
北京大学 2025 年秋季学期离散数学与结构

期末试题

试卷共 11 页, 共 13 题, 满分 30 分.

判断/选择题: 无需写出证明.

1. (1 分) 对任意 n ∈ N,
(
2n
n

)
都是偶数.

解 是(
2n
n

)
=
(
2n−1

n

)
+
(
2n−1
n−1

)
= 2
(
2n−1

n

)
.

可以将
(
[2n]
n

)
中元素两两组对. S 与 [2n] \ S 组对.

2. (1 分) 两个 (不独立的) 随机变量 X,Y 满足 0 ≤ X ≤ Y 恒成立. 那么 Var[X] ≤ Var[Y ].

解 否

例如 Y 是常数且是 X 的上界.

3. (1 分) 如果一个平面图是简单图, 那么它的对偶 (dual graph) 也是简单图.

解 否

最小反例是 K2.

4. (1 分) 对任意 δ > 0, 存在 ε > 0, 使得对于任何有限空间中的分布 P,Q,

∆TV(P,Q) ≤ ε =⇒ DKL(P‖Q) ≤ δ.

解 否

DKL(Bern(ε)‖Bern(0)) = +∞.

填空题: 无需写出证明.

5. (2 分) Sn = {v ∈ {0, 1, 2}n |
∑

vi = n}. 估算 |Sn|, 要求误差不超过 nO(1).

解 3n

3n 显然是 |Sn| 的上界.

从 {0, 1, 2}n 中随机采样, 和的分布是单峰. 说明 |Sn| ≥ 3n/(2n+ 1).

下界也可以用 Sanov bound 说明.
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6. (2 分) 有 n 张互异的扑克牌, 摞成一堆. 用以下方式洗牌: 每次随机抽取一张扑克牌, 再放回牌堆

顶部. 请估算洗牌时间.

具体来说, 这个过程可以视为一个马尔可夫链, 其稳态分布是均匀分布 (洗匀的牌堆). 请估计混合

时间 tmix(1/100). 允许有常数误差.

解 Θ(n logn)

洗牌过程中, 可以把牌堆分为两部分: 底部尚未被抽取过的牌, 和顶部被放回的牌. 顶部是洗好的.
当底部还剩不超过 1 张时, 整个牌堆都是均匀的. 当底部还剩 2 张时, 离均匀分布的 TVD 是 1/2.
所以问题转化为何时底部不超过 1 张.

这等价于 coupon collection 问题.

记首次将底部抽到还剩 1 张的时间为 T . 那么 T 是 Geom(n
n
),Geom(n−1

n
), . . . ,Geom( 2

n
) 的独立和.

期望约为 n logn− n, 方差为 Θ(n2). 上界用期望和 Markov bound, 时间 100n logn 后以至少 99%
的概率洗匀. 下界用二阶矩方法,在时间 n logn−n/ε时底部剩至少两张牌的概率不低于 1−O(ε2).

7. (2 分) 考虑一个 10 个珠子构成的双层项链, 用两种颜色对珠子染色,
有多少种不同的染色方案.

只要存在图同构都视为相同染色. 包括旋转、内外层交换、镜像.

解 染色是 Z2 × Z5 → {0, 1}. 考虑 Z2 ×D5 对染色的群作用.

根据 Pólya 计数, 不同染色数为 210 + 25 + 4 · 22 + 4 · 2 + 5 · 26 + 5 · 25

20
= 78.

群元素 描述 不动点个数

(0, e) 210

(1, e) 交换内外 25

(0, ri) for i ∈ Z∗5 旋转 22

(1, ri) for i ∈ Z∗5 旋转 + 交换内外 21

(0, sri) for i ∈ Z5 镜像 26

(1, sri) for i ∈ Z5 镜像 + 交换内外 25

另一种解法: 注意到问题等价于对 10 个珠子构成的单层项链染色:

00

1

12
2

3
3

4

4

对应到
(外层不动, 内层对应到对角) 00

1

1

2

2
3

3

4

4

根据 Pólya 计数, 不同染色数为 210 + 25 + 4 · 22 + 4 · 2 + 5 · 26 + 5 · 25

20
= 78.
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群元素 描述 不动点个数

e 210

r5 25

ri for gcd(i, 10) = 1 22

ri for gcd(i, 10) = 2 21

sri for even i 过两点的对称轴镜像 26

sri for odd i 过两边的对称轴镜像 25

解答题: 请选择 4 道作答.

8. (5 分) 用 C 种颜色对满二叉树中的点进行染色. 两个染色方案等价, 当且仅当其中一种方案可以经

过一系列左右子树的交换转化为另一种方案.

(1) 高度为 2 的满二叉树 (共有 3 个点) 有多少种不同的染色方案?

(2) 高度为 3 的满二叉树 (共有 7 个点) 有多少种不同的染色方案?

(3) 高度为 4 的满二叉树 (共有 15 个点) 有多少种不同的染色方案?

不强制要求把结果完全展开, 但请表述为清晰便于验证的形式.

解 用 Cd 表示高度为 d 的满二叉树的染色方案数.

注意到, 可以把 Cd 种染色方案都视为一种颜色. 这样用 C 种颜色染色 d+1 层满二叉树, 就等价于
对 2 层满二叉树染色, 其中根节点可选 C 种颜色, 叶子节点可选 Cd 种颜色. 因此

Cd+1 = C( Cd︸︷︷︸
两叶子同色

+

(
Cd

2

)
︸ ︷︷ ︸
两叶子异色

) = C
C2

d + Cd

2
.

那么从 C0 = 1 开始归纳.

C1 = C, C2 =
C3 + C2

2
, C3 =

C7 + 2 · C6 + C5 + 2 · C4 + 2 · C3

8
,

C4 =
C(C

7+2·C6+C5+2∗C4+2∗C3

8
)(C

7+2·C6+C5+2·C4+2·C3

8
+ 1)

2

=
C4(C + 1)(C3 + C2 + 2)(C7 + 2C6 + C5 + 2C4 + 2C3 + 8)

128

=
C4(C11 + 4C10 + 6C9 + 8C8 + 13C7 + 12C6 + 8C5 + 16C4 + 20C3 + 8C2 + 16C + 16)

128
.

另一种 (暴力) 解法:

(1) C3+C2

2
.

(2) C7+2·C6+C5+2·C4+2·C3

8

一共有 8 种变换方式, 对应的不动点个数如下表
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群元素 个数 不动点个数

不动 1 C7

第一层左右子树无交换, 第二层 1 个节点左右子树有交换 2 C6

第一层左右子树无交换, 第二层 2 个节点左右子树有交换 1 C5

第一层左右子树有交换, 第二层左右子树同时交换/不交换 2 C4

第一层左右子树有交换, 第二层左右子树一交换一不交换 2 C3

(3) 一共有 27 种变换方式.

• 如果第一层左右子树无交换, 这些变换构成一个变换子群, 子群的大小为 26. 由前面一问,
在这些变换下等价的染色方案数为

C ·
(
C7 + 2 · C6 + C5 + 2 · C4 + 2 · C3

8

)2

这些变换对应的不动点总数为 C ·
(

C7+2·C6+C5+2·C4+2·C3

8

)2
· 26.

• 如果第一层的左右子树有交换, 对应另外 26 个变换.

群元素 个数 不动点个数

第二层左右子树同时交换/不交换, 第三层两对子树中 2 对同时交换/不交换 8 C8

第二层左右子树同时交换/不交换, 第三层两对子树中 1 对同时交换/不交换 16 C7

第二层左右子树同时交换/不交换, 第三层两对子树中 0 对同时交换/不交换 8 C6

第二层左右子树一交换一不交换, 第三层 4 个节点中 0/2/4 个交换 16 C5

第二层左右子树一交换一不交换, 第三层 4 个节点中 1/3 个交换 16 C4

综上述, 不同的染色方案数总数是

C ·
(

C7+2·C6+C5+2·C4+2·C3

8

)2
· 26 + 8C8 + 16C7 + 8C6 + 16C5 + 16C4

128
.

评分标准: 第一问 1 分; 第二三问各 2 分

9. (5 分) 每个置换 f ∈ Sym(n) 都可以拆成若干不交的轮换 (cycle). 不动点就是一个长度为 1 的轮

换.

(1) 求 Sym(2n) 中只包含偶数长度轮换的置换个数 a2n, 并证明.

(2) 求 Sym(2n) 中只包含奇数长度轮换的置换个数 b2n, 并证明.

举例来说, (1)(2)(34) ∈ Sym(4) 包含了奇长度轮换 (1), 所以不在第一问的计数范围; 同时包含了偶

长度轮换 (34), 所以也不在第二问的计数范围.

解 用 c0 = 0, cn = (n− 1)! 表示 Sym(n) 中的轮换置换的个数. 其对应 EGF C̃(x) = ln( 1
1−x).

(1) 用 ceven
n 表示 Sym(n) 中的轮换置换的个数并限制 n 为偶数, 并定义对应的 EGF 为 C̃even. 那
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么

ceven
n =

cn, if n even

0, otherwise
C̃even(x) =

1

2

(
C̃(x) + C̃(−x)

)
=

1

2
ln( 1

1− x2
).

用 Ã 表示 {an} 的 EGF. 那么 Ã(x) = exp(C̃even(x)) =
√

1
1−x2 . 使用广义二项式定理

Ã(x) = (1− x2)−1/2

=
∞∑

n=0

(− 1
2
)n

n!
(−x2)n

=
∞∑

n=0

(− 1
2
)(− 3

2
) . . . (− 2n−1

2
)

n!
(−1)nx2n

=
∞∑

n=0

1 · 3 . . . (2n− 1)

n!2n
x2n

=
∞∑

n=0

(2n)!

n!n!4n
x2n.

所以

a2n =
(2n)!(2n)!

n!n!4n
=

(
(2n)!

n!2n

)2

= ((2n− 1)!!)2.

另一种解法: 考虑以下方式选取一个符合要求的置换: 依次进行 2n 轮, 每轮确定 f 在一个位

置的输出.

• 初始化 s = v = 0 为起点.
• 第一轮: 设置 f(v) = a1. 因为 f 只含偶长度轮换, a1 只能在 [2n] \ {s} 中选择. 更新

v ← a1.
• 第二轮: 设置 f(v) = a2. 注意到 a2 的选择空间是 [2n] \ {a1}. 更新 v ← a2.
一种特殊情况是 a2 = s. 这时已经构成了一个长为 2 的轮换. 这时更新 s 为 \{a1, a2} 中
的任意值 (不妨选其中的最小值), 并令 v ← s.

• 一般地, 在奇数 i 轮, 设置 f(v) = ai, 其中 ai 的选择空间是 [2n] \ {s, a1, . . . , ai−1}, 有
2n− i 种选择. 更新 v ← ai.

• 一般地, 在偶数 i 轮, 设置 f(v) = ai, 其中 ai 的选择空间是 [2n] \ {a1, . . . , ai−1}, 有
2n− i+ 1 种选择. 更新 v ← ai.
如果 ai = s, 令 s← min([2n] \ {a1, . . . , ai}) 并更新 v ← s.

因此符合要求的置换的个数为

(2n− 1)(2n− 1)(2n− 3)(2n− 3) . . . 3 · 3 · 1 · 1 = ((2n− 1)!!)2.

(2) 类似地, 用 codd
n 表示 Sym(n) 中的轮换置换的个数并限制 n 为偶数, 并定义对应的 EGF 为

C̃odd. 那么

codd
n =

cn, if n odd

0, otherwise
C̃odd(x) =

1

2

(
C̃(x)− C̃(−x)

)
=

1

2
ln(1 + x

1− x
).
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用 bn表示 Sym(n)中只包含奇数长度轮换的置换个数,其对应 EGF为 B̃(x) = exp(C̃odd(x)) =√
1+x
1−x . 用 beven

n 表示限制 n 为偶数, 对应 EGF 为 B̃even. 那么

beven
n =

bn, if n even

0, otherwise
B̃even(x) =

1

2

(
B̃(x) + B̃(−x)

)
=

1

2

√
1

1− x2
= Ã(x).

所以 b2n = a2n = ( (2n)!
n!2n

)2 = ((2n− 1)!!)2.

评分标准: 做出任意一问得 3 分; 其中结果 1 分证明 2 分

10. (5 分) 有 n 对情侣, 随机将他们分为 n 组, 每组两人. 有多少对情侣被分到同组中?

(1) 当 n 充分大时, 所有情侣都没有分入同组的概率是多少. 证明你的结果.

(2) 用 Pn,k 表示其中恰好有 k 对情侣分到同组的概率. 对于任意常数 k, 请计算 limn→∞ Pn,k 并证

明你的结果.

解

(1) 用 [n] 表示这 n 对情侣. 用 C ⊆ [n] 表示被分配到同组的情侣. 我们关心 Pr[|C| = k].

对于任意 S ∈
(
[n]
t

)
易知,

Pr[C ⊇ S] =
1

2n− 1

1

2n− 1
. . .

1

2n− 2t+ 1
=

(2n− 2t− 1)!!

(2n− 1)!!

由容斥原理,

Pr[C 6= ∅] =
n∑

t=1

∑
S∈([n]

t )

(−1)t−1 Pr[C ⊇ S] =
n∑

t=1

(−1)t−1
(
n

t

)
(2n− 2t− 1)!!

(2n− 1)!!

定义求和的第 t 项为 Wn,t. 可以估算为

An,t =

(
n

t

)
(2n− 2t− 1)!!

(2n− 1)!!
=

1

t!

n

2n− 1

n− 1

2n− 1
. . .

n− t+ 1

2n− 2t+ 1
≈ 1

t!
2−t.

形式化来说, 当 t 是常数时 (可以放松到 t = o(n) 时), limn→∞An,t =
1
t!
2−t. 如果这里极限和

求和能交换顺序, 那么

lim
n→∞

Pr[C 6= ∅] = lim
n→∞

n∑
t=1

(
n

t

)
(−1)t−1 (2n− 2t− 1)!!

(2n− 1)!!

(∗)
=
∞∑
t=1

(−1)t−1 1
t!
2−t

= 1−
∞∑
t=0

(−1)t 1
t!
2−t

= 1− e−1/2

接下来, 我们说明 (*) 确实成立. 我们使用一种迂回的办法, 先证明对于任意 m ≤ n,
m∑
t=1

∑
S∈([n]

t )

(−1)t−1 Pr[C ⊇ S]

≤ Pr[C 6= ∅], if m even

≥ Pr[C 6= ∅], if m odd
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证明如下
m∑
t=1

∑
S∈([n]

t )

(−1)t−1 Pr[C ⊇ S]

=
m∑
t=1

∑
S∈([n]

t )

(−1)t−1
∑
T⊇S

Pr[C = T ]

=
∑
T ̸=∅

Pr[C = T ]
m∑
t=1

∑
S∈(Tt)

(−1)t−1

=
∑
T ̸=∅

Pr[C = T ]

(
1−

m∑
t=0

∑
S∈(Tt)

(−1)t
)

= Pr[C 6= ∅]−
∑
T ̸=∅

Pr[C = T ]
m∑
t=0

∑
S∈(Tt)

(−1)t

m∑
t=0

∑
S∈(Tt)

(−1)t

=
m∑
t=0

(
|T |
t

)
(−1)t

= (−1)m
(
|T | − 1

t

)

因此, 对于任何偶常数 m

lim
n→∞

Pr[C 6= ∅] ≥ lim
n→∞

m∑
t=1

(
n

t

)
(−1)t−1 (2n− 2t− 1)!!

(2n− 1)!!
=

m∑
t=1

(−1)t−1 1
t!
2−t.

同时对于任何奇常数 m, 上式的不等号方向反转. 因为右侧的交错级数收敛到 1 − e−1/2, 说明
左边等于 1− e−1/2.

(2) 总有 Pr[C = S] = Pr[C ⊆ S]Pr[C = S | C ⊆ S]. 注意到, 最后的条件概率其实就是将 n− |S|
对情侣随机分组后没有情侣同组的概率.

因此, 对与任意常数 k.

lim
n→∞

Pr[|C| = k] = lim
n→∞

∑
S∈([n]

k )

Pr[C ⊆ S]Pr[C = S | C ⊆ S]

= lim
n→∞

(
n

k

)
(2n− 2k − 1)!!

(2n− 1)!!
Pr[C = S | C ⊆ S]

= lim
n→∞

(
n

k

)
(2n− 2k − 1)!!

(2n− 1)!!
· lim
n→∞

Pr[C = ∅]

=
1

k!
2−ke−1/2.

另一种解法: 基于前面第二问的观察, limn→∞ Pr[|C| = k] = 1
k!
2−k limn→∞ Pr[C = ∅].

同时我们知道 E[|C|] = n
2n−1 < 1. 由 Markov bound Pr[|C| ≥ m] < 1

m
. 那么对任意常数 m

(1− 1/m, 1] 3 lim
n→∞

Pr[|C| ≤ m] =
m∑

k=0

1

k!
2−k lim

n→∞
Pr[C = ∅].

那么将 m→∞ 便得出

lim
n→∞

Pr[C = ∅] = 1

/ ∞∑
k=0

1

k!
2−k = e−1/2.
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评分标准: 第一问 3 分, 结果 1 分证明 2 分, 只完成粗估扣一分; 第二问 2 分, 结果 1 份证明 2 分

11. (5 分) 这里我们设计一种高效纠错码.

(1) 考虑压缩函数 f : {0, 1}n → {0, 1}m 和解压缩函数 g : {0, 1}m → {0, 1}n. 固定一个常数概率

p < 1/2, 求出

α∗ = inf

α

∣∣∣∣∣∣
∃f : {0, 1}n → {0, 1}αn, g : {0, 1}αn → {0, 1}n

Pr
x∼Bern(p)n

[g(f(x)) = x] = 1− 2Θ(n)


不需写出证明和计算过程.

(2) 如果额外限制 f 为 F2 上的线性函数, 那么 α∗ 将如何变化? 证明你的结论.

(3) 符合前一问的压缩和解压缩函数可以非常高效 (O(n logn) 电路大小). 据此设计用于 BSC(p)
信道的高效编码 E : {0, 1}n → {0, 1}ℓ, D : {0, 1}ℓ → {0, 1}n. 要求对任意消息 w ∈ {0, 1}n,

Pr
Y∼(PY |X)ℓ(·|E(w))

[D(Y ) = w] ≥ 1− exp(−Θ(n)).

在这样的要求下, 码率 n/ℓ 可以达到多少? 请写出 E,D 的构造并证明结论.
BSC(p) 的定义: PY |X(0|0) = PY |X(1|1) = 1− p, PY |X(0|1) = PY |X(1|0) = p.

解 答案中对数以 2 为基底.

(1) h(p).

(2) 选取随机的线性压缩函数 f . 固定一个小常数 ε 和集合

S = {x ∈ {0, 1}n | ‖x‖1 < n(p+ ε)}

解压缩函数为

g(y) =

x, 如果存在唯一 x ∈ S 满足 f(x) = y

⊥, otherwise

解压缩失败的可能性有两种:

• 一是 x ∼ Bern(p)n没有落入集合 S中. 根据 Chernoff bound,这个概率不超过 exp(−ε2n/2).

• 一是存在另一个 x′ ∈ S 满足 f(x) = f(x′). 对于任何一个 x′ 6= x, 碰撞发生的概率为 2−m.
根据 union bound, 碰撞的概率不超过

|S| − 1

2m
≤ n · 2

h(p+ε)n

2αn

因此只要 α > h(p), 便可适当选取 ε 使得解码错误概率指数小.

(3) 根据上一问, 对任意 α > h(p), 有线性压缩函数 f : {0, 1}ℓ → {0, 1}αℓ. 考虑 f 的零空间 (也就
是 kernel)是一个 (1−α)ℓ维的子空间. 令 n = (1−α)ℓ, 令 E 是 {0, 1}n 到 Ker f 的线性双射.
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BSC(p)ℓ 信道可以看作 Y = x + Z, 其中 x 是信道输入, Y 是信道输出, Z ∼ Bern(p)ℓ. 那么当
输入 x = E(w) 时,

g(f(Y )) = g(f(x + Z)) = g(f(Z))
w.h.p.
= Z

可以大概率解出噪声 Z. 将噪声 Z 减去即完成解码. 解码算法为

D(y) = E−1(y− g(f(y)))

码率为 n/ℓ = 1− α, 可以任意逼近信道容量 C = 1− h(p).

评分标准: 第一问 1 分; 第二三问各 2 分

12. (6 分) 给定一个奇素数 p, 我们将 x ∈ Z∗p 分为两类: 如果 ∃y ∈ Z∗p, x = y2, 那么称 x 为二次剩余,
否则称 x 为二次非剩余. 不难说明 Z∗p 中恰好有一半是二次剩余. 判断一个元素是否为二次剩余可

以使用勒让德符号 (Legendre symbol)

(
x

p

)
= x

p−1
2 =


+1, if x 是二次剩余

−1, if x 是二次非剩余

0, if x = 0

不难说明, x 7→ (x
p
) 是一个 Z∗p 到 {−1, 1} 的群同态.

请证明存在常数 C0, C1 使得, 对于任何 n ∈ N, 任何素数 p > 2C0n+C1 和任何 (b1, . . . , bn) ∈ {0, 1}n,
存在 x ∈ Zp 满足(

x+ 1

p

)
= (−1)b1 ,

(
x+ 2

p

)
= (−1)b2 , . . . ,

(
x+ n

p

)
= (−1)bn .

Weil bound 的大意为: Fp 上的“简单”曲线经过大约 p 个点. 特别地, 证明需要 Weil bound 的以下

推论: 如果 f ∈ Fp[x] 满足 deg f = d > 0 且无平方 (square-free, 等价于在任何扩域中无重根), 那么∣∣∣{(x, y) ∈ Z2
p

∣∣∣ f(x) = y2
}∣∣∣ ∈ (p− d

√
p, p+ d

√
p).

证明也可以使用这个推论的以下等价表述, 等价性只需注意到 (x
p
) = |{y | y2 = x}| − 1,∑

x∈Zp

(
f(x)

p

)
∈ (−d√p, d√p).

提示: 对任意非空子集 Θ ⊆ Fp, 考虑函数 x 7→
∏

i∈Θ(x− i).

解 令 X 在 {0, 1, 2, . . . , p− n− 1} 中均匀分布. 定义概率函数 P 为

P (b1, . . . , bn) = Pr
[(X + 1

p

)
= (−1)b1 , . . . ,

(X + n

p

)
= (−1)bn

]
.

题目等价于证明 P 在 Fn
2 中任何位置概率都非零. 实际上, 我们将证明 P 足够接近均匀分布. 为此

我们考虑 P 的傅立叶变换

P̂ (s) =
∑
b∈Fn

2

(−1)⟨b,s⟩P (b)
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P̂ 的输入 s 也可以视作一个集合. s 对应 S = {i|si = 1}. 那么傅立叶变换就是

P̂ (S) =
∑
b∈Fn

2

(−1)
∑

i∈S biP (b)

= E
(b1,...,bn)∼P

[
(−1)

∑
i∈S bi

]
= E

X←{0,1,...,p−n−1}

[∏
i∈S

(X + i

p

)]
= E

X←{0,1,...,p−n−1}

[(∏
i∈S(X + i)

p

)]
= E

X←{0,1,...,p−n−1}

[(fS(X)

p

)]
其中 fS 定义为 fS(x) =

∏
i∈S(x + i). 只要 S 非空, fS 就满足 Weil bound 推论的条件: 度数大于

0 且 square-free. 因此
P̂ (S) = E

X←{0,1,...,p−n−1}

[(fS(X)

p

)]
=

1

p− n

p−n−1∑
x=0

(fS(X)

p

)
=

1

p− n

p−1∑
x=0

(fS(X)

p

)
∈
(
−
|S|√p
p− n

,
|S|√p
p− n

)
可以看出只要 p 足够大, P̂ (S) 就足够小. 考虑逆傅立叶变换, 对任意 b ∈ {0, 1}n

P (b) = 1

2n

∑
S

(−1)
∑

i∈S biP̂ (S)

≥ 1

2n

(
P̂ (∅)−

∑
S ̸=∅

|P̂ (S)|

)

≥ 1

2n

(
1−

∑
S ̸=∅

|S|√p
p− n

)

=
1

2n

(
1− 2n

n
2

√
p

p− n

)
.

只要 p > 22n−2n2 + 2n, 便可保证 P (b) > 0.

13. (5 分) 对于随机图上的单调性质, 课上讨论了阈值 (threshold) 与 sharp threshold.

(1) 存在 K4 (4-clique) 是图的一个单调性质, 因此一定存在阈值. 请找出一个阈值并证明.

(2) 这个性质是否存在 sharp threshold? 请证明你的结论.

本题中请使用 G(n, p) 模型. 阈值和 sharp threshold 的定义分别为.
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• p∗ : N→ R 是性质 P 的阈值, 如果对任意 p(n) = o(p∗(n)), p′(n) = ω(p∗(n))

lim
n→∞

Pr[G(n, p(n)) ∈ P ] = 0, lim
n→∞

Pr[G(n, p′(n)) ∈ P ] = 1.

• p∗ : N→ R 是性质 P 的 sharp threshold, 如果对任意 ε > 0

lim
n→∞

Pr[G(n, (1− ε)p∗(n)) ∈ P ] = 0, lim
n→∞

Pr[G(n, (1 + ε)p∗(n)) ∈ P ] = 1.

解

(1) 阈值为 p∗ = n−2/3.

对任意四个点 S,用 XS = 1(S2)⊆E
指示这四个点是否构成 clique. 存在 K4 等价于

∑
S XS > 0.

首先考虑期望, E[
∑

S XS ] = Θ(n4p6). 当 p = o(n−2/3) 时, E[
∑

S XS ] = o(1). 由 Markov
bound, Pr[

∑
S XS > 0] = o(1).

反之, 当 p = ω(n−2/3) 时, E[
∑

S XS ] = o(1). 为了说明这时有 K4 的概率很大, 我们考虑二阶
矩. 当 p = ω(n−2/3) 且 p = O(n−1/2) 时

Var
[∑

S

XS

]
=
∑
S

Var
[
XS

]
+

∑
S,T 共用 3 点 3 边

Cov(XS , XT ) +
∑

S,T 共用 2 点 1 边

Cov(XS , XT )

= Θ(n4)p6 +Θ(n5)(p9 − p12) + Θ(n6)(p11 − p12)

= Θ(n4p6)

因此, 由 Chebyshev bound,

Pr
[∑

S

XS = 0
]
≤

Var[
∑

S XS ]

(E[
∑

S XS ])2
= o(1).

(2) 不存在 sharp threshold.

假设存在 sharp threshold p∗. 那么随着 n → ∞, G(n, 1
2
p∗(n)) 含有 K4 的概率趋近于 0, 而

G(n, 2p∗(n)) 含有 K4 的概率趋近于 1.

注意到以下方式可以采样 G(n, 1
2
p∗(n)):

• 第一步: 采样 G ∼ G(n, 2p∗(n)).

• 第二步: 采样 G 的子图 G′, 点集不变, 每条边以 1/4 的概率保留.

如果 G 含有 K4, 那么 G′ 含有这个 K4 的概率不低于 1/46. 也就是说,

Pr
[
G(n, 1

2
p∗(n)) 含有 K4

]/
Pr
[
G(n, 2p∗(n)) 含有 K4

]
= Pr[G′ 含有 K4 | G 含有 K4] ≥ 1/46.

评分标准: 第一问 3 分, 结果 1 分, 证明上下界各 1 分; 第二问 2 分, 其中结果 0.5 分
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