϕ ∨ ¬ψ

¬((ϕ ∧ ψ) ∨ (ϕ ∧ χ)) ⇒ ¬(ϕ ∧ ψ) ∧ ¬(ϕ ∧ χ)

¬((ϕ ∧ ψ) ∨ (ϕ ∧ χ)) ⇒ ¬(ϕ ∧ ψ)

¬((ϕ ∧ ψ) ∨ (ϕ ∧ χ)) ⇒ ¬ϕ ∨ ¬ψ
(⇒ ∧) ¬((ϕ ∧ ψ) ∨ (ϕ ∧ χ)) ⇒ (¬ϕ ∨ ¬ψ) ∧ (¬ϕ ∨ ¬χ)

¬((ϕ ∧ ψ) ∨ (ϕ ∧ χ)) ⇒ ¬ϕ ∨ (¬ψ ∧ ¬χ)

By the following:

¬ϕ ⇒ ¬ϕ ∨ ¬(ψ ∨ χ)
¬(ψ ∨ χ) ⇒ ¬ϕ ∨ ¬(ψ ∨ χ)
¬ψ ∧ ¬χ ⇒ ¬ϕ ∨ ¬(ψ ∨ χ)

(∨ ⇒) ¬ϕ ∨ (¬ψ ∧ ¬χ) ⇒ ¬ϕ ∨ ¬(ψ ∨ χ)
¬ϕ ∨ (¬ψ ∧ ¬χ) ⇒ ¬(ϕ ∧ (ψ ∨ χ))

and (TR) we obtain a desired result. �

FDE is related to CPL in several interesting ways. In particular, in order to
provide a decision procedure, we do not need more than is necessary for CPL.
In fact, Anderson and Belnap introduced this system to formalise the notion of
so-called tautological implication. Roughly speaking these are classically valid im-
plications ϕ → ψ satisfying relevancy condition and with no implication in ϕ and
ψ. Anderson and Belnap proved

Theorem 5.9. |= ϕ → ψ iff �FDE ϕ ⇒ ψ.

But what exactly are tautological implications in the sense of Anderson and
Belnap? Let us start with the simplest cases built from atoms. We remember that
in CPL the atomic sequents are valid just in case they have a common atom in
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antecedent and succedent. In the present context, they are represented by sequents
ϕ ⇒ ψ where ϕ is an elementary conjunction and ψ is a clause. Of course, we get
rid of all such sequents which do not have a common literal. Thus, although in CPL
p, q ⇒ p, r as well as p,¬p, q ⇒ r and q ⇒ p,¬p, r are all valid (and equivalent), in
FDE only p∧q ⇒ p∨r is valid and not equivalent to the remaining two due to the
lack of suitable negation rules. Using only such primitive tautological implications
and rules (∨ ⇒) and (⇒ ∧) we can deduce from them more complex sequents
where the antecedent is in DNF and the succedent is in CNF, i.e. of the form
ϕ1 ∨ ... ∨ ϕk ⇒ ψ1 ∧ ... ∧ ψn where each ϕi is an elementary conjunction and each
ψj is a clause. It is obvious that for sequents in such normal form it holds

Theorem 5.10. |= ϕ1 ∨ ...∨ϕk ⇒ ψ1 ∧ ...∧ψn iff |= ϕi ⇒ ψj for each i ≤ k, j ≤ n.

Since, as we proved, FDE has all necessary resources for changing any formula
into CNF- or DNF-form we can use it to transform every sequent into equivalent
sequent in such normal form. It follows that every tautological sequent may be
equivalently expressed as a sequent of the form ϕ1 ∨ ...∨ϕk ⇒ ψ1 ∧ ...∧ψn where
each ϕi is an elementary conjunction and each ψj is a clause. Since for every
sequent of the form ϕi ⇒ ψj it is enough to have one common literal in ϕi and ψj

we obtain decidability for FDE by purely classical resources.

Although the system provided above is in the natural correspondence with
the notion of tautological implication, it is not very good for finding proofs. One
may ask if it is not possible to provide a standard SC for FDE. In fact, already in
Anderson and Belnap, we can find even two such systems. We briefly present the
first, and the second will be mentioned in the next section. The system is using
standard multisuccedent sequents and LK rules for ∧ and ∨. Moreover, standard
structural rules of contraction and weakening are primitive. In particular, the
presence of W shows that at least FDE can be hardly treated as a substructural
logic even in the framework of standard SC. For ∧ and ∨ it is just a suitable part
of LK, hence all forms of distributivity are provable in this calculus without the
need of introducing special axioms or rules.

Exercise 5.24. Prove all forms of distribution.

As for negation we have three rules of the form:

(∗) Γ⇒ Δ
∗Δ ⇒ ∗Γ (⇒ ¬)

ϕ,Γ⇒ Δ
∗Δ ⇒ ∗Γ,¬ϕ

(¬ ⇒)
Γ⇒ Δ, ϕ

¬ϕ, ∗Δ ⇒ ∗Γ
where ∗ is an operation of addition of negation to each formula with zero or

even number of negations on the left, or deletion of negation before each formula
with an odd number of negations on the left. Finally, for → there is only one rule

(⇒→)
ϕ ⇒ ψ

⇒ ϕ → ψ
Thus, this is standard but not canonical SC for FDE which is just a proper

part of LK with only one specific rule for implication and three special rules for
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negation. The subformula property occurs in a generalised form, i.e. with the
closure under single negations, like in the symmetric SC from section 3.6. Despite
the fact that contraction and weakening are primitive, it works much better as
a tool of actual root-first proof search since it may be proved complete in cut-
free version. In practice, one should just resign from the applications of W and
restrict the applications of C to principal formulae of applications of (∧ ⇒) and
(⇒ ∨). Clearly, axioms are taken in the generalised form and the notion of an
atomic sequent is applied to sequents built from literals on both sides. In such
form, it may be also potentially used for proving decidability. We leave to the
reader the task of describing a suitable algorithm. Instead, we point out that we
can alternatively apply the strategy of coupled trees applied by Dunn [68], on the
basis of Jeffrey’s coupled trees for CPL. Roughly speaking, if we want to check
whether ϕ → ψ is valid tautological implication, we build in a root-first fashion
separate completed proof trees for ϕ ⇒ and ψ ⇒. Then we compare all leaves in
both trees (including axiomatic ones). Let us say that an atomic sequent S1 covers
an atomic sequent S2 iff it is included in it. Now, if for each leaf in the proof tree
for ϕ ⇒ there is at least one covered leaf in the proof tree for ψ ⇒, then ϕ → ψ is
valid. Note a similarity of this technique to the proofs of the interpolation theorem
by splitting method (see section 3.6). In fact, the latter was used by Muskens and
Wintein [271] to prove interpolation for FDE.

In Anderson and Belnap [4], one more SC is provided where instead of non-
standard rules for negation we have rules for negated formulae like in the symmetric
SC of Smullyan [245]. However, such kind of a calculus will be examined in the
next section.

We finish this section with another interesting remark. It may also be proved
that FDE corresponds to N4 in the following sense:

Theorem 5.11. Let ϕ1, ..., ϕn, ψ contain no implication, then �FDE ϕ1∧...∧ϕn ⇒ ψ
iff �N4 ϕ1, ..., ϕn ⇒ ψ.

The proof may be found in Kamide and Wansing [145].

5.4 Many-Valued Logics

One of the oldest and well known families of non-classical logics being weaker than
CPL is a family of many-valued logics. They were invented by Jan 
Lukasiewicz and
independently by Emil Post in 1920s. Since then, many-valued logics were actively
investigated and found numerous applications in many fields (see, e.g. Malinowski
[170], Rescher [212], Urquhart [266]).

The point of departure for this enterprise was the rejection of the principle
of bivalence. There is a variety of reasons for this step and we are not going
to present them here—the reader may find an interesting discussion in Priest
[205]. Such a choice leads to the introduction of more than two truth values—
even infinitely many. Semantically many-valued logics are usually characterised by
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means of many-valued matrices, and we will also use this characterisation. One
should notice, however, that the very application of many-valued matrices is not
a good criterion for describing the family of many-valued logics and it may be
a matter of discussion of what class of logics is properly denoted by this term.
Wójcicki [273] has proved that all propositional logics may be characterised by
means of infinitely-valued matrices. Hence, INT may be treated as a multi-valued
logic as well, the same applies to modal logics and other logics described earlier. On
the other hand, thanks to so-called Suszko thesis [255], all logics are in a deeper
sense two-valued, since despite the number of values used in the characteristic
matrix (Suszko called them algebraic values), we can always divide them into two
groups: values which are accepted and values which are rejected. Actually, his
views and a way of its interpretation is a matter of philosophical dispute12 but
technically, Suszko’s thesis may serve as a convenient basis for one of the possible
introduction of SC into the realm of many-valued logics.

Of course, it is important to restrict the term in some way to cover just this
class of logics which is usually recognised as comprising many-valued logics in the
exact sense. However, we are not concerned with general considerations but rather
with the case studies of some characteristic logics, hence for us it is not essential
to go into details of this dispute (see, e.g. Avron [12]). In what follows we focus
on a few well known three-valued logics, including 
Lukasiewicz’s L3, Kleene’s K3,
and on the one important four-valued logic of Belnap and Dunn.

5.4.1 The Basic Logics

Many-valued logics were originally presented in semantical terms and they are
still usually characterised by means of matrices being structures of the form M =
〈A,O,D〉, where

• A is a nonempty set of logical values.

• O is a nonempty set of operations on A which correspond to connectives; we
will use ¬,→, etc for denoting suitable operations.

• D ⊂ A is a nonempty set of designated values (not necessarily {1}).
A pair A = 〈A,O〉 included in a matrix and containing operations corre-

sponding to all connectives of some fixed language is an algebra similar to this
language. Instead of valuations on PROP extended by means of suitably defined
satisfaction relation to all formulae, we will use mappings defined on FOR in a
structure-preserving manner, i.e. homomorphisms. Technically, a homomorphism
h : FOR −→ A is an interpretation of a language in a matrix satisfying the
following conditions:

• h(¬ϕ) = ¬(h(ϕ))

12One of the recent summary of different positions towards Suszko’s thesis is provided by
Shramko and Wansing [239].
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• h(ϕ ∧ ψ) = h(ϕ)∧h(ψ)

• h(ϕ ∨ ψ) = h(ϕ)∨h(ψ)

• h(ϕ → ψ) = h(ϕ)→h(ψ)

In what follows, we will be using interchangeably terms homomorphism and
valuation. The content of a matrix E(M) is defined in the following way:

E(M) = {ϕ : h(ϕ) ∈ D, for any homomorphism h}
If the content of a matrix M is identical with the set of tautologies of a

logic L, then we say that this matrix determines a logic L (is adequate for L or
is the characteristic matrix for L). For any matrix, we define a relation of matrix
consequence in the following way:

Γ |=M ϕ iff for any homomorphism h if h(Γ) ⊆ D, then h(ϕ) ∈ D

Let us consider a few matrices determining well known logics. For example,
the matrix for K3 is M3

1, where A = {0, 1/2, 1}, D = {1}, and O contains an
unary operation ¬ : A −→ A and binary operations � : A × A −→ A, where
� ∈ {∧,∨,→}. All operations are defined by the following truth tables:

∧ 1 1/2 0 ∨ 1 1/2 0
1 1 1/2 0 1 1 1 1

1/2 1/2 1/2 0 1/2 1 1/2 1/2
0 0 0 0 0 1 1/2 0
→ 1 1/2 0 ¬
1 1 1/2 0 1 0

1/2 1 1/2 1/2 1/2 1/2
0 1 1 1 0 1

The matrix for 3-valued logic of 
Lukasiewicz is different only with respect to
the definition of operation →. We add also a characterisation of additive conjunc-
tion and disjunction since they are sometimes considered for 
Lukasiewicz logics:

→ 1 1/2 0 ⊗ 1 1/2 0 ⊕ 1 1/2 0
1 1 1/2 0 1 1 1/2 0 1 1 1 1

1/2 1 1 1/2 1/2 1/2 0 0 1/2 1 1 1/2
0 1 1 1 0 0 0 0 0 1 1/2 0

The only difference between Kleene’s and 
Lukasiewicz’s implication is for
both arguments being 1/2, but it is critical. For example, p → p is a tautology of
�L3 but not of K3. In fact, the latter is a logic with the empty set of tautologies
since for any formula ϕ we may define a homomorphism such that h(ϕ) /∈ D.
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If we assume a natural order on logical values corresponding to the order
of rational numbers, then operations in a matrix for �L3 may be defined in the
following way:

¬x = 1 − x

x∧y = min(x, y)

x∨y = max(x, y)

x→y = min(1, 1 − x + y)

It is an important fact in the case of a generalisation to a bigger number of
logical values, since the only thing which must be changed is A. For example, for
any n-valued logic with finite number of values A = {0, 1/n − 1, 2/n − 1, ..., 1}.

In both logics the third value is informally understood as a truth-value gap;
a sentence evaluated as 1/2 is treated as neither true nor false. If we decide to
interpret 1/2 as a truth-value glut—both true and false, we open the way for
expressing paraconsistency in many-valued setting. Now, if truth-preservation is
treated as the principal feature of logical consequence it is natural to change the
set of designated values for D = {1, 1/2}. In particular, if we change the set of
designated values for Kleene’s logic we obtain LP—the logic of paradox of Asenjo
and Priest. In this logic, the set of tautologies is nonempty due to the extension of
the set of designated values; for instance, |=LP p∨¬p. In fact, the set of tautologies
of LP is precisely the set of tautologies of CPL; the two logics differ with respect
to their consequence relation. In this respect, LP is a rather strange logic—neither
MP nor hypothetical syllogism are validity-preserving. However, if we additionally
change the definition of implication into the one introduced by Sobociński

→ 1 1/2 0
1 1 0 0

1/2 1 1/2 0
0 1 1 1

we obtain a more interesting (still paraconsistent) system called RM3 which
is a sublogic of the relevant logic RM presented in the previous section.

One of the most interesting four-valued logics may be obtained if we consider
both truth-value gaps and gluts as additional values. Such a logic called B4 was
proposed by Belnap and Dunn 13. Let us use ⊥ as a symbol for a gap and � for a
glut. Designated values are 1 and � (again we keep truth-preservation as decisive
factor). B4 is characterised by the matrix M4

2, where A = {0,⊥,�, 1}, D = {1,�},
O contains operations defined in the following way:

13In fact, such ‘four corners of truth’ were already considered in Indian logic, see Beall and
van Fraassen [23].
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∧ 1 � ⊥ 0 ∨ 1 � ⊥ 0
1 1 � ⊥ 0 1 1 1 1 1
� � � 0 0 � 1 � 1 �
⊥ ⊥ 0 ⊥ 0 ⊥ 1 1 ⊥ ⊥
0 0 0 0 0 0 1 � ⊥ 0
→ 1 � ⊥ 0 ¬
1 1 � ⊥ 0 1 0
� 1 � ⊥ 0 � �
⊥ 1 1 1 1 ⊥ ⊥
0 1 1 1 1 0 1

These four values form two lattices: a lattice of truth with the order ≤t (1 as
the supremum and 0 as the infimum), and a lattice of knowledge with the order
≤k (�—the supremum and ⊥—the infimum). The former looks like this

1
� �

⊥ �
� �

0

The consequence relation and the set of tautologies are defined like for other
logics. Note that an interesting connection holds between B4 and one of the relevant
logics considered in the previous section

Theorem 5.12. Let ϕ,ψ represent formulae with no occurrence of →, then: ϕ |=B4

ψ iff ϕ → ψ is a thesis of FDE

Thus, in B4 we obtain another characterisation of FDE enriched with syn-
tactically nonrestricted implication. There is also an interesting connection of B4

with K3 and LP. One can easily check that the three-valued matrices character-
ising connectives of both logics may be obtained from Dunn-Belnap’s four-valued
matrices just by deleting one of the values � or ⊥. Thus, B4 is the intersection
of both three-valued logics. We will see that syntactically each of them may be
obtained just by the addition of one axiom to SC for B4.

5.4.2 Proof Theory

As we mentioned above, many-valued logics were originally characterised seman-
tically; the syntactical characterisation was provided later, first in the form of
Hilbert calculi. �L3 may be axiomatised just by taking the same axioms for ∨ and
∧ as we did for R (but without distributivity since now it is provable). For → and
¬ we can use the more economical basis due to Wajsberg

• (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))

• (¬ϕ → ¬ψ) → (ψ → ϕ)
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• ((ϕ → ¬ϕ) → ϕ) → ϕ

The only rule is MP.
Of course, K3 may be only characterised by means of rules. For example,

one may add an axiom ϕ ∧ ¬ϕ � ψ to our primary formalisation of FDE and
obtain a system for K3 (in the language without →, but this is definable in the
standard way) but there is no reason for such artificial restrictions on the side of
the number of premisses. In fact, it is not hard to find suitable ordinary SC of
any type described in chapter 3. For example, Urquhart [266], provides a Hertz’
type formalisation of K3 which operates on multisuccedent sequents and has all
structural rules (cut, C, W). All logical constants are characterised by means of
axioms. It is enough to add the following sequents to obtain a characterisation of
∧ and ¬:

• ϕ,¬ϕ ⇒ ¬¬ϕ ⇒ ϕ ϕ ⇒ ¬¬ϕ

• ϕ ∧ ψ ⇒ ϕ ϕ ∧ ψ ⇒ ψ ϕ,ψ ⇒ ϕ ∧ ψ

• ¬ϕ ⇒ ¬(ϕ ∧ ψ) ¬ψ ⇒ ¬(ϕ ∧ ψ) ¬(ϕ ∧ ψ) ⇒ ¬ϕ,¬ψ

Exercise 5.25. Provide sequents characterising ∨ and →; remember that they are
defined in K3 in the standard way by means of ¬ and ∧.

Note that deletion of the first axiom yields a system for B4, whereas a re-
placement of it with ⇒ ϕ,¬ϕ yields LP. Such characterisations are elegant but not
very practical for proof search. We need rather something more close to standard
SC. Note also that the presence of all structural rules show, similarly as in the case
of FDE, that belonging to the family of substructural logics is in some respects a
matter of the chosen framework.

In fact, the first attempt to find other kinds of calculi, in particular, se-
quent calculi, was far from being ordinary. Schröter [231] and later, independently,
Takahashi [258] and Rousseau [221], introduced the notion of n-sided sequent for
n-valued logic. Thus, in case of three values, a sequent consists of three parts,
and—in general—in case of n values a sequent is built from n parts correspond-
ing to all values. The most developed study of such kind of SCs with proved cut
elimination theorems may be found in Baaz, Fermüller and Zach [19]. Very often
such a solution was later successfully applied to tableau systems by introducing
n labels added to formulae (see, e.g. Surma [251], Suchoń [247], Carnielli [44]).
Hence, we can naturally treat such systems as belonging also to the category of
labelled calculi. Hähnle [107] pointed out that unfortunately this approach was in-
dependently introduced many times by many authors without pushing further the
basic research. There is also a significant difference between syntactical treatment
(in terms of n-sided sequents) and more semantically oriented one (in terms of
n labels attached to formulae), concerning their interpretation. Loosely speaking,
the former approach is usually based on the disjunctive (verificationist) interpreta-
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tion, whereas the latter on the conjunctive (falsificationist) one. We will see below
that—in contrast to classical logic—in many-valued setting the choice of one, or
the other interpretation, leads to the construction of different calculi. Although
such systems have a very natural motivation, they have also serious drawbacks
when applied to proof search. In particular, we can have a proliferation of proof
search trees. For example, imagine that we are dealing with n-valued logic having
only 1 as a designated value and we test a formula which is actually a thesis of
this logic in a labelled tableau system based on the conjunctive interpretation. To
show that it is a thesis we must check n−1 cases, i.e. to built n−1 trees before we
can conclude that it is a thesis indeed. Clearly, in case of non-thesis, we can stop
after the first open tree if we are lucky enough. In the disjunctive interpretation,
we can avoid this problem introducing instead axioms of the form ϕ | ϕ | ... | ϕ
where we have n-times repeated ϕ. But still, such calculi are rather inefficient for
actual proof search. We will illustrate this problem in subsection 5.5.1.

One possible solution leading to significant improvement of this approach was
proposed independently by Doherty [59] and Hähnle [106]. Roughly, the idea is to
introduce labels which correspond not to single values but to their (selected) sets.
At first, it may seem worse, since now in the case of n-valued logic we are dealing
with 2n possible labels or 2n-sided sequents. However, not all sets of values are
required, and even in case where the number of required sets exceeds the number
of values, the systems tend to be simpler. In particular, only one proof search tree
is necessary in all cases and the same rules are required independently of the kind
of interpretation. We will present generalised sequent calculi for some logics based
on this idea and designed specifically for more efficient proof search in subsection
5.5.2

In fact, other approaches to generalised SC, like hypersequent calculi (Avron
[10]) or SCs with constants denoting values (e.g. Fitting [84]), were also applied.
In what follows we focus only on the two approaches described above but first let
us see in what way standard SC may be applied in this field.

5.4.3 Standard SC for Many-Valued Logics

One possible way is to treat many-valued logics as a kind of substructural logics.
Prijatelj [207] provided a uniform formalisation of finitely-valued 
Lukasiewicz logics
as systems with restricted contraction. Connectives are characterised by means of
respective rules of LL but with added bounded contraction rules of the form:

(Cn ⇒)
ϕn+1,Γ⇒ Δ
ϕn,Γ⇒ Δ

(⇒ Cn)
Γ⇒ Δ, ϕn+1

Γ⇒ Δ, ϕn

where n denotes the number of occurrences of ϕ. In case of �L3 n = 2. This
approach is elegant but has one essential drawback—cut is not eliminable.

On the other hand, it is possible to find out SC defined on standard sequents
and allowing cut elimination at the expense of using rules which are not canonical.
Beziau [29] provided such SC for �L3 in the restricted language with ¬ and → only.
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His approach is an example of formal realisation of Suszko’s thesis, in the sense
that instead of 3-valued matrix he introduces a 2-valued semantics in terms of
bivaluations. This is a reformulation of the original Suszko semantics for �L3. Such
an approach is quite general but has some drawbacks; usually, a semantics of this
kind is not truth-functional, i.e. bivaluations need not be homomorphisms. This is
also the case of this bivaluational semantics for L3. Logical rules are modelled on
semantical conditions and look like this:

(¬¬⇒)
ϕ,Γ⇒ Δ

¬¬ϕ,Γ⇒ Δ
(⇒¬¬)

Γ⇒ Δ, ϕ

Γ⇒ Δ,¬¬ϕ
(¬ ⇒)

Γ⇒ Δ, ϕ

¬ϕ,Γ⇒ Δ

(¬∨⇒)
¬ϕ,¬ψ,Γ⇒ Δ
¬(ϕ∨ψ),Γ,⇒ Δ

(⇒¬∨)
Γ⇒ Δ,¬ϕ Γ⇒ Δ,¬ψ

Γ⇒ Δ,¬(ϕ∨ψ)

(⇒→ 1)
Γ⇒ Δ,¬ϕ,ψ

Γ⇒ Δ, ϕ → ψ
(⇒→ 2)

ϕ,Γ⇒ Δ ¬ψ,Γ⇒ Δ
Γ⇒ Δ, ϕ → ψ

(→⇒ 1)
¬ϕ,Γ⇒ Δ Γ⇒ Δ,¬ψ

ϕ → ψ,Γ⇒ Δ
(→⇒ 2)

Γ⇒ Δ, ϕ ψ,Γ⇒ Δ
ϕ → ψ,Γ⇒ Δ

(⇒ ¬ →)
ϕ → ψ,Γ⇒ Δ Γ⇒ Δ, ϕ,¬ϕ Γ⇒ Δ, ψ,¬ψ

Γ⇒ Δ,¬(ϕ → ψ)

(¬ →⇒ 1)
ϕ → ψ,Γ⇒ Δ ϕ,Γ⇒ Δ ¬ϕ,Γ⇒ Δ

¬(ϕ → ψ),Γ⇒ Δ

(¬ →⇒ 2)
ϕ → ψ,Γ⇒ Δ ψ,Γ⇒ Δ ¬ψ,Γ⇒ Δ

¬(ϕ → ψ),Γ⇒ Δ

In consequence of a non truth-functional character of bivaluations, we have
a proliferation of rules for the introduction of the same kind of formula. However,
one can prove adequacy and cut elimination for this SC.

A different and quite general approach was developed by Avron [12]. In order
to provide (an almost) standard characterisation for all three-valued logics with
standard negation14 Avron introduced two background 3-valued logics which are
functionally complete; one for the matrix with D = {1} and the second for the
matrix with D = {1, 1/2}. All logics discussed above are sublogics of one or the
other. In both the cases, to obtain functional completeness the language must be
enriched with constants ⊥ and (the new one) I; the latter denotes 1/2. ¬,∧,∨ are
defined as above but implication is generally characterised in the following way:

h(ϕ → ψ) =

{
h(ψ) if h(ϕ) ∈ D

1 if h(ϕ) /∈ D

This implication (called natural by Avron) in case of D = {1} obtains the
following definition:

14It excludes logics with Post negation.



280 Chapter 5. Alternatives to CPL

→ 1 1/2 0
1 1 1/2 0

1/2 1 1 1
0 1 1 1

and in case of D = {1, 1/2} has the following:

→ 1 1/2 0
1 1 1/2 0

1/2 1 1/2 0
0 1 1 1

Both implications were independently introduced earlier. The former by
S
lupecki and the latter by D’Ottaviano and DaCosta in order to obtain three-
valued paraconsistent logic J3 being a formalisation of Jaśkowski’s discussive logic.

In both the cases, we have the same set of rules: cut, weakening, standard
G3 rules of introduction for ∧,∨,→ and the following ones for negation:

(¬¬⇒)
ϕ,Γ⇒ Δ

¬¬ϕ,Γ⇒ Δ
(⇒¬¬)

Γ⇒ Δ, ϕ

Γ⇒ Δ,¬¬ϕ

(¬∨⇒)
¬ϕ,¬ψ,Γ⇒ Δ
¬(ϕ∨ψ),Γ,⇒ Δ

(⇒¬∨)
Γ⇒ Δ,¬ϕ Γ⇒ Δ,¬ψ

Γ⇒ Δ,¬(ϕ∨ψ)

(⇒¬∧)
Γ⇒ Δ,¬ϕ,¬ψ

Γ⇒ Δ,¬(ϕ∧ψ)
(¬∧⇒)

¬ϕ,Γ⇒ Δ ¬ψ,Γ⇒ Δ
¬(ϕ∧ψ),Γ⇒ Δ

(¬ →⇒)
ϕ,¬ψ,Γ⇒ Δ

¬(ϕ → ψ),Γ⇒ Δ
(⇒ ¬ →)

Γ⇒ Δ, ϕ Γ⇒ Δ,¬ψ

Γ⇒ Δ,¬(ϕ → ψ)
As axioms we have sequents of the following form: ϕ ⇒ ϕ, ⊥ ⇒, ⇒ ¬⊥
One may easily check that all these rules are validity-preserving indepen-

dently of the choice of D. This core SC is called GBS.

Exercise 5.26. Prove validity-preservation of rules of GBS with respect to either
selection of D.

The calculus GM{1}
3 , adequate for the matrix with D = {1}, is obtained by

the addition to GBS the following axioms: ¬ϕ,ϕ ⇒; I ⇒; ¬I ⇒.

The calculus GM{1,1/2}
3 , adequate for the matrix with two designated values,

is obtained by addition to GBS the following axioms: ⇒ ¬ϕ,ϕ; ⇒ I; ⇒ ¬I.

Avron proves adequacy and cut elimination for these calculi semantically.
However, it is not difficult to provide a purely syntactical proof of cut elimination
in the way which was briefly described in section 5.1. (for N4).

Exercise 5.27. Provide a proof of cut elimination for Avron’s SCs.
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Avron shows how SCs can be obtained for well known 3-valued logics on this
basis by changing (some) rules for → and deleting axioms for ⊥ and I. For example
to get SC for L3 we must change two rules

(⇒→)
ϕ,Γ⇒ Δ, ψ ¬ψ,Γ⇒ Δ,¬ϕ

Γ⇒ Δ, ϕ→ψ

(→⇒)
ψ,Γ⇒ Δ, ϕ ψ,Γ⇒ Δ ¬ϕ,Γ⇒ Δ

ϕ→ψ,Γ⇒ Δ

For RM3 we use the same rules except the last which is now

(→⇒)
¬ϕ,ψ,Γ⇒ Δ Γ⇒ Δ,¬ψ Γ⇒ Δ, ϕ

ϕ→ψ,Γ⇒ Δ

In contrast to Prijatelj’s formalisation, this one rather hardly can be treated
as substructural but is cut-free instead. Avron, demonstrates also a similar ap-
proach to four-valued logics but in this case, much more complicated rules are
required.

5.5 Generalised Sequent Calculi

As we remarked above, the earliest versions of SCs for many-valued logics were
generalised systems. It is the most popular approach to construction of many-
valued sequent or tableau systems, based on the idea of syntactic representation
of n values either by means of n-sided sequents or by n labels attached to formu-
lae or sets of formulae. This solution was presented by many authors apparently
without recognition of earlier works as was pointed out by Hähnle [107]. Below,
we illustrate the basic idea of this approach using �L3 as an example. But instead
of using 3-sided sequents of the form Γ | Δ | Σ, as it is usually done in papers
where generalised SC is used as a framework, we prefer to apply again structured
sequents, i.e. with the multiplication of arguments of ordinary sequent. This ac-
cords well with Suszko’s thesis, and allows for a better comparison with classical
sequents—with the minor change that more structure is now used to represent
accepted and rejected formulae. Since we do not consider logics with more than
four values, we do not need sequents with more than three or four components
exactly as in the case of modal logics.

Recall that in addition to Gentzen’s original translation there are two possible
interpretations of a sequent described in section 3.4, and called ID and IC . The
former goes in terms of verification of a sequent and applied to �L3 leads to sequents
of the form Γ [Δ] ⇒ Σ which are satisfied in a matrix iff some ϕ ∈ Γ is 0, or some
ψ ∈ Δ is 1/2, or some χ ∈ Σ is 1, under some h. The latter goes in terms of
falsification and may be expressed by means of sequents of the form Σ ⇒ [Δ] Γ
which are falsified in a matrix iff all formulae in Σ are 1, all in Δ are 1/2 and
all in Γ are 0, under some h. In the classical case, the choice of interpretation
has no impact on the shape of rules but now the situation is different. What is
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really interesting is the fact that in many-valued setting the choice of one of these
interpretations leads to different calculi. Clearly, despite the type of interpretation
we can use in both cases simply objects of the form Γ | Δ | Σ as is usually done.
But even if the unified notation for n-sequents is used for both interpretation, the
rules are different. In our opinion it is better to express a difference between both
interpretation already on the level of the notion of a sequent, hence we will be
using two variants: Γ [Δ] ⇒ Σ and Σ ⇒ [Δ] Γ.

5.5.1 N-sided Systems as Structured Sequents

Let us start with the first (verificationist) approach to �L3. Axioms are all sequents
with Γ ∩ Δ ∩ Σ nonempty and we have the following rules:

(¬ ⇒)
Γ, [Δ] ⇒ Σ, ϕ

¬ϕ,Γ, [Δ] ⇒ Σ
([¬] ⇒)

Γ, [ϕ,Δ] ⇒ Σ
Γ, [¬ϕ,Δ] ⇒ Σ

(⇒ ¬)
ϕ,Γ, [Δ] ⇒ Σ

Γ, [Δ] ⇒ Σ,¬ϕ

(∧ ⇒)
ϕ,ψ,Γ, [Δ] ⇒ Σ

ϕ ∧ ψ,Γ, [Δ] ⇒ Σ
(⇒ ∧)

Γ, [Δ] ⇒ Σ, ϕ Γ, [Δ] ⇒ Σ, ψ

Γ, [Δ] ⇒ Σ, ϕ ∧ ψ

([∧] ⇒)
Γ, [ϕ,Δ] ⇒ Σ, ϕ Γ, [ϕ,ψ,Δ] ⇒ Σ Γ, [ψ,Δ] ⇒ Σ, ψ

Γ, [ϕ ∧ ψ,Δ] ⇒ Σ

(∨ ⇒)
ϕ,Γ, [Δ] ⇒ Σ ψ,Γ, [Δ] ⇒ Σ

ϕ ∨ ψ,Γ, [Δ] ⇒ Σ
(⇒ ∨)

Γ, [Δ] ⇒ Σ, ϕ, ψ

Γ, [Δ] ⇒ Σ, ϕ ∨ ψ

([∨] ⇒)
ϕ,Γ, [ϕ,Δ] ⇒ Σ Γ, [ϕ,ψ,Δ] ⇒ Σ ψ,Γ, [ψ,Δ] ⇒ Σ

Γ, [ϕ ∨ ψ,Δ] ⇒ Σ

(→⇒)
Γ, [Δ] ⇒ Σ, ϕ ψ, Γ, [Δ] ⇒ Σ

ϕ → ψ, Γ, [Δ] ⇒ Σ
([→] ⇒)

Γ, [ϕ, ψ, Δ] ⇒ Σ ψ, Γ, [Δ] ⇒ Σ, ϕ

Γ, [ϕ → ψ, Δ] ⇒ Σ

(⇒→)
ϕ,Γ, [ϕ,Δ] ⇒ Σ, ψ ϕ,Γ, [ψ,Δ] ⇒ Σ, ψ

Γ, [Δ] ⇒ Σ, ϕ → ψ

The definition of proof is standard and we can allow as root of the tree any
sequent although natural reading in terms of theses admits only sequents of the
form ⇒ ϕ. In the former case we say that a provable sequent Γ [Δ] ⇒ Σ is 3-valid
in the sense that for every h at least one formula ϕ is such that

h(ϕ) =

⎧
⎪⎨

⎪⎩

0 if ϕ ∈ Γ
1/2 if ϕ ∈ Δ
1 if ϕ ∈ Σ

In order to prove that proofs may be simulated in the axiomatic system, one
may use the following translation. For each sequent

�(ϕ1, ..., ϕi, [ψ1, ..., ψj ] ⇒ χ1, ..., χk) =
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¬ϕ1∨...∨¬ϕi∨(ψ1 → ¬ψ1)∧(¬ψ1 → ψ1)∨...∨(ψj → ¬ψj)∧(¬ψj → ψj)∨χ1∨...∨χk

Under this translation, one can prove admissibility of SC rules in H-system.
Instead, we provide a much simpler semantic treatment. Soundness of this calculus
is a simple consequence of the following:

Lemma 5.3. All rules are validity-preserving (normal).

Proof: We check the rules for ∧. Consider (∧ ⇒) and assume that the premiss is
valid. Then for an arbitrary valuation, the premiss is satisfied which means that
at least one formula in the (nonbracketed) antecedent is false or in Δ − 1/2, or is
true in Σ. If it is the member of Γ∪Δ∪Σ, then the conclusion is satisfied as well.
Otherwise, ϕ or ψ is false, but then ϕ ∧ ψ is false in both cases.

For (⇒ ∧), again only the values of ϕ,ψ are crucial, since for any valuation
where some member of Γ ∪ Δ ∪ Σ obtains the respective value it is transmitted
to the conclusion. Now, if this is not the case, then both ϕ and ψ must be true,
hence ϕ ∧ ψ is true as well and the conclusion is satisfied.

The case of ([∧] ⇒) is more complicated. If we compare all three premisses,
we see that for having them satisfied together, we must have that: either (1)
h(ϕ) = h(ψ) = 1/2, or (2) h(ϕ) = 1/2 but h(ψ) = 1, or (3) h(ϕ) = 1 and
h(ψ) = 1/2. The reader can easily check that these are all the situations yielding
h(ϕ ∧ ψ) = 1/2. �

Exercise 5.28. Complete the proof of validity-preservation for other rules.

It is essentially the calculus of Rousseau [221] or Takahashi [258], who pro-
vided a general theory of such calculi for several finitely-valued logics. If we prefer
LK-like version, we can follow Baaz, Fermüller and Zach [19] and admit axioms of
the form ϕ [ϕ] ⇒ ϕ and the following structural rules:

(C ⇒)
ϕ, ϕ, Γ, [Δ] ⇒ Σ

ϕ, Γ, [Δ] ⇒ Σ
([C] ⇒)

Γ, [ϕ, ϕ, Δ] ⇒ Σ

Γ, [ϕ, Δ] ⇒ Σ
(⇒ C)

Γ, [Δ] ⇒ Σ, ϕ, ϕ

Γ, [Δ] ⇒ Σ, ϕ

(W ⇒)
Γ, [Δ] ⇒ Σ

ϕ,Γ, [Δ] ⇒ Σ
([W ] ⇒)

Γ, [Δ] ⇒ Σ
Γ, [ϕ,Δ] ⇒ Σ

(⇒ W )
Γ, [Δ] ⇒ Σ

Γ, [Δ] ⇒ Σ, ϕ

Again, we can notice that in this framework it is hard to treat �L3 (and other
many-valued logics) as a kind of substructural logic. On the basis of Rousseau’s
and Takahashi’s general results we can state

Theorem 5.13. If |=L3 ϕ, then �⇒ ϕ in the present calculus.

Although this calculus is cut-free, cut may be expressed collectively by the
following rules:

(Cut)
Γ, [Δ] ⇒ Σ, ϕ ϕ,Γ, [Δ] ⇒ Σ

Γ, [Δ] ⇒ Σ
(Cut[])

Γ, [Δ] ⇒ Σ, ϕ Γ, [ϕ,Δ] ⇒ Σ
Γ, [Δ] ⇒ Σ

([]Cut)
Γ, [Δ, ϕ] ⇒ Σ ϕ,Γ, [Δ] ⇒ Σ

Γ, [Δ] ⇒ Σ
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Exercise 5.29. Prove that structural rules (including cut) are validity-preserving
(normal).

Rousseau proves completeness semantically for cut-free version and point out
that its admissibility is a consequence of completeness, but in Baaz, Fermüller and
Zach [19], one may find a constructive and general proof of its admissibility for
a class of n-sided SCs. Instead of presenting it here for the special case of L3 we
rather consider if by means of admissible cut(s) one can prove that all theses of
Hilbert system may be proved in this SC:

Theorem 5.14. If �HL3 ϕ, then �⇒ ϕ.

Proof: We left to the reader a tedious task of proving all axioms. As an appetiser
let us prove the schema of an extremely simple thesis

ϕ,ψ, [ϕ,ψ] ⇒ ϕ ϕ,ψ, [ϕ,ϕ] ⇒ ϕ
(⇒→)

ϕ, [ϕ] ⇒ ψ → ϕ D
(⇒→) ⇒ ϕ → (ψ → ϕ)

where D is:

ϕ,ψ, [ϕ,ψ, ψ] ⇒ ϕ ϕ,ϕ, ψ, [ψ] ⇒ ϕ,ψ
([→] ⇒)

ϕ,ψ, [ψ,ψ → ϕ] ⇒ ϕ ϕ,ψ, [ϕ,ψ → ϕ] ⇒ ϕ
(⇒→)

ϕ, [ψ → ϕ] ⇒ ψ → ϕ

However, in order to complete the proof of this claim, we should be able to
show in what way cuts simulate applications of MP in any proof. Suppose we have
proved ϕ → ψ and ϕ, then by the induction hypothesis in SC we have proofs of
⇒ ϕ → ψ and ⇒ ϕ. How to get ⇒ ψ on this basis? Let us consider the following
proof:

ϕ, [ϕ] ⇒ ϕ
(W )

ϕ, [ϕ, ϕ, ψ] ⇒ ϕ, ψ

ψ, [ψ] ⇒ ψ
(W )

ψ, ϕ, [ϕ, ϕ, ψ] ⇒ ψ
(→⇒)

ϕ → ψ, ϕ, [ϕ, ϕ, ψ] ⇒ ψ

ϕ, [ϕ] ⇒ ψ
(W )

ψ, ϕ → ψ, ϕ, [ϕ] ⇒ ϕ, ψ
([→] ⇒)

ϕ → ψ, ϕ, [ϕ → ψ, ϕ] ⇒ ψ

It is easily seen that four applications of cut (more concretely, two applica-
tions of (Cut) and two of (Cut[])) using ⇒ ϕ → ψ and ⇒ ϕ yields ⇒ ψ. �

Let us consider now the falsificationist interpretation for the same logic. This
is usually realised in (labelled) tableaux framework but it is not difficult to provide
a suitable SC defined on sequents of the form Σ ⇒ [Δ], Γ15. Any such sequent is
counted as axiom if either Γ∩Δ or Γ∩Σ or Δ∩Σ is nonempty. Logical rules are

15One may find such solution for example in Ripley [218], where such an interpretation is called
negated conjunction. Note also that it is not a problem to use the former interpretation to obtain
dual tableaux—see, e.g. Or�lowska and Golińska-Pilarek [192].
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(¬ ⇒)
Σ ⇒ [Δ],Γ, ϕ

¬ϕ,Σ ⇒ [Δ],Γ
(⇒ [¬])

Σ ⇒ [ϕ,Δ],Γ
Σ ⇒ [¬ϕ,Δ],Γ

(⇒ ¬)
ϕ,Σ ⇒ [Δ],Γ

Σ ⇒ [Δ],Γ,¬ϕ

(∧ ⇒)
ϕ,ψ,Σ ⇒ [Δ],Γ

ϕ ∧ ψ,Σ ⇒ [Δ],Γ
(⇒ ∧)

Σ ⇒ [Δ],Γ, ϕ Σ ⇒ [Δ],Γ, ψ

Σ ⇒ [Δ],Γ, ϕ ∧ ψ

(⇒ [∧])
ϕ,Σ ⇒ [Δ, ψ],Γ Σ ⇒ [Δ, ϕ, ψ],Γ ψ,Σ ⇒ [Δ, ϕ],Γ

Σ ⇒ [Δ, ϕ ∧ ψ],Γ

(∨ ⇒)
ϕ,Σ ⇒ [Δ],Γ ψ,Σ ⇒ [Δ],Γ

ϕ ∨ ψ,Σ ⇒ [Δ],Γ
(⇒ ∨)

Σ ⇒ [Δ],Γ, ϕ, ψ

Σ ⇒ [Δ],Γ, ϕ ∨ ψ

(⇒ [∨])
Σ ⇒ [Δ, ϕ],Γ, ψ Σ ⇒ [Δ, ϕ, ψ],Γ Σ ⇒ [Δ, ψ],Γ, ϕ

Σ ⇒ [Δ, ϕ ∨ ψ],Γ

(⇒→)
ϕ,Σ ⇒ [Δ],Γ, ψ

Σ ⇒ [Δ],Γ, ϕ → ψ
(⇒ [→])

Σ ⇒ [Δ, ϕ],Γ, ψ ϕ,Σ ⇒ [Δ, ψ],Γ
Σ ⇒ [Δ, ϕ → ψ],Γ

(→⇒)
Σ ⇒ [Δ],Γ, ϕ Σ ⇒ [Δ, ϕ, ψ],Γ ψ,Σ ⇒ [Δ],Γ

ϕ → ψ,Γ, [Δ] ⇒ Σ

Note also that now if we want to prove the admissibility of cut there is only
one rule, but of the form:

(3-Cut)
Σ ⇒ [Δ],Γ, ϕ Σ ⇒ [Δ, ϕ],Γ ϕ,Σ ⇒ [Δ],Γ

Γ, [Δ] ⇒ Σ

One can easily see that it is correct under falsificationist interpretation: if the
conclusion is falsified, then at least one premiss must be falsified as well, since ϕ
must take one of the values under any valuation.

As far as we know a constructive proof of cut admissibility was never provided
for this kind of many-sided SCs, so its admissibility follows from the completeness
theorem (see, e.g. Carnielli [44], for tableau systems of this sort). In what follows,
we provide a sketch of such a proof but first, we take a look at soundness matters.
One may easily prove

Lemma 5.4. All rules are validity-preserving.

Proof: Now we prove it indirectly, i.e. by assuming that the conclusion is falsified
and on this basis at least one premiss is not valid. Let us consider again all rules
for ∧. In case of (∧ ⇒) iff all elements of the antecedent, including ϕ∧ψ are true,
then ϕ and ψ must be true and the premiss is falsified.

For (⇒ ∧) if the conclusion is falsified, then ϕ∧ ψ is false so either ϕ or ψ is
false. In each case, one premiss is falsified as well.

In case of (⇒ [∧]), h(ϕ ∧ ψ) = 1/2, so either ϕ is false which falsifies the
leftmost premiss, or ψ is true which falsifies the rightmost one. It remains the
possibility that h(ϕ) = h(ψ) = 1/2 but then the middle premiss is falsified. �
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The definition of proof is the same. But now one proof tree is not enough in
the positive case. To obtain a counterpart of theorem 5.14, one must prove

Theorem 5.15. If |=L3 ϕ, then �⇒ ϕ and �⇒ [ϕ].

General completeness theorems of this kind are in fact provided by Surma
[251], Suchoń [247], Carnielli [44]. Again, instead of summarising them, we ask if
it is possible to prove its syntactical counterpart, i.e. a claim that

Theorem 5.16. If �HL3 ϕ, then �⇒ ϕ and �⇒ [ϕ].

Proof: It is a tedious but possible task to find cut-free double proofs of all axioms.
Let us examine again the same example of a thesis as in the verificationist SC.
The first proof is

ϕ,ψ ⇒ ϕ
(⇒→)

ϕ ⇒ ψ → ϕ
(⇒→)⇒ ϕ → (ψ → ϕ)

and the second

ψ ⇒ [ϕ], ϕ
(⇒→) ⇒ [ϕ], ψ → ϕ

ϕ ⇒ [ψ], ϕ ϕ, ψ ⇒ [ϕ]
(⇒ [→])

ϕ ⇒ [ψ → ϕ]
(⇒ [→])⇒ [ϕ → (ψ → ϕ)]

But what with simulation of MP in our SC? It is also possible to demonstrate
by induction on the height of axiomatic proof. By the induction hypothesis, we
have provable in our SC ⇒ ϕ → ψ, ⇒ [ϕ → ψ], ⇒ ϕ and ⇒ [ϕ]. We show that
both ⇒ ψ and ⇒ [ψ] are provable. For the latter, first we prove

ϕ ⇒ [ψ], ϕ ϕ ⇒ [ϕ,ψ, ψ] ϕ,ψ ⇒ [ψ]
(→⇒)

ϕ → ψ,ϕ ⇒ [ψ]
then we proceed

⇒ [ϕ] ⇒ ϕ

⇒ [ϕ → ψ] ⇒ ϕ → ψ ϕ → ψ,ϕ ⇒ [ψ]
(3-Cut)

ϕ,⇒ [ψ]
(3-Cut)⇒ [ψ]

Exercise 5.30. Prove ⇒ ψ in the similar way.

This is enough to establish our theorem with the help of (3-Cut). �

Now the question is if we are able to provide a syntactic and constructive
proof of cut admissibility in this case. In the most natural way, we can do it
using Dragalin’s strategy. Structural rules which are needed are exactly as for the
verificationist version. Below we sketch the key points only, leaving to the reader
the task of providing other details. First, we need

Lemma 5.5. Axioms may be replaced by atomic versions.
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Proof: As usual by induction on the complexity of active formulae. Take the case
of implication

Σ ⇒ [Δ, ϕ], Γ, ψ, ϕ Σ ⇒ [Δ, ϕ, ϕ, ψ], Γ, ψ ψ, Σ ⇒ [Δ, ϕ], Γ, ψ
(→⇒)

ϕ → ψ, Σ ⇒ [Δ, ϕ], Γ, ψ ϕ → ψ, ϕ, Σ ⇒ [Δ, ψ], Γ
(⇒ [→])

ϕ → ψ, Σ ⇒ [Δ, ϕ → ψ], Γ

Provability of the rightmost premiss was demonstrated above, so we are done.
�

Exercise 5.31. Prove the remaining (exactly eleven) cases of lemma 5.5.
Prove h-p admissibility of W (three versions)
Prove h-p invertibility of all rules (with respect to all premisses)
Prove h-p admissibility of C (in three versions).

Having proved all auxiliary results stated in the exercise we are in the position
to prove that:

Theorem 5.17. (3-Cut) is admissible in 3-sided SC for L3.

Proof: We show only how to reduce the complexity of cut-formulae when both
are principal on the example of conjunction. Consider the following application of
(3-Cut):

Σ ⇒ [Δ, ϕ ∧ ψ], Γ

Π ⇒ [Λ], Θ, ϕ Π ⇒ [Λ], Θ, ψ
(⇒ ∧)

Π ⇒ [Λ], Θ, ϕ ∧ ψ

ϕ, ψ, Ξ ⇒ [Υ], Ω
(∧ ⇒)

ϕ ∧ ψ, Ξ ⇒ [Υ], Ω
(3-Cut)

Σ, Π, Ξ ⇒ [Δ, Λ, Υ], Γ, Θ, Ω

where the leftmost premiss is deduced by
ϕ,Σ ⇒ [Δ, ψ],Γ Σ ⇒ [Δ, ϕ, ψ],Γ ψ,Σ ⇒ [Δ, ϕ],Γ

(⇒ [∧])
Σ ⇒ [Δ, ϕ ∧ ψ],Γ

We can replace this with:

Σ, Π ⇒ [Δ, Λ, ϕ], Γ, Θ Π ⇒ [Λ], Θ, ϕ

Π ⇒ [Λ], Θ, ψ ϕ, ψ, Ξ ⇒ [Υ], Ω ϕ, Σ ⇒ [Δ, ψ], Γ
(3-Cut)

ϕ, Σ, Π, Ξ ⇒ [Δ, Λ, Υ], Γ, Θ, Ω
(3-Cut)

Σ, Σ, Π, Π, Ξ ⇒ [Δ, Δ, Λ, Λ, Υ], Γ, Γ, Θ, Θ, Ω
(C)

Σ, Π, Ξ ⇒ [Δ, Λ, Υ], Γ, Θ, Ω

where the leftmost premiss is deduced by

Π ⇒ [Λ],Θ, ψ ψ,Σ ⇒ [Δ, ϕ],Γ Σ ⇒ [Δ, ϕ, ψ],Γ
(3-Cut)

Σ,Σ,Π ⇒ [Δ,Δ,Λ, ϕ],Γ,Γ,Θ
(C)

Σ,Π ⇒ [Δ,Λ, ϕ],Γ,Θ

�
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Exercise 5.32. Prove the remaining cases of the principal cut-formulae.
Check that due to context independency of the rules the reduction of height

goes with no problems.
Prove the case with one premiss axiomatic.

We finish with a short comparison of these two approaches to n-sided SCs.
On the basis of examples, one may think that the former approach produces more
awkward proofs, whereas the latter is more artificial in demanding more proof
trees. In fact, several examples may be provided for which proofs are simpler
in the first system and still the second needs two proofs. Moreover, in case of
more values with only one designated, we need more proof trees; one for each
undesignated value (of course also more structure must be added to the succedent
to express all these values). It seems to show that the falsificationist approach is
in general worse but this is not necessarily so. Consider for example LP or any
other logic with two designated values, then sequents in the system realising the
falsificationist interpretation are of the form Σ [Δ] ⇒ Γ and we need only one
proof tree for ⇒ ϕ. On the other hand, if we want to provide SC based on the
verificationist reading, we need sequents of the form Γ ⇒ [Δ] Σ and now to prove
that � ϕ, we must provide a proof for ⇒ ϕ or for ⇒ [ϕ] (one is enough). We do
not pursue this issues further, instead, we propose the reader

Exercise 5.33. Construct logical rules for LP in both versions.

There is one more question here. Using �L3 as an example we restricted the
application of such SC to proving theses. But what with logics without theses; how
to define consequence relation for such SC16? Without going into details (see Ripley
[218] for justification), we state only that in the verificationist framework Γ � Δ
corresponds in K3 to provability of Γ, [Γ] ⇒ Δ, and in LP to Γ ⇒ [Δ],Δ. In case
of the falsificationist framework it corresponds in K3 to Γ ⇒ [Δ1],Δ2 where Δ1 ∪
Δ2 = Δ, and in LP to Γ1, [Γ2] ⇒ Δ, where Γ1 ∪Γ2 = Γ. One may notice again the
serious computational complexities connected with proving validity of inferences
under the falsificationist interpretation. For example, to prove that ϕ,ψ �LP χ
we must provide proofs of four sequents: ϕ,ψ ⇒ χ, [ϕ,ψ] ⇒ χ, ϕ, [ψ] ⇒ χ and
ψ, [ϕ] ⇒ χ.

5.5.2 A More Uniform Approach to Structured Sequents

The approach based on n-sided sequents develops in two different ways the idea
which is very natural for many-valued logics. But, as we have seen, despite the
version it has serious drawbacks. First of all, it is not practical. Rules are often
quite complicated and this leads (even in the case of this simple example-thesis) to
involved proofs and, in the falsificationist version, to proliferation of their number.
Moreover, in this approach a close relationship between B4 and K3 and LP is

16Even in the case of LP it is important since the set of theses coincide with CPL and we really
need a system for demonstrating valid inferences.
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obscured. In the framework of n-sided sequents, if we want to find a formalisation
of B 4 we must introduce sequents of the form Γ, [Δ] ⇒ [Λ],Σ where, depending
on the kind of interpretation, either the antecedent or the succedent corresponds
to both designated values. Further, for all connectives we must define four rules
(rules for the verificationist interpretation may be found, e.g. in Baaz, Fermüller
and Zach [18]), so this system is in many respects (structure of sequents, number
of rules and proof trees which need to be constructed) significantly different and
the obvious relation to its extensions is lost. We also noticed that the expression
of consequence relations in this approach may be rather artificial even if we are
using sequents apparently similar to standard ones.

One may think that this is a price for building SC which is directly based
on semantics but this is by no means necessary. As we already remarked, in the
framework of labelled tableaux a more efficient solution may be obtained when
sets of values are introduced. Moreover, in this approach, the logics which are
closely related may be formalised in a modular way by means of the same rules
and exhibiting their relationships. This approach was developed greatly by Hähnle
[106], in the setting of labelled tableaux but may be also transferred to SC setting.
As promised above we present here a generalised SC for all many-valued logics
we described so far. Again, it is a kind of SC operating on structured sequents
formally identical to those considered so far but based on different motivations
close to Hähnle’s approach. To be more precise, these systems are different in
many respects from Hähnle’s original tableau systems but nevertheless, they realise
essentially the same idea. Similar solutions were developed also by Degauquier
[58]. In our treatment instead of (four) labels we will be using sequents of the
form Γ, [Π] ⇒ [Σ],Δ where in each position we have a finite, possibly empty, set of
formulae. Thus, we have almost classical sequents but where both the antecedent
and the succedent is divided into two parts. Only the interpretation of parts of
the sequent will vary for different logics. What is important is the fact that the
basic intuition connected with the falsifying interpretation of a sequent is saved.
Roughly, Γ contains accepted (designated values) and Δ rejected formulae; sets in
[ ] are like their denials. In case Π and Σ are empty we just write Γ ⇒ Δ as in
ordinary SC. Note that such systems may be developed also in terms of bisequents
as we did for S5 in section 4.8; instead of Γ, [Π] ⇒ [Σ],Δ we could use bisequents
Γ ⇒ Δ | Π ⇒ Σ with suitably redefined rules. However, for our present purposes,
it is better to choose this form of representation.

For all logics L under consideration we define:

Γ �L Δ iff � Γ ⇒ Δ

Hence, we start a proof search always with a standard sequent and apply
suitable rules in an upside-down manner. Note that this solution is implicitly
based on Suszko’s thesis according to which there are only two ‘real’ truth values
corresponding to sets of designated and nondesignated values in the characteristic
matrix.
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For K3 and �L3 the informal interpretation of a sequent Γ, [Π] ⇒ [Σ],Δ is the
following: Γ is the set of all true formulae, Π is the set of all formulae which are true
or 1/2, Σ—all false formulae and Δ—false or 1/2. Such interpretation corresponds
to the situation that at the first step we indirectly assume that a sequent Γ ⇒ Δ
is not valid i.e. there is a valuation such that all elements of Γ have (the only)
designated value but no element of Δ is designated (every one obtains 0 or 1/2).

As axioms for both logics, we admit all sequents Γ, [Π] ⇒ [Σ],Δ such that
either: Γ∩Σ or Γ∩Δ or Π∩Σ is nonempty. Note that the case where Π∩Δ 	= ∅

is not treated as an axiom since in this case, it is possible that the formula in the
intersection of both sets has the value 1/2.

The rules for K3 are the following:

(¬⇒)
Γ, [Π]⇒ [Σ, ϕ],Δ
¬ϕ,Γ, [Π]⇒ [Σ],Δ

(⇒¬)
Γ, [ϕ,Π]⇒ [Σ],Δ

Γ, [Π]⇒ [Σ],Δ,¬ϕ

([¬]⇒)
Γ, [Π]⇒ [Σ],Δ, ϕ

Γ, [¬ϕ,Π]⇒ [Σ],Δ
(⇒[¬])

ϕ,Γ, [Π]⇒ [Σ],Δ
Γ, [Π]⇒ [Σ,¬ϕ],Δ

(∧⇒)
ϕ, ψ, Γ, [Π]⇒ [Σ], Δ

ϕ∧ψ, Γ, [Π]⇒ [Σ], Δ
(⇒∧)

Γ, [Π]⇒ [Σ], Δ, ϕ Γ, [Π]⇒ [Σ], Δ, ψ

Γ, [Π]⇒ [Σ], Δ, ϕ∧ψ

([∧]⇒)
Γ, [ϕ, ψ, Π]⇒ [Σ], Δ

Γ, [ϕ∧ψ, Π]⇒ [Σ], Δ
(⇒[∧])

Γ, [Π]⇒ [Σ, ϕ]Δ Γ, [Π]⇒ [Σ, ψ], Δ

Γ, [Π]⇒ [Σ, ϕ∧ψ], Δ

(⇒∨)
Γ, [Π]⇒ [Σ], Δ, ϕ, ψ

Γ, [Π]⇒ [Σ], Δ, ϕ∨ψ
(∨⇒)

ϕ, Γ, [Π]⇒ [Σ]Δ ψ, Γ, [Π]⇒ [Σ], Δ

ϕ∨ψ, Γ, [Π]⇒ [Σ], Δ

(⇒[∨])
Γ, [Π]⇒ [Σ, ϕ, ψ], Δ

Γ, [Π]⇒ [Σ, ϕ∨ψ], Δ
([∨]⇒)

Γ, [ϕ, Π]⇒ [Σ], Δ Γ, [ψ, Π]⇒ [Σ], Δ

Γ, [ϕ∨ψ, Π]⇒ [Σ], Δ

(⇒→)
Γ, [ϕ, Π]⇒ [Σ], Δ, ψ

Γ, [Π]⇒ [Σ], Δ, ϕ→ψ
(→⇒)

Γ, [Π]⇒ [Σ, ϕ], Δ ψ, Γ, [Π]⇒ [Σ], Δ

ϕ→ψ, Γ, [Π]⇒ [Σ], Δ

(⇒ [→])
ϕ, Γ, [Π]⇒ [Σ, ψ], Δ

Γ, [Π]⇒ [Σ, ϕ→ψ], Δ
([→] ⇒)

Γ, [Π]⇒ [Σ], Δ, ϕ Γ, [ψ, Π]⇒ [Σ], Δ

Γ, [ϕ→ψ, Π]⇒ [Σ], Δ

The proof of a sequent Γ ⇒ Δ is defined in the standard way. The calculus for
�L3 unsurprisingly is almost the same; only two rules for implication are different:

(⇒→)
ϕ,Γ, [Π]⇒ [Σ],Δ, ψ Γ, [ϕ,Π]⇒ [Σ, ψ],Δ

Γ, [Π]⇒ [Σ],Δ, ϕ→ψ

(→⇒)
Γ, [ψ,Π]⇒ [Σ],Δ, ϕ ϕ, ψ,Γ, [Π]⇒ [Σ],Δ Γ, [Π]⇒ [Σ, ϕ, ψ],Δ

ϕ→ψ,Γ, [Π]⇒ [Σ],Δ

We can also provide rules for ⊗ and ⊕. (⊗ ⇒) and (⇒ ⊗) are identical as
the respective rules for ∧ but the remaining two rules are more involved:
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([⊗] ⇒)
ϕ,Γ, [ψ,Π]⇒ [Σ],Δ ψ,Γ, [ϕ,Π]⇒ [Σ],Δ

Γ, [ϕ ⊗ ψ,Π]⇒ [Σ],Δ

(⇒ [⊗])
ϕ,Γ, [Π]⇒ [Σ, ψ],Δ ψ,Γ, [Π]⇒ [Σ, ϕ],Δ Γ, [Π]⇒ [Σ],Δ, ϕ, ψ

Γ, [Π]⇒ [Σ, ϕ ⊗ ψ],Δ

In case of ⊕, we have a dual situation.

Exercise 5.34. Check that (⇒ [⊕]) and ([⊕] ⇒) are the same as the respective rules
for ∨.

Construct two-premiss rule for (⇒ ⊕) and three-premiss rule for (⊕ ⇒).

In case of LP and RM3 we change a little an interpretation of a sequent
Γ, [Π] ⇒ [Σ],Δ: Γ is the set of all formulae true or 1/2, Π is the set of all formulae
which are true, Σ—all formulae false or 1/2 and Δ—only false. Again, such an
interpretation corresponds to the situation where at the first step we indirectly
assume that a sequent Γ ⇒ Δ is not valid, i.e. there is an interpretation such
that all elements of Γ have designated values (1 or 1/2) but no element of Δ is
designated.

As axioms for both logics, we admit all sequents Γ, [Π] ⇒ [Σ],Δ such that
either: Γ ∩ Δ or Π ∩ Δ or Π ∩ Σ is nonempty. Note that now the case where
Γ ∩ Σ 	= ∅ is not treated as an axiom since in this case, it is possible that the
formula in the intersection of both sets has the value 1/2.

In case of LP we have all rules like for K3, so the only difference between
these two calculi is in the set of axioms. In case of RM3 the rules for ¬,∧,∨ are
the same but for → there is a difference. (⇒ [→]) and ([→] ⇒) are like in K3 and
(⇒→) is like in �L3) but (→⇒) is in a sense dual to suitable rule from �L3)

(→⇒)
ψ,Γ, [Π]⇒ [Σ, ϕ],Δ Γ, [ϕ,ψ,Π]⇒ [Σ],Δ Γ, [Π]⇒ [Σ],Δ, ϕ, ψ

ϕ→ψ,Γ, [Π]⇒ [Σ],Δ

However, if we add ⊗ and ⊕ we again obtain a different set of rules. Now
([⊕] ⇒) and (⇒ [⊗]) are the same as for ∧ but we have

(⊗ ⇒)
ϕ,Γ, [ψ,Π]⇒ [Σ],Δ ψ,Γ, [ϕ,Π]⇒ [Σ],Δ

ϕ ⊗ ψ,Γ, [Π]⇒ [Σ],Δ

(⇒ ⊗)
Γ, [ϕ,Π]⇒ [Σ],Δ, ψ Γ, [ψ,Π]⇒ [Σ],Δ, ϕ Γ, [Π]⇒ [Σ, ϕ, ψ],Δ

Γ, [Π]⇒ [Σ],Δ, ϕ ⊗ ψ

Again in case of ⊕ we have a dual situation.

Exercise 5.35. Check that (⇒ ⊕) and (⊕ ⇒) are the same as the respective rules
for ∨.

Construct two-premiss rule for (⇒ [⊕]) and three-premiss rule for ([⊕] ⇒).

One may also add rules for implication considered by Avron [12] (see previous
section). Both rules for [ϕ → ψ] are the same as for Kleene’s logic but for ϕ → ψ
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they are with side formulae also in outer position (similarly as in the respective
rules for ∧ and ∨).

Exercise 5.36. Check that such rules for implication are correct for both Avron’s
logics GM3.

Finally, the case of B4 applies the following interpretation of a sequent Γ, [Π] ⇒
[Σ],Δ: Γ is the set of all formulae which are evaluated as 1 or �, Π—1 or ⊥, Σ—0
or �, and Δ—0 or ⊥. Such an interpretation corresponds to the situation that at
the first step we indirectly assume that a sequent Γ ⇒ Δ is not valid i.e. there is
an interpretation such that all elements of Γ have designated values (1 or �) but
no element of Δ is designated (is 0 or ⊥).

As axioms for B4 we admit all sequents Γ, [Π] ⇒ [Σ],Δ such that either:
Γ∩Δ or Π∩Σ is nonempty. Note that now, neither the case where Γ∩Σ 	= ∅ nor
where Π∩Δ 	= ∅ is treated as an axiom since in both cases it is possible that the
formula in the intersection of both sets has the value � or ⊥ respectively.

In case of B4, all rules are like for K3 with the exception of the two rules for
implication:

(⇒→)
ϕ,Γ, [Π]⇒ [Σ],Δ, ψ

Γ, [Π]⇒ [Σ],Δ, ϕ→ψ
(→⇒)

Γ, [Π]⇒ [Σ],Δ, ϕ ψ,Γ, [Π]⇒ [Σ],Δ
ϕ→ψ,Γ, [Π]⇒ [Σ],Δ

Let us consider a few examples of proofs and disproofs.

[p] ⇒ p, q
([¬] ⇒)

[p,¬p] ⇒ q
([∧] ⇒)

[p ∧ ¬p] ⇒ q
(⇒→)⇒ p ∧ ¬p → q

This is a legitimate proof tree in both LP and K3, however, only in the former,
it provides a proof of the root sequent since the leaf is axiomatic.

p ⇒ [p], q
(¬ ⇒) p,¬p ⇒ q

(∧ ⇒)
p ∧ ¬p ⇒ q

[p] ⇒ p, [q]
([¬] ⇒)

[p,¬p] ⇒ [q]
([∧] ⇒)

[p ∧ ¬p] ⇒ [q]
(⇒→) ⇒ p ∧ ¬p → q

This is a legitimate proof tree for both �L3 and RM3 since (⇒→) is a rule
sound for both logic. However, this is neither a proof in �L3 nor in RM3; in the
former because the rightmost leaf is not axiomatic and in the latter because of the
leftmost leaf.

Let us consider the following two proofs in �L3:
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p ⇒ p, [q] p, [q] ⇒ [q]
([→] ⇒)

[p → q], p ⇒ [q]
(⇒ [¬])

[p → q] ⇒ [q,¬p]
(¬ ⇒)

[p → q],¬q ⇒ [¬p]
(⇒ [→])

[p → q] ⇒ [¬q → ¬p]

and
[p, q] ⇒ p, [q] p, q, [p] ⇒ [q] [p] ⇒ [p, q]

p → q, [p] ⇒ [q]
(→ ¬)

p → q ⇒ [q], ¬p
(¬ → ¬)

p → q, ¬q ⇒ ¬p

p, [q] ⇒ p, q p, q ⇒ q p ⇒ [p, q], q
(→⇒)

p → q, p ⇒ q
(→ [¬])

p → q ⇒ q, [¬p]
(¬ → ¬)

p → q, [¬q] ⇒ [¬p]
(⇒→)

p → q ⇒ ¬q → ¬p

If we apply (⇒→) to them, we obtain an �L3 proof of ⇒ (p → q) → (¬q → ¬p).

Exercise 5.37. Provide a RM3 proof of p → q ⇒ ¬q → ¬p

Finally, an example of a disproof of the previous example in B4

[p] ⇒ [q], p q, [p] ⇒ [q]
(→⇒)

p → q, [p] ⇒ [q]
(⇒ ¬)

p → q ⇒ [q],¬p
(¬ ⇒)p → q,¬q ⇒ ¬p
(⇒→)p → q ⇒ ¬q → ¬p

(⇒→)⇒ (p → q) → (¬q → ¬p)

Soundness of all these calculi is easy to establish. We will restrict the con-
sideration to �L3. Let us say that a sequent is verified by some interpretation in �L3

(and in K3) if either at least one element of Π is assigned 0, or one of Δ—1, or one
of Γ is not 1, or one of Σ is not 0. Otherwise, we will say that a sequent is falsified
by this interpretation. It is sufficient to show for all rules that if the conclusion is
falsified in some interpretation, then at least one premiss is also falsified. We will
demonstrate the correctness (in the sense of verification-preservation) of (→⇒) in
�L3. Consider an interpretation falsifying the conclusion, i.e. assigning 1 to ϕ → ψ
and to all elements of Γ, 1 or 1/2 to all formulae in Π, 0 to Σ and 0 or 1/2 to
Δ. Easy calculation shows that in case of ϕ being 1/2 or 0, ψ must be 1 or 1/2.
In any of these 4 cases, the leftmost premiss is falsified. It is also possible that
both arguments of the implication are 1 or 0; the first case falsifies the central
premiss and the second the rightmost one. Hence if all premisses are verified by
some interpretation, then the conclusion must be also verified.

Exercise 5.38. Check the correctness of all rules of K3 and �L3.
Define verifiability (falsifiability) of sequents in LP and RM3 and check the

correctness of all rules.
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Define verifiability (falsifiability) of sequents in B4 and check the correctness
of all rules.

For the moment, we will not demonstrate the completeness of defined calculi.
However, let us conclude with one remark concerning proof search. All rules satisfy
the subformula property so for any finite sequent the proof search must terminate.

5.5.3 Cut Admissibility

It is possible to provide a proof of admissibility of cut in two forms which will be
called outer and inner (the same convention will be applied also to other rules or
positions of formulae)

(Cut)
Γ, [Π]⇒ [Σ],Δ, ϕ ϕ,Λ, [Ξ]⇒ [Θ],Ω

Γ,Λ, [Π,Ξ]⇒ [Σ,Θ],Δ,Ω

([Cut])
Γ, [Π]⇒ [Σ, ϕ],Δ Λ, [ϕ,Ξ]⇒ [Θ],Ω

Γ,Λ, [Π,Ξ]⇒ [Σ,Θ],Δ,Ω

We will provide a proof which follows Dragalin’s strategy and in this set-
ting requires some interesting modifications. First of all, we must provide proofs
of several auxiliary results concerning the admissibility of structural rules and
invertibility. In particular, we need to prove that in all considered systems

Lemma 5.6. Axiomatic sequents may be replaced with atomic axioms.

Proof: as usual by induction on the complexity of active formula. For B4 it
is standard, the only difference is that we must examine an active formula in
both forms: outer and inner, and in case of negation and inner implication, after
reduction we obtain axiomatic sequents with the transition of some formulae (we
obtain outer axioms from inner ones or vice versa). We will show only the latter
case (of inner implication)

ϕ,Γ, [Π] ⇒ [Σ, ψ],Δ, ϕ ϕ,Γ, [ψ,Π] ⇒ [Σ, ψ],Δ
([→] ⇒)

ϕ,Γ, [ϕ → ψ,Π] ⇒ [Σ, ψ],Δ
(⇒ [→])

Γ, [ϕ → ψ,Π] ⇒ [Σ, ϕ → ψ],Δ

For K3, not only the case of outer implication is different (exactly dual to the
previous case), but also we have additional axioms of the form: ϕ,Γ, [Π] ⇒ [Σ, ϕ],Δ
and we must check all compound formulae for this case of being axiomatic. We
show two cases:

ϕ,ψ,Γ, [Π] ⇒ [Σ, ϕ],Δ ϕ,ψ,Γ, [Π] ⇒ [Σ, ψ],Δ
(⇒ [∧])

ϕ,ψ,Γ, [Π] ⇒ [Σ, ϕ ∧ ψ],Δ
(∧ ⇒)

ϕ ∧ ψ,Γ, [Π] ⇒ [Σ, ϕ ∧ ψ],Δ
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ϕ,Γ, [Π] ⇒ [Σ, ψ, ϕ],Δ ψ,ϕ,Γ, [Π] ⇒ [Σ, ψ],Δ
(→⇒)

ϕ,ϕ → ψ,Γ, [Π] ⇒ [Σ, ψ],Δ
(⇒ [→])

ϕ → ψ,Γ, [Π] ⇒ [Σ, ϕ → ψ],Δ

For L3, we must check additionally two cases with specific rules for implica-
tion

ϕ, Γ, [ψ, Π] ⇒ [Σ, ψ], Δ, ϕ ϕ, ψ, ϕ, Γ, [Π] ⇒ [Σ, ψ], Δ ϕ, Γ, [Π] ⇒ [Σ, ψ, ϕ, ψ], Δ
(→⇒)

ϕ, ϕ → ψ, Γ, [Π] ⇒ [Σ, ψ], Δ
(⇒ [→])

ϕ → ψ, Γ, [Π] ⇒ [Σ, ϕ → ψ], Δ

and

D1

ϕ,ϕ → ψ,Γ, [Π] ⇒ [Σ],Δ, ψ

D2

ϕ → ψ,Γ, [ϕ,Π] ⇒ [Σ, ψ],Δ
(⇒→)

ϕ → ψ,Γ, [Π] ⇒ [Σ],Δ, ϕ → ψ

where D1 and D2 are, respectively

ϕ, Γ, [ψ, Π] ⇒ [Σ], Δ, ψ, ϕ ϕ, ψ, ϕ, Γ, [Π] ⇒ [Σ], Δ, ψ ϕ, Γ, [Π] ⇒ [Σ, ψ, ϕ], Δ, ψ
(→⇒)

ϕ, ϕ → ψ, Γ, [Π] ⇒ [Σ], Δ, ψ

Γ, [ψ, ϕ, Π] ⇒ [Σ, ψ], Δ, ϕ ϕ, ψ, Γ, [ϕ, Π] ⇒ [Σ, ψ], Δ Γ, [ϕ, Π] ⇒ [Σ, ψ, ϕ, ψ], Δ
(→⇒)

ϕ → ψ, Γ, [ϕ, Π] ⇒ [Σ, ψ], Δ

For LP, the additional axioms have the form: Γ, [ϕ,Π] ⇒ [Σ],Δ, ϕ. Again
there is no problem with showing that we can always provide a reduction; we take
only one case for illustration

Γ, [ϕ,Π] ⇒ [Σ],Δ, ψ, ϕ Γ, [ψ,ϕ,Π] ⇒ [Σ],Δ, ψ
([→] ⇒)

Γ, [ϕ,ϕ → ψ,Π] ⇒ [Σ],Δ, ψ
(⇒→)

Γ, [ϕ → ψ,Π] ⇒ [Σ],Δ, ϕ → ψ

Finally, for RM3 (→⇒) is different. Since (⇒→) is the same as in L3, in
case of active outer implication, we have the same root of suitable proof-figure but
D1 and D2 are slightly different, now of the form

ψ, ϕ, Γ, [Π] ⇒ [Σ, ϕ], Δ, ψ ϕ, Γ, [ϕ, ψ, Π] ⇒ [Σ], Δ, ψ ϕ, Γ, [Π] ⇒ [Σ], Δ, ψ, ϕ, ψ
(→⇒)

ϕ, ϕ → ψ, Γ, [Π] ⇒ [Σ], Δ, ψ

ψ, Γ, [ϕ, Π] ⇒ [Σ, ψ, ϕ], Δ Γ, [ϕ, ψ, ϕ, Π] ⇒ [Σ, ψ], Δ Γ, [ϕ, Π] ⇒ [Σ, ψ], Δ, ϕ, ψ
(→⇒)

ϕ → ψ, Γ, [ϕ, Π] ⇒ [Σ, ψ], Δ

and (for the new axiom and the new rule):
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ϕ, Γ, [Π] ⇒ [Σ], Δ, ψ, ϕ ϕ, Γ, [ψ, Π] ⇒ [Σ], Δ, ψ
([→] ⇒)

ϕ, Γ, [ϕ → ψ, Π] ⇒ [Σ], Δ, ψ

Γ, [ϕ, Π] ⇒ [Σ, ψ], Δ, ϕ Γ, [ϕ, ψ, Π] ⇒ [Σ, ψ], Δ

Γ, [ϕ, ϕ → ψ, Π] ⇒ [Σ, ψ], Δ
(⇒→)

Γ, [ϕ → ψ, Π] ⇒ [Σ], Δ, ϕ → ψ

�

Exercise 5.39. Prove for each system at least four cases.

Since then we will prove the next results for SC with atomic axioms. All the
rules are context-independent, hence it is routine to demonstrate

Lemma 5.7. Inner and outer weakening is h-p admissible.

It is also not surprising that we can prove h-p invertibility of all rules

Lemma 5.8. All rules are h-p invertible.

Exercise 5.40. Prove the lemma for (→⇒) in L3.

On this basis we can prove h-p admissibility of outer and inner contraction.

Lemma 5.9. Inner and outer contraction is h-p admissible

A proof again follows the strategy of proofs from section 3.2 so we left it for
the reader.

Exercise 5.41. Prove the lemma 5.9.

Now we are ready to prove the main result

Theorem 5.18. Cut in both forms is admissible in all systems.

Proof: The structure of proof is like for G3 so we keep the overall structure but
note that we carry the proof for both forms of cut simultaneously. It means in
particular, that in the induction hypotheses we assume that the claim holds for
both forms of cut of lesser height or complexity. Note also that in the case where
one sequent is axiomatic, things are more complicated. In case of B4 there is no
difference and we get rid of the application of cut as in G3 for CPL. However, for
other logics, we have additional forms of axiomatic sequents, and in general, it is
not possible to eliminate cut immediately. Consider the following situation in K3

and L3 respectively:

Γ, [Π] ⇒ [Σ],Δ, p p,Λ, [Ξ] ⇒ [Θ, p],Ω
(Cut)

Γ,Λ, [Π,Ξ] ⇒ [Σ,Θ, p],Δ,Ω

Now, we cannot obtain the root from one of the premisses without cut. We
must additionally perform induction on the height of the left premiss. In the basis
we have two subcases. If Γ, [Π] ⇒ [Σ],Δ, p is an axiom with p parametric, then
Γ,Λ, [Π,Ξ] ⇒ [Σ,Θ, p],Δ,Θ is also an axiom. Otherwise p ∈ Γ and Γ,Λ, [Π,Ξ] ⇒
[Σ,Θ, p],Δ,Θ is an axiom as well. For the induction step just note that all rules
are context independent hence permutable with cut.
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Exercise 5.42. Prove in the same way that cut is eliminable for LP and RM3

The cases where at least one premiss has parametric cut-formula are not
troublesome, as we noticed above. So the only thing is to prove reduction when
both cut-formulae are principal. The only new situations are connected with the
outer cut on implications. We consider the case of L3 and ask the reader to prove
analogous case for R3. The application of the cut is of the form

Γ, [Π] ⇒ [Σ],Δ, ϕ → ψ ϕ → ψ,Λ, [Ξ] ⇒ [Θ],Ω
(Cut)

Γ,Λ, [Π,Ξ] ⇒ [Σ,Θ],Δ,Ω

where the left premiss is derived as follows:

ϕ,Γ, [Π] ⇒ [Σ],Δ, ψ Γ, [ϕ,Π] ⇒ [Σ, ψ],Δ
(⇒→)

Γ, [Π] ⇒ [Σ],Δ, ϕ → ψ

and the right

Λ, [ψ,Ξ] ⇒ [Θ],Ω, ϕ ϕ, ψ,Λ, [Ξ] ⇒ [Θ],Ω Λ, [Ξ] ⇒ [Θ, ϕ, ψ],Ω
(→⇒)

ϕ → ψ,Λ, [Ξ] ⇒ [Θ],Ω

We construct the following proofs:

Λ, [Ξ] ⇒ [Θ, ϕ, ψ],Ω Γ, [ϕ,Π] ⇒ [Σ, ψ],Δ
([Cut])

Γ,Λ, [Π,Ξ] ⇒ [Σ,Θ, ψ, ψ],Δ,Ω
([⇒ C])

Γ,Λ, [Π,Ξ] ⇒ [Σ,Θ, ψ],Δ,Ω Λ, [ψ,Ξ] ⇒ [Θ],Ω, ϕ
([Cut])

Γ,Λ,Λ, [Π,Ξ,Ξ] ⇒ [Σ,Θ,Θ],Δ,Ω,Ω, ϕ

and

ϕ,Γ, [Π] ⇒ [Σ],Δ, ψ ϕ, ψ,Λ, [Ξ] ⇒ [Θ],Ω
(Cut)

ϕ,ϕ,Γ,Λ, [Π,Ξ] ⇒ [Σ,Θ],Δ,Ω
(C ⇒)

ϕ,Γ,Λ, [Π,Ξ] ⇒ [Σ,Θ],Δ,Ω

The application of (Cut) on ϕ and several contractions yields the result, since
all cuts are on cut-formulae of lower complexity. �

Exercise 5.43. Provide proofs of some cases, in particular, the last case for RM3

One may observe a close relationship of Avron’s calculus to our generalised
formalisation of �L3 which may be roughly specified like this: every nonstandard
sequent Γ, [Π] ⇒ [Σ],Δ corresponds to a sequent Γ,¬Σ ⇒ ¬Π,Δ in Avron’s
calculus and vice versa.

On the basis of this informal correspondence, we may provide Avron’s char-
acterisation of → for K3 and LP (remember they have identical rules). On the
other hand, we can provide suitable rules for generalised calculus on the basis of
implication from GBS. We can state the correspondence between these two kinds
of calculi formally by defining a translation function f :
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For any sequent Γ,¬Σ ⇒ ¬Π,Δ where Γ and Δ consists of unnegated for-
mulae f(Γ,¬Σ ⇒ ¬Π,Δ) = Γ, [Π] ⇒ [Σ],Δ.

Also we can define a reverse translation g for any Γ, [Π] ⇒ [Σ],Δ,

g(Γ, [Π] ⇒ [Σ],Δ) = Γ,¬Σ ⇒ ¬Π,Δ.

Now we can prove the following:

Theorem 5.19. If � Γ ⇒ Δ in cut-free GM3 for any considered L, then � f(Γ ⇒ Δ)
in a generalised calculus for L.

Exercise 5.44. Prove the above theorem; proof goes by induction on the height of
proof in respective GM3 for L.

Since Cut-free versions of GM3 are adequate for suitable logics, we obtain as
a corrolary

Lemma 5.10. Generalised calculi are complete.

The reader could notice that in this case we informally applied the falsi-
ficationist interpretation. What happens if we appeal to the verificationist one?
Nothing; the same rules provide a solution, in contrast to our formalisation of
n-sided approach. Hence, when comparing these two approaches one may notice
at least four advantages of the latter

• uniform rules independent of the kind of interpretation;

• rules more similar to classical ones (although in case of some notions of im-
plication some complications are unavoidable);

• a straightforward expression of �;

• simpler proofs.

These are the reasons that we paid more attention to this approach and
treated it as more fundamental. Of course, other generalised kinds of SC may be
also used to characterise many-valued logics. We finish our presentation with brief
remarks concerning the application of hypersequent calculi.

All generalised SC for many-valued logics introduced so far were strongly
based on semantical motivations, as such, they may be treated as so-called ex-
ternal systems. The kind of semantic commitment of these systems is specific for
background matrix semantics. As such they have nothing to do with the phe-
nomenon of substructurality which seems to show that this categorization is not
absolute but rather relative to the kind of formal apparatus. Despite that, it was
possible to apply to them general proof-theoretic techniques, including proofs of
cut admissibility, in a similar way as in the case of those generalised SCs for S5
which were also strongly based on the specific semantic intuitions (like, e.g. in
Poggiolesi’s HSC).
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It may be interesting to consider if some kind of strictly syntactical (internal?)
generalised systems was proposed for many-valued logics. Not surprisingly, the
format of HSC is extensive enough for that aim. Moreover, in the context of HSC,
the notion of substructurality may be reinvented also in the generalised form. Many
studies present several HSCs for a variety of many-valued logics, including some
infinitely-valued ones. In particular, one can find an extensive treatment of fuzzy
logics in the framework of HSC in Metcalfe, Olivetti and Gabbay [176]. Since that
book provides an excellent unified presentation of logics which are not dealt with
in this volume, we restrict ourselves only to a brief illustration of how HSC may
be used for the characterisation of �L3. In the formalisation due to Avron [10], we
have the same set of rules which was applied for RM, but instead of IC rules now
we have two IW rules. Moreover, the specific Splitting and Combining rules now
are replaced with one rule of Mixing

G | Γ1,Γ2,Γ3 ⇒ Δ1,Δ2,Δ3 H | Π1,Π2,Π3 ⇒ Σ1,Σ2,Σ3

G | H | Γ1,Π1 ⇒ Δ1,Σ1 | Γ2,Π2 ⇒ Δ2,Σ2 | Γ3,Π3 ⇒ Δ3,Σ3

In fact, simpler rule allows for the same effect. Ciabattoni, Gabbay and
Olivetti [49] introduced

G | Γ,Δ ⇒ Π,Σ H | Λ,Δ ⇒ Θ,Σ
G | H | Γ,Λ ⇒ Π,Θ | Δ ⇒ Σ

Avron proves soundness on the basis of the same translation of hypersequents
as the one provided for RM. Elimination of cut is proved also by means of the so
called history method. We are not going into the details but rather stop at this
point.
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We briefly survey the basic facts concerning set theory, induction and consequence
relations which were often employed in the main text. They are collected here
mainly for reference and to establish notation.

Sets, Relations, Functions

Let us recall that sets may be specified either by listing (enumeration) of their
elements, e.g. {a, b, c, d}, or by means of set abstraction operator: {x : ϕ(x)}—the
set of x satisfying condition ϕ. For example, the empty set: ∅ = {x : x �= x}.

The last way is also convenient for expression of operations on sets, like the
ones applied in the book:

• the intersection of two sets: A ∩B = {x : x ∈ A ∧ x ∈ B};
• the union (sum) of two sets: A ∪B = {x : x ∈ A ∨ x ∈ B};
• the difference of two sets: A−B = {x : x ∈ A ∧ x /∈ B};
• the power set: P(A) = {B : B ⊆ A}

In the last case, a predicate of inclusion ⊆ is used which admits the identity of
both sets. For strict inclusion we use ⊂.

Operations of intersection and union may be generalised for any (also infinite)
collection of sets. It is convenient to introduce for that a notion of a family of sets
on which we perform such an operation. Let A denote such nonempty family, then

the product is:
⋂
A = {x : ∀A(A ∈ A → x ∈ A)} = {x : ∀A ∈ A, x ∈ A}.

the union is:
⋃
A = {x : ∃A(A ∈ A ∧ x ∈ A} = {x : ∃A ∈ A, x ∈ A}.

In terms of sets, we can define the notions of

an ordered pair (tuple): 〈a, b〉 := {{a}, {a, b}} (often written simply as (a, b));
an ordered tripple: 〈a, b, c〉 := 〈〈a, b〉, c〉;
generally—ordered n-tuple (or sequence): 〈a1, ...., an〉 := 〈〈a1, ..., an−1〉, an〉;

In case of sets, the order and the repetition of elements does not matter, i.e.
{a, b, c} = {b, c, a} = {a, b, c, a, c, c}, where a, b and c are any different objects.
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In case of a sequence, both the order and the number of occurrences count, i.e.
〈a, b〉 �= 〈b, a〉 �= 〈a, a, b〉.

Multisets (sets with repetitions) are in between, in the sense that the order
is inessential but the number of occurrences is important, for example

[a, b, c] �= [a, b, a, c], but [a, b, b, c] = [b, c, a, b].

Formally, multisets may be defined as tuples 〈A, fA〉, where A is a set and
fA is a function which assigns to each element of A the number of its occurrences.
We can define the operations of multiset intersection and union in at least two
different ways. In this volume, we use an additive version

A�B := 〈A∩B, fA,B〉, A�B := 〈A∪B, fA,B〉, where fA,B(x) = fA(x)+fB(x).

The notion of n-tuple allows for the introduction of the notion of n-ary rela-
tion and function as a subset of n-ary Cartesian product defined in the following
way:

for binary relations A×B = {〈x, y〉 : x ∈ A ∧ y ∈ B};
in general: A1 × ...×An = {〈x1, ..., xn〉 : x1 ∈ A1 ∧ ... ∧ xn ∈ An}.

If A1 = ... = An, then we write An, in particular A2 instead of A×A.

R is a binary relation on A,B iff R ⊆ A×B.
R is an n-ary relation on A1, ..., An iff R ⊆ A1 × ...×An.

If R ⊆ A×B, then

• a domain of R: Dl(R) = {x ∈ A : ∃y ∈ B, 〈x, y〉 ∈ R},
• a codomain of R: Dr(R) = {x ∈ B : ∃y ∈ A, 〈y, x〉 ∈ R}.

Instead of 〈x, y〉 ∈ R we usually write R(xy) or Rxy.

Let R ⊆ A2 and x, y, z denote arbitrary elements of A, then the following
conditions denote some important conditions on relations

name condition
seriality ∀x∃yRxy
functionality ∀xyz(Rxy ∧Rxz → y = z)
reflexivity ∀xRxx
irreflexivity ∀x¬Rxx
transitivity ∀xyz(Rxy ∧Ryz → Rxz)
symmetry ∀xy(Rxy → Ryx)
assymetry ∀xy(Rxy → ¬Ryx)
antisymmetry ∀xy(Rxy ∧ x �= y → ¬Ryx)
euclideaness ∀xyz(Rxy ∧Rxz → Ryz)
(strong) connectedness ∀xy(Rxy ∨Ryx)
(weak) connectedness ∀xy(Rxy ∨Ryx ∨ x = y)
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A binary relation R ⊆ A2 is an equivalence relation iff it is reflexive, sym-
metric and transitive. Let R be equivalence on A, then

1. [x]R = {y : Rxy} is an equivalence class of x wrt R;

2. A/R = {[x]R : x ∈ A} is a collection of equivalence classes generated by R.

For equivalence relations the Abstraction Principle holds: If R is an equiva-
lence on A, then A/R is a partition of A, i.e. it satisfies conditions of

• adequacy: A =
⋃

A/R;

• disjointness: ∀x, y ∈ A([x]R �= [y]R → [x]R ∩ [y]R = ∅);

• nonemptyness: ∀x ∈ A, [x]R �= ∅.

This result allows for replacement of the relational semantics for S5 with the
simplified one.

Here is a list of some ordering relations:

• R is a quasi-order iff it is reflexive and transitive;

• R is a partial order iff it is an antisymmetric quasi-order;

• R is a (linear) order iff it is a strongly connected partial order;

• R is a strict partial order iff it is an asymmetric partial order;

• R is a strict (linear) order iff it is weakly connected strict partial order.

Both the relations and functions are sets so ordinary set operations may be
performed on them but additionally, we have some specific operations

• transitive closure of R ⊆ A2 is the least transitive relation R+ ⊆ A2 such
that R ⊆ R+;

• transitive reflexive closure of R ⊆ A2 is the least transitive and reflexive
relation R∗ ⊆ A2 such that R ⊆ R∗;

• converse of R ⊆ A×B: R̆xy iff Ryx (R̆ ⊆ B ×A);

• composition (relative product) of R ⊆ A×B and S ⊆ B × C:

R ◦ Sxy iff ∃z ∈ B(Rxz ∧ Szy) (R ◦ S ⊆ A× C)

The notion of a tree is characterized in several ways, not always equivalent,
in mathematics, computer science, logic. We can define it as a relational structure
T = 〈T ,R〉, such that:

• there is a unique element r ∈ T , called the root such that ∀t ∈ T ,R∗rt;

• every element t ∈ T distinct from r has a unique predecessor i.e. there is only
one t′ ∈ T , such that Rt′t;

• R is acyclic, i.e. ∀t ∈ T it is not true that R+tt.
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All elements of T are called nodes, for every pair t, t′ such thatRtt′, t is called
the parent and t′ – a child; if R+tt′, then t is an ancestor and t′ is a successor.
Every node t with no children is called a leaf. N -ary sequence 〈t1, ..., tn〉, where
for each i < n we have Rtiti+1 is called a path; every maximal path is a branch
(in finite case it is a sequence from the root to a leaf). The number of children of
a node is the branching factor of this node; the branching factor of a tree is the
biggest branching factor of its nodes. If the branching factor of a tree is a natural
number, we have finitely generated tree. In particular, trees with nodes having at
most two children are called binary trees.

The important result concerning such trees is

Lemma 5.11 (König). Every finitely generated but infinite tree has at least one
infinite branch.

By the König lemma, to show that a tree is finite, it is sufficient to show that it is
finitely generated and that every branch is finite.

An n-argument function (mapping) with the domain (the set of arguments)
An and the range (the set of values) in B (denoted as f : An −→ B), is an n + 1-
argument relation f ⊆ An ×B satisfying conditions

1. ∀x1,...,xn∈A∃y∈B〈x1, ..., xn, y〉 ∈ f

2. ∀x1,...,xn∈A∀y,z∈B(〈x1, ..., xn, y〉 ∈ f ∧ 〈x1, ..., xn, z〉 ∈ f → y = z

If B = A, then f is an n-argument operation in A. Condition 2 enables an
introduction of the functional notation which is more convenient than the relational
one. For example, instead of 〈x1, ..., xn, y〉 ∈ f we can write f(x1, ..., xn) = y. In
particular, an unary function defined on domain A and range B (f : A −→ B), is
a binary relation f ⊆ A×B satisfying conditions of seriality and functionality

1. ∀x∈A∃y∈B〈x, y〉 ∈ f

2. ∀x∈A∀y,z∈B(〈x, y〉 ∈ f ∧ 〈x, z〉 ∈ f → y = z)

Kinds of mappings

Let f : An −→ B, then f is

• an injection (f. 1-1) iff ∀x1,...,xn,y1,...,yn∈A(f(x1, ..., xn) = f(y1, ..., yn) →
〈x1, ..., xn〉 = 〈y1, ..., yn〉)

• a surjection (f. on) iff B is the range of f iff ∀y∈B∃x1,...,xn∈A y = f(x1, ..., xn)

• a bijection iff it is both an injection and a surjection.

If there is a bijection defined on A and B, then these sets are of the same
cardinality, i.e. they have the same number of elements. Sets having bijection with
the set of natural numbers or some of its subsets as a range are denumerable (and
finite in the latter case). Their cardinality is denoted with ℵ0 and they satisfy
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Theorem 5.20 (enumeration). Every denumerable set may be linearly ordered.

This fact was applied many times in proofs of completeness since the set of
formulae of considered languages is denumerable.

Mathematical Induction

This kind of reasoning was applied already in the XVII century by Pascal and
Fermat. The name and definition comes from De Morgan. As one of the axioms of
arithmetic, it appears in Peano and this is a paradigmatic case of the application
of mathematical induction. Let us consider some formulations. Let N denote the
set of natural numbers and sx the successor of x

1. ϕ(0) ∧ ∀x∈N (ϕ(x) → ϕ(sx)) → ∀x∈Nϕ(x)

2. ϕ(0) ∧ ∀x∈N (ϕ(x) → ϕ(x + 1)) → ∀x∈Nϕ(x)

3. 0 ∈ A ∧ ∀x∈N (x ∈ A → sx ∈ A) → A = N

There is also a strong (or complete) induction:

1. ϕ(0) ∧ ∀x∈N (∀y∈N (0 ≤ y < x→ ϕ(y)) → ϕ(x)) → ∀x∈Nϕ(x)

2. 0 ∈ A ∧ ∀x∈N (∀y∈N (0 ≤ y < x→ y ∈ A) → x ∈ A) → A = N

3. ∀x∈N (∀y∈N (0 ≤ y < x→ ϕ(y)) → ϕ(x)) → ∀x∈Nϕ(x)

4. ∀x∈N (∀y∈N (0 ≤ y < x→ y ∈ A) → x ∈ A) → A = N

The name ‘strong induction’ is misleading—both principles are interderivable (but
we omit proofs here). Proofs by induction are based on this principle and contain
two parts:

a. the basis of induction—we prove that 0 satisfies ϕ

b. the inductive step—we assume that x satisfies ϕ (the induction hypothesis)
and we prove that sx also satisfies ϕ.

a. and b., by principle of induction imply that any number satisfies ϕ.

(in fact, in case of the complete induction, the first part is not necessary which is
explicit in formulation 3 and 4 above).

An example
We prove that: ∀x∈N¬(sx = x) by induction on x

a. basis: ϕ(0) := ¬(s0 = 0)

1. ∀x∈N¬(sx = 0) axiom of arithmetic
2. ¬(s0 = 0) 1., ∀E, x/0
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b. thesis: ϕ(x) → ϕ(sx) := ¬(sx = x) → ¬(ssx = sx)

1. ¬(sx = x) the induction hypothesis
2. ∀x,y∈N (sx = sy → x = y) axiom
3. ssx = sx→ sx = x 2., ∀E, x/sx, y/x
4. ¬(ssx = sx) 1., 3. MT

Why mathematical induction is a correct form of reasoning? The simplest
answer is: because the set of natural numbers is an inductive (recursive) set. More-
over, it is not the only set which may be recursively defined and this is the reason
that we can apply inductive proofs to other sets, i.e. we can apply induction to
theses of the form

∀x(x ∈ A → x ∈ B) (or ∀x(ϕ(x) → ψ(x)))

on condition that A is inductive set (ϕ is a property defined recursively). Every
inductive definition consists of three parts:

1. the basic condition specifies basic elements of A;

2. the inductive condition specifies operations by means of which the new ele-
ments are generated from the old ones (already belonging);

3. the closing condition is a claim that nothing more belongs to A except ele-
ments obtained by 1. or 2.

Alternatively, we can say that

A is inductive iff A is the least set satisfying conditions 1. and 2.

Formally, the schema of such definition may be described as follows:

A is inductive iff:

1. B ⊂ A,

2. CL(A,O),

3. ∀C(B ⊂ C ∧ CL(C,O) → A ⊂ C),

where B is the set of initial elements (generators), CL(A,O) means that A is
closed wrt every operation from O, i.e. x1, ..., xn ∈ A → o(x1, ..., xn) ∈ A, for
every n-argument operation (rules of construction) o ∈ O (n ≥ 0), and condition
3. states that A is the least set satisfying 1. and 2. The existence of such set is
guaranteed by theorems of set theory—it is a product of all sets containing B and
closed under all operations from O.

Example: the definition of the set of natural numbers N

N is the least set satisfying:

1. 0 ∈ N ,
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2. if x ∈ N , then sx ∈ N .

It is an extremely simple example but in the text, we have other definitions of
this kind. For example, a definition of the set of formulae FOR. Nowadays, a very
popular way of expressing such definitions is by using Backus/Naur notation. A
definition of FOR looks like that

ϕ ∈ FOR iff ϕ := p | ¬ϕ | (ϕ ∧ ψ) | (ϕ ∨ ψ) | (ϕ → ψ)

it is equivalent to the standard recursive definition and inductive proofs apply as
well.

Examples in Logic

We can distinguish two kinds of applications:

A. direct application of mathematical induction (usually in the strong form) to
some chosen measure e.g.

1. the length of a formula (the number of symbols);

2. the complexity of a formula (the number of constants);

3. the length of a proof (the number of lines in linear proof).

B. introduction of structural induction—in the version suitable for FOR

If

1. every propositional symbol has property θ,

2a. if ϕ has θ, then ¬ϕ has θ,

2b. if ϕ and ψ have θ, then (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ) have θ,

then every formula has θ.

Let us consider three examples

1. the pairing of brackets;

2. the extensionality principle;

3. the deduction theorem.

The first one is very simple.

Theorem 5.21. In every formula χ the number of left brackets (nl(χ)) is equal to
the number of right brackets (nr(χ)).

We perform structural induction:

a. the basis: formula χ is a propositional symbol, hence nl(χ) = nr(χ) = 0

b. the inductive hypothesis: the claim holds for ϕ and ψ
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– if formula χ is ¬ϕ, then it has the same number of brackets as ϕ, so, by IH
nl(χ) = nr(χ)

– if formula χ is (ϕ � ψ), where � is any binary connective, then the claim
holds since nl(χ) = nl(ϕ) + nl(ψ) + 1 and nr(χ) = nr(ϕ) + nr(ψ) + 1, and by IH
we have nl(ϕ) = nr(ϕ) and nl(ψ) = nr(ψ).

Therefore, it holds for any formula. �

Example 2—the extensionality principle, by induction on the complexity of for-
mula.

Theorem 5.22. The extensionality principle is derivable in H-system for CPL.

Proof: We show that from ϕ ↔ ψ it is derivable χ ↔ χ[ϕ//ψ], where χ[ϕ//ψ]
denotes a replacement of at least one occurrence of ϕ (as a subformula of χ) by ψ.

First we state the list of schemata of theses of CPL which are necessary for the
proof

a. (ϕ ↔ ψ)→ (¬ϕ ↔ ¬ψ)
b. (ϕ ↔ ψ) → (ϕ ∧ χ↔ ψ ∧ χ)
c. (ϕ ↔ ψ) → (χ ∧ ϕ ↔ χ ∧ ψ)
d. (ϕ ↔ ψ) → (ϕ ∨ χ↔ ψ ∨ χ)
e. (ϕ ↔ ψ) → (χ ∨ ϕ ↔ χ ∨ ψ)
f. (ϕ ↔ ψ) → (ϕ → χ↔ ψ → χ)
g. (ϕ ↔ ψ)→ (χ→ ϕ↔ χ→ ψ)
h. (ϕ ↔ ψ) ∧ (γ ↔ δ) → (ϕ ∧ γ ↔ ψ ∧ δ)
i. (ϕ ↔ ψ) ∧ (γ ↔ δ) → (ϕ ∨ γ ↔ ψ ∨ δ)
j. (ϕ ↔ ψ) ∧ (γ ↔ δ)→ (ϕ → γ ↔ ψ → δ)

Now to prove our theorem, we apply complete induction on the length of χ
and under the inductive hypothesis that the extensionality principle holds for any
shorter formula. We consider 5 cases:

1. χ is a propositional symbol, so the operation is possible only for χ := ϕ, but
then it is trivial, i.e. χ[ϕ//ψ] := ψ

2. χ := ¬γ. By IH from ϕ↔ ψ we can derive γ ↔ γ[ϕ//ψ], so by thesis a. we get
¬γ ↔ ¬γ[ϕ//ψ].

3. χ := (γ ∧ δ). We have three subcases:
– the replacement of ϕ by ψ only in γ, i.e. χ[ϕ//ψ] := (γ[ϕ//ψ] ∧ δ). By IH

γ ↔ γ[ϕ//ψ], by thesis b. we get (γ ∧ δ)↔ (γ[ϕ//ψ] ∧ δ).
– the replacement of ϕ by ψ only in δ, i.e. χ[ϕ//ψ] := (γ∧δ[ϕ//ψ]). Analogous

to the previous subcase but by c.
– the replacement of ϕ by ψ in γ and in δ, i.e. χ[ϕ//ψ] := (γ[ϕ//ψ]∧δ[ϕ//ψ]).

By IH γ ↔ γ[ϕ//ψ] and δ ↔ δ[ϕ//ψ]. By h. we obtain (γ ∧ δ) ↔ (γ[ϕ//ψ] ∧
δ[ϕ//ψ]).
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The cases 4. and 5. are proven similarly as 3. on the basis of suitable theses
from the list for ∨ and →. �

Example 3—the deduction theorem for H-system for CPL.

Theorem 5.23. If Γ, ϕ � ψ, then Γ � ϕ→ ψ.

Proof: by complete induction on the lenght of a proof of Γ, ϕ � ψ. By definition
Γ, ϕ � ψ means that we have a finite sequence γ1, ..., γn, with γn := ψ. We show
that for any 1 ≤ i ≤ n the claim holds, i.e. that Γ � ϕ → γi on the supposition
that it holds for any j < i.

There are 4 cases to consider:
1. γi ∈ Γ: we add to the proof an instance of axiom 1.: γi → (ϕ → γi) and apply
MP to obtain ϕ → γi.
2. γi := ϕ; we add to the proof an instance of axiom 1.: ϕ→ (ϕ → ϕ) and by MP
we get ϕ → ϕ which is a thesis.
3. γi is an axiom—we proceed as in case 1.
4. γi was derived by MP from earlier lines of proof of the shape γj (j < i) and
γj → γi. Since both premisses satisfy IH, we have: ϕ → (γj → γi) and ϕ→ γj . We
add to the proof an instance of axiom 2: (ϕ → (γj → γi)) → ((ϕ → γj) → (ϕ →
γi)). Two applications of MP yield ϕ → γi.

Hence, in particular, this theorem holds for ψ (the case i = n), so Γ � ϕ→ ψ �

Note that the definition of a tree we provided in the appendix was not in-
ductive but it can be reformulated as an inductive definition in at least two ways.
In one approach, the root is treated as the set of generators and inductive condi-
tions specify how we build a tree upward. In the second, the set of generators is
the set of leaves and inductive conditions specify how we build a tree downward.
Depending on the way we defined inductively a tree, we can apply two different
kinds of inductive proofs on trees. A detailed formal treatment may be found in
Segerberg [235]; the careful reader noticed that both kinds of inductive definitions
and respective inductive proofs were applied in the text.

Sequent Calculus and Consequence Relations

SC can lead to different ways of generating relations of consequence. Let us com-
pare three such approaches:

1. Scott’s consequence generated by ⇒ in sequents built from finite sets.

2. Avron’s consequence generated by ⇒ in sequents built from multisets and
with restricted set of structural conditions.

3. Consequence relations generated by sequent rules in SC � ⊆ P(Sek) × Sek
where Sek is the set of all sequents.
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Of course, other possibilities can be considered; the second approach may
be defined on sequents built from other data structures, and the last one may be
further generalised (see e.g. Zucker, Tragesser [277]).

Let us compare Scott’s consequence with Tarski’s well known definition.
Originally, Tarski defined not a relation but an operation of consequence Cn :
P(FOR) −→ P(FOR) satisfying the following basic conditions:

• (REF) Γ ⊆ Cn(Γ)

• (MON) If Γ ⊆ Δ, then Cn(Γ) ⊆ Cn(Δ)

• (TR) Cn(Cn(Γ)) ⊆ Cn(Γ)

In relational approach they may be expressed as follows (via definition Γ |= ϕ :=
ϕ ∈ Cn(Γ)):

• (REF) ϕ |= ϕ

• (MON) If Γ |= ϕ, then Γ, ψ |= ϕ

• (TR) If Γ |= ϕ and ϕ,Γ |= ψ, then Γ |= ψ

A concrete example of such relation is provided by syntactical deducibility
relation for H-system defined in subsection 1.1.3. Additionally, relations of this
kind are structural in the sense of being closed under substitution, and finitary iff
for every ϕ and Γ, if ϕ ∈ Cn(Γ), then there is a finite Δ ⊆ Γ which is sufficient
for derivability of ϕ.

Boolean connectives may be characterised as follows:

• (¬) ϕ ∈ Cn(Γ) iff Cn(Γ ∪ {¬ϕ}) = FOR

• (∧) Cn({ϕ,ψ}) = Cn({ϕ ∧ ψ})
• (∨) Cn({ϕ}) ∩ Cn({ψ}) = Cn({ϕ ∨ ψ})
• (→) ψ ∈ Cn(Γ ∪ {ϕ}) iff ϕ→ ψ ∈ Cn(Γ)

or equivalently

• (¬) Γ |= ϕ iff Γ,¬ϕ |=
• (∧) ϕ,ψ |= γ iff ϕ ∧ ψ |= γ

• (∨) Γ, ϕ |= γ and Γ, ψ |= γ iff Γ, ϕ ∨ ψ |= γ

• (→) Γ, ϕ |= ψ iff Γ |= ϕ→ ψ

Any relation of consequence in Scott’s sense |= ⊆ P(FOR) × P(FOR) is
characterised as follows:

• (REF) ϕ |= ϕ

• (MON) If Γ ⊆ Γ′ and Δ ⊆ Δ′ and Γ |= Δ, then Γ′ |= Δ′
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• (TR) If Γ |= Δ, ϕ and ϕ,Γ |= Δ, then Γ |= Δ

Boolean connectives may be characterised by means of these conditions

• (¬) |= ϕ,¬ϕ, and ϕ,¬ϕ |=

• (∧) Γ, ϕ, ψ |= Δ iff Γ, ϕ ∧ ψ |= Δ

• (∨) Γ |= Δ, ϕ, ψ iff Γ |= Δ, ϕ ∨ ψ

• (→) Γ, ϕ |= Δ, ψ iff Γ |= Δ, ϕ → ψ

Clearly, we can apply different conditions, for example

• (∧′) Γ |= Δ, ϕ and Γ |= Δ, ψ iff Γ |= Δ, ϕ ∧ ψ

• (∨′) ϕ,Γ |= Δ and ψ,Γ |= Δ iff ϕ ∨ ψ,Γ |= Δ

• (→′) Γ |= Δ, ϕ and ψ,Γ |= Δ iff ϕ→ ψ,Γ |= Δ

Both characterizations are equivalent under assumption that (REF), (MON)
and (TR) hold. For example, we consider the case of conjunction

(∧) implies (∧′)
=⇒ Suppose Γ |= Δ, ϕ and Γ |= Δ, ψ. From ϕ ∧ ψ |= ϕ ∧ ψ which is an

instance of (REF), by (∧) we obtain ϕ,ψ |= ϕ ∧ ψ. By two applications of (TR)
(and (MON)) to assumptions, we get Γ |= Δ, ϕ ∧ ψ.

⇐= Assume that Γ |= Δ, ϕ∧ψ. Since (REF) and (MON) yield ϕ,ψ,Γ |= Δ, ϕ
by (∧) we obtain ϕ∧ψ,Γ |= Δ, ϕ. By (TR) we get Γ |= Δ, ϕ. In a similar way, we
obtain Γ |= Δ, ψ.
(∧′) implies (∧)

=⇒ Assume that Γ, ϕ, ψ |= Δ. From ϕ∧ψ |= ϕ∧ψ by (∧′) we derive ϕ∧ψ |= ϕ
and ϕ ∧ ψ |= ψ. Two applications of (TR) and (MON) to our assumption yield
Γ, ϕ ∧ ψ |= Δ.

⇐= By (REF) and (MON) we have ϕ,ψ,Γ |= Δ, ϕ and ϕ,ψ,Γ |= Δ, ψ
which by (∧′) yield ϕ,ψ,Γ |= Δ, ϕ ∧ ψ. The latter together with the assumption
Γ, ϕ ∧ ψ |= Δ by (TR) lead to Γ, ϕ, ψ |= Δ. �

Scott was comparing his approach to Tarski’s notion and observed that the
relationship defined by

Γ � ϕ iff ϕ ∈ Cn(Γ)

is not necessarily unique. In fact, every Scott’s consequence uniquely determines
Tarki’s one, but the converse, in general, does not hold. Every Cn determines
rather a class of Scott’s relations �. We can put these observations more precisely

1. Every � ⊆ P(FOR) × P(FOR) satisfying (REF), (MON), (TR) determines
Cn�(Γ) = {ϕ : Δ � ϕ}, where Δ is any finite subset of Γ.

2. For every Cn, we can define two relations



312 Appendix

Γ �min Δ iff Cn(Γ) ∩Δ �= ∅ and

Γ �max Δ iff
⋂

ϕ∈Δ Cn(Γ′ ∪ {ϕ}) ⊆ Cn(Γ′), for any Γ′ ⊇ Γ.

Both relations are Scott’s consequence relations, and moreover, they determine a
class of consequence relations C such that for every � ∈ C

• �min ⊆ � ⊆ �max

• Cn = Cn� iff �min ⊆ � ⊆ �max

This result seems to suggest that the notion of Scott’s consequence may
be more subtle research tool than Tarski’s one. Of course, in finite case both
approaches are equivalent; directly, if we have a disjunction in the language, or
in the more complex way otherwise (details may be found in Wójcicki [273]).
However, in case of infinite sets a situation is different. Let us consider a set H�
of admissible valuations (homomorphisms) satisfying some (Tarski’s or Scott’s) �
(i.e. h ∈ H� iff for no Γ � Δ holds hΓ ⊆ {1} and hΔ ⊆ {0}).

Since every semantics generates a relation of consequence, we can consider a
relation generated by H�, i.e. �H� , and also a set of admissible valuations H�H

satisfying �H . It can be easily shown that the following Galois properties hold:

1. �1⊆ �2 implies H�2 ⊆ H�1

2. H1 ⊆ H2 implies �H2⊆ �H1

3. H ⊆ H�H

4. � ⊆ �H�

One may find proofs of points 1 and 2 for Tarski’s case in Wójcicki [273], and
generalize it for Scott’s relation. More interesting are points 3 and 4. The latter may
be strengthened to equality on the basis of some abstract version of Lindenbaum
lemma. This result holds also for Scott’s relation but a proof requires different
construction called Scott’s Atlas (see Dunn and Hardegree [69]). The important
difference between Tarski’s and Scott’s relations is expressed in point 3. Every
Tarski’s relation determines a semantics but not necessarily unique. On the other
hand, for Scott’s relation, this property may be strengthened to equality which
means that every relation determines exactly one semantics. This property is dual
to completeness; Dunn and Hardegree [69] call it absoluteness.

Generalizing Scott’s approach to SCs based on multisets, we can obtain the
following hierarchy of consequence relations (see Avron [8]):

• Any � on finite multisets satisfying (REF) and (TR) is a simple consequence
relation.

• Simple consequence relation satisfying condition (C) (of contraction) and its
converse (so defined on sets indeed) is regular.
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• Regular consequence relation satisfying (MON) is a Scott’s consequence re-
lation.

• Regular consequence relation satisfying (MON) restricted to at most one
formula in the succedent is Tarski’s consequence relation.

In case of simple consequence relations, even satisfying (MON), we obtain
a possibility of defining substructural logics, which is not possible on the basis
of Scott’s notion of consequence. For example, conditions (∧), (∨), (→) charac-
terise multiplicative constants whereas conditions (∧′), (∨′), (→′) define additive
ones. The reader is invited to derive suitable rules for multiplicative and additive
constants from respective conditions.

The last kind of relation, generated by sequent rules, i.e. in which � corre-
sponds not to ⇒ but to the horizontal line between premisses and conclusion, was
investigated by Font, Jansana (see for example Font [88]). We do not discuss it
here.
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Questions and Proof Theory. Poznań: Facutly of Social Sciences Publishers.
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[192] Or�lowska, E., and J. Golińska-Pilarek. 2011. Dual Tableaux: Founda-
tions, Methodology, Case Studies. Springer.

[193] Paoli, F. 2002. Substructural Logics: A Primer. Dordrecht: Kluwer.

[194] Perzanowski, J. 1973. The Deduction Theorems for the modal proposi-
tional calculi formalised after the manner of Lemmon I. Reports on Mathe-
matical Logic 1: 1–12.

[195] Perzanowski, J. 1976. The Deduction Theorems for the modal proposi-
tional calculi formalised after the manner of Lemmon II. Reports on Mathe-
matical Logic 1: 1–12.

[196] Pfenning, F. 2000. Structural cut Elimination. Information and Computa-
tion 157: 84–141.

[197] von Plato, J. 2008. Gentzen’s proof of normalization for ND. The Bulletin
of Symbolic Logic 14 (2): 240–257.

[198] Poggiolesi, F. 2011. Gentzen Calculi for Modal Propositional Logic.
Springer.

[199] Pogorzelski, W.A. 1973. Klasyczny rachunek zdań. Warszawa: PWN.
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