
概率方法

参考答案

1. (10 分) 随机图 G(n, p) 是连通的概率是多少？

(1) 证明存在常数 α > 0, 使得对所有充分大的 n, G(n, α lnn/n) 是连通图的概率不高于 1/n.

(2) 证明存在常数 α > 0, 使得对所有充分大的 n, G(n, α lnn/n) 是连通图的概率不低于 1− 1/n.
提示：G(n, p) 可以如此采样: 先从二项分布 Binom(

(
n
2

)
, p) 中采样 m, 再从 G(n,m) 中采样.

G(n,m) 可以如此采样: 从没有边的图开始, 每次随机添加一条新边, 重复 m 次.

解

(1) 注意到任意两条边其是否存在的概率是互相独立的, 因此我们可以按照任意顺序进行边的采
样. 考虑如下的采样策略实现从 G(n, p) 中采样:

• 首先任意选定一个顶点记作 v1, 并开始采样 v1 与其它点是否连边. 具体来说, 用 Xu,v ∈
{0, 1} 表示 u, v 之间连边的示性函数. 对于每个 u ̸= v1, 我们独立地从 Bern(p) 中采样
Xv1,u.

• 采样完 v1 的邻边之后, 我们任取一个剩下点中当前度数最小的, 记为 v2, 并采样 v2 与其

它点是否连边. 具体来说, 对于每个 u /∈ {v1, v2}, 我们独立地从 Bern(p) 中采样 Xv2,u.

• 更一般地, 当采样完 v1, . . . , vi−1 的邻边之后, 我们任取一个剩下点中当前度数最小的, 记
为 vi, 并采样 vi 与其它点是否连边. 具体来说, 对于每个 u /∈ {v1, . . . , vi−1}, 我们独立地
从 Bern(p) 中采样 Xvi,u.

• 重复这样的过程直到每对顶点之间是否连边都被采样过.

定义事件 A1, . . . , An−1. 其中

Ai := {∀j > i,Xvi,vi+1
= 0} = {vi 与 vi+1, . . . , vn 皆无连边}.

令 k(n) = n1−δ, 其中 δ > 0 是可以任意小的常数. 定义如下两个事件:

A := A1 ∨ · · · ∨ Ak = {∃i ≤ k,点 vi 与 vi+1, . . . , vn 皆无连边},

B := {v1, . . . , vk−1 一共连出了至多 n− k 条边}.

注意到 A∧B =⇒ 图中有孤立点 =⇒ 不连通. 因为 A 推出存在点 vi（i ≤ k）与 vi+1, . . . , vn

皆无连边. 如果 B 也同时成立, 那么刚采样完 v1, . . . , vi−1 时, 总共有不超过 n− k 条边, 此时
V \ {v1, . . . , vi−1} 至少有一个点度数为零. 特别地, 此时 vi 的度数为零, vi 与 v1, . . . , vi−1 也

皆无连边.

由 union bound 知, Pr[连通] ≤ Pr[¬A∨¬B] ≤ Pr[¬A] +Pr[¬B]. 我们分别估计 ¬A 和 ¬B 的
概率.
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估计 Pr[¬A] 时, 利用 A1, . . . , Ak 之间的独立性

Pr[Ai] = (1− p)n−i =
(
1− α lnn

n

)n−i

≥ e−(1−o(1))α ln n
n ·(n−k) = n−α(1−o(1)),

Pr[¬A] = Pr[¬A1 ∧ · · · ∧ ¬Ak] =
∏
i≤k

Pr[¬Ai] ≤ (1− n−α(1−o(1)))k ≤ e−n1−δ−α−o(1)

.

只要 α < 1− δ, 就有 Pr[¬A] ≤ e−nΩ(1) .

注意到 v1, . . . , vk−1 一共连出的边数服从二项分布 Binom((k − 1)(n− k/2), p), 其期望是

(k − 1)(n− k/2)p = O(n1−δ lnn).

依据 multiplicative Chernoff bound, 这部分边数超过 n− k 的概率 Pr[¬B] ≤ e−nΩ(1) .

Remark: v1, v2 之间连边的概率为 pn−1, 远远低于 p = α lnn/n. 造成这个现象的原因, 是因为
v2 实际上是一个随机变量, v2 指代哪个点取决于哪些点与 v1 连边.

(2) 使用提示中的等价的采样策略. 我们考虑在此过程中, 图上的连通分量数目. E.g., 初始时有 n

个孤立点, 故连通分量数目为 n；采样第一条边之后连通分量为 n− 1.

假设某个时刻图中的连通分量数目为 k + 1, 那么采样下一条边之后连通分量数目变为 k 的概

率至少为

1−
(
n−k
2

)(
n
2

) ≥ k

n
.

和第一题进行比较. 从连通分量为 k+1 到连通分量为 k 的次数（在某个 coupling 下）小于第
一题中从已集 n− k − 1 种卡片到已集 n− k − 1 种卡片之间抽的卡片数 τn−k − τn−k−1. 因此
连通需要的边数（在某个 coupling 下）小于集齐 n 中卡片需要的抽卡次数.

这样由第一题的结论可以知道当边数 m = 3n lnn 时, G 连通的概率不低于 1−O(1/n2). 只需
选取 α = 4, 这样 E[m] = 4n lnn, 由 multiplicative Chernoff bound 知 w.h.p. m ≥ 3n lnn, 从
而结论成立.

2. (8 分) 用 G(2n, p, q) 表示如下的随机图的分布: 点集为 V = {1, 2, . . . , 2n}. 选取随机的 S∗ ⊆ V 且

|S∗| = n. 这样点集被划分为了两个大小相同的块 S 和 V \ S. 对于任意两个点 (u, v), 如果 u, v 在

同一个块中（u, v ∈ S∗ 或者 u, v /∈ S∗）, 那么 u, v 之间以概率 p 有边相连；如果 u, v 在不同的块

中, 那么 u, v 之间以概率 q 有边相连.

考虑高度稀疏的场景. 令 p = α/n, q = β/n, 其中 α, β ∈ R 是常数. 请问是否可以依据图本身的信
息对 S∗ 进行一个非平凡的估计. 具体来说, 是否存在一个算法M 和常数 c > 0 使得

Pr

|Ŝ| = n ∧ |Ŝ ∩ S∗|
n

/∈ (1/2− c, 1/2 + c)

∣∣∣∣∣∣G← G(2n, α/n, β/n)

Ŝ ←M(G)

 = 1−O(1/n).

答案显然依赖于 (α, β) 的取值. 请找到一个尽量大的 (α, β) 的范围使得可以对 S∗ 进行上述的非平

凡估计.

提示：当 (α− β)2 < α+ β 时, 不存在任何算法可以非平凡地估计 S∗ [Mossel-Neeman-Sly 2012].

第 2 页, 共 6 页



解 对任意 S ⊆ V , 用 e(S) 表示被被 S 割的边的数目.

e(S) := |{(u, v) ∈ E|u ∈ S, v /∈ S}|.

考虑一个非常直观的算法: 给定输入 G 之后, 算法输出一个平衡的割 Ŝ ⊆ V , 使得 e(Ŝ) 最大（如果

β > α）或最小（如果 β < α）.

我们先考虑 β < α 的情况. 只需要证明, 割边最小的平衡割大概率不是一个平凡估计.

• 最非平凡的割, 也就是 ground truth S∗, 期望切割边数 E[e(S∗)] = βn. 大概率 e(S∗) 集中在

βn 附近. 具体来说, 对于任意常数 δ > 0, 根据 multiplicative Chernoff bound,

Pr[e(S∗) ≥ (β + δ)n] ≤ 2−Ω(n).

• 我们选取一个常数 c > 0. 对于任意平衡割 T , 如果满足 |T∩S|
n
∈ (1/2 − c, 1/2 + c), 我们称 T

是平凡的. 对任意平凡的 T , 其切割的边数的期望不低于(α+ β

2
− 2c2(α− β)

)
n =

(α+ β

2
− δ

)
n.

其中常数 δ = 2c2(α− β). 通过选取合适的 c, 我们可以让常数 δ 的值任意小.

根据 multiplicative Chernoff bound,

Pr[e(T ) ≤ (β + δ)n] ≤ e
−
( α−β

2
−2δ

α+β
2

−δ

)2

(α+β
2 −δ)n/3

.

只要常数 α, β 满足 (α− β)2/(α+ β) > 12 ln 2, 就可以找到足够小的常数 δ > 0 使得上面的概

率不超过 2−(2+δ)n.

再使用 union bound,以 1−2−Ω(n)的概率,所有平凡平衡割 T 都满足 e(T ) > (β+δ)n > e(S∗).

对称地, 对于 α > β 的情况, 只要常数 α, β 满足 (α − β)2/(α + β) > 8 ln 2, 以 1 − 2−Ω(n) 的概率,
所有平凡平衡割 T 都满足 e(T ) < (β − δ)n < e(S∗).

3. (8 分) 有若干集合 A1, . . . , An, B1, . . . , Bn, 满足 ∀i, j Ai ∩Bj = ∅ ⇐⇒ i = j. 证明∑
i

1(|Ai|+|Bi|
|Ai|

) ≤ 1.

解 选取一个
⋃

i(Ai ∪ Bi) 上随机的序. 定义事件 Ei 为 “Ai 中每一个元素小于 Bi 中每一个元

素”. 对于每一个 i, 有 Pr[Ei] = 1/
(|Ai|+|Bi|

|Ai|

)
.

用反证法. 如果 ∑
i

Pr[Ei] =
∑
i

1(|Ai|+|Bi|
|Ai|

) > 1,

那么存在 i ̸= j 使得 Ei, Ej 有可能同时发生. 考虑使 Ei, Ej 同时发生的一个序. 在这个序下,
max(Ai) < min(Bi), max(Aj) < min(Bj). 因此必有max(Ai) < min(Bj)或者max(Aj) < min(Bi).

第 3 页, 共 6 页



这两种可能分别都会推出矛盾.

4. (8 分) 如果集合 S ⊆ {0, 1}n 满足

∀distinct a, b, c ∈ S, ∆(a, b) + ∆(b, c) > ∆(a, c),

我们称 S 是不共线的. 这里 ∆ 表示汉明距离（Hamming distance）.

(1) 证明, 对所有足够大的 n, 存在不共线的 S ⊆ {0, 1}n 满足 |S| ≥ 1.01n.

(2) 证明, 对所有足够大的 n, 任何不共线的 S ⊆ {0, 1}n 都满足 |S| ≤ 1.99n.

解 对于任何三个点 a, b, c ∈ {0, 1}n, 如果 ∆(a, b) + ∆(b, c) = ∆(a, c), 我们称 a, b, c 共线；否则

我们称 a, b, c 不共线.

(1) 如果独立随机选取 a, b, c ∈ {0, 1}n, 那么

Pr[a, b, c共线] = Pr
[
∀i ∈ [n], (ai, bi, ci) /∈ {(0, 1, 0), (1, 0, 1)}} = ∅

]
= (3/4)n.

独立随机选取 x1, x2, . . . , xm ∈ {0, 1}n, 其中 m = 2αn. 令 S = {x1, . . . , xm}. 那么

Pr
[
|S| = m

]
= Pr

[
∀distinct i, j, xi ̸= xj

]
≤ 1

2
22αn · 2−n.

Pr[S中存在共线三元组] ≤ 1

2
23αn · (3/n)n.

只要 3α < log2(4/3), 就有非零概率 |S| = 2αn 且 S 不共线.

(2) 对任何不共线的 S, 构造一个二部图 G = (L,R,E). 左右点集分别为 L = {0, 1}⌊n/2⌋, R =

{0, 1}⌈n/2⌉. 边集与 S 一一对应: (u, v) ∈ E 当且仅当 u|v ∈ S. 这里 | 表示拼接.

图中一定没有长度为 3 的路径. 反证, 假如有长度为 3 的路径 (u, v), (u′, v), (u′, v′), 那么

∆(u|v, u′|v) + ∆(u′|v, u′|v′) = ∆(u, u′) + ∆(v, v′) = ∆(u|v, u′|v),

说明 u|v, u′|v, u′|v′ ∈ S 这三点共线. 与 S 不共线矛盾.

换言之, 图中任何两个度数大于 1 的点不相邻. 再换言之, 每条边都有至少一个端点的度数等
于 1. 所以存在一个从度数为 1 的顶点集到 E 的满射.

|S| = |E| ≤ |L|+ |R| = 2⌊n/2⌋ + 2⌈n/2⌉.

5. (5 分) 假设 n 足够大. 证明存在不依赖 n 的常数 α > 0, 使得

采样有 αn 条边的随机图 G ∼ G(n, αn), 并采样两个不同的随机点 u, v. 那么 u, v 在 G

上联通的概率不超过 1/n.
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解 不妨先采样 (u, v). 考虑 G 中, 从 u 到 v 的简单 (无重复点) 的路径个数的期望.

E[#paths from u to v] =
n∑

ℓ=1

E[#length-ℓ paths from u to v]

=
n∑

ℓ=1

∑
w1,...,wℓ−1

Pr[uw1w2 . . . wℓ−1v is a path]

≤
n∑

ℓ=1

(n− 2)ℓ−1
(αn(

n
2

))ℓ

≤ 1

n

n∑
ℓ=1

(2α)ℓ

=
1

n

1

(2α)−1 − 1
.

根据 Markov bound,

Pr[u, v 联通] = Pr[#paths from u to v ≥ 1] ≤ 1

n

1

(2α)−1 − 1
.

选取 α = 1/4 便可以满足题目要求.

另一种解法 无放回采样 Kn 中的边 e1, e2, e3, . . . . 记 Ga:b = (V, {ea, . . . , eb}), 那么 Ga:b ∼
G(n, b− a+ 1).

用 pm 表示 em+1 的两个端点在 G1:m 中联通的概率. 这个概率随着 m 的增加单调递增, 因为它也
可以看作 e1 的两个端点在 G2:m+1 中联通的概率.

用 cm 表示 G1:m 中环的数目的期望.

cm =
n∑

k=3

nk

2k
Pr[v1, . . . , vk 按此顺序构成一个环]

≤
n∑

k=3

nk

2k

( m(
n
2

))k

≤
n∑

k=3

1

6

(2m
n

)k

.

注意到, 如果 em+1 的两个端点在 G1:m 中联通, 那么 G1:m+1 至少比 G1:m 多含有一个环. 因此

cm+1 ≥ cm + pm, c2m ≥ cm +
2m−1∑
i=m

pi ≥ mpm, pm ≤
c2m
m

.

可以选择 α = 1/4

pαn ≤
c2αn
αn
≤

1
6
(2α)3

αn(1− 2α)
=

1

6n
.

所求概率为,

Pr[u, v 在 Gαn 中联通] ≤ Pr
[
(u, v) ∈ Gαn

]
+ Pr

[
u, v 在 Gαn 中联通

∣∣∣ (u, v) /∈ Gαn

]
=

αn(
n
2

) + pαn ≤
1

n
.
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