
Fundamentals of Cryptography: Problem Set 9 Problem 1

Problem 1.
Part A Construction:

1. The prover P samples r1, . . . , rn and sends αi =
∏n

j=1 g
rj
ij for i = 1, . . . ,m.

2. V chooses a challenge c ∈ Zp and sends it to P .

3. P calculates sj = cxj + rj and sends s1, . . . , sn to V .

4. V accepts if
∏n

j=1 g
sj
ij = uc

iαi for i = 1, . . . ,m.

Completeness: V always outputs accepts since

n∏
j=1

g
sj
ij =

n∏
j=1

g
cxj+rj
ij =

(
n∏

j=1

g
xj

ij

)c n∏
j=1

g
rj
ij = uc

iαi.

Soundness: When ({gij}, {ui}) /∈ L. For any α1, . . . , αm, it is impossible to have c ̸= c′

so that there exist sj, s
′
j with

n∏
j=1

g
sj
ij = uc

iαi and
n∏

j=1

g
s′j
ij = uc′

i αi

Else we can take xj = (sj−s′j)(c−c′)−1, then we have ({gij}, {ui}) ∈ L. So the Soundness
error is less than 1/p.

Zero knowledge: Simulator S samples c ∈ Zp and sj ∈ Zp for j = 1, . . . , n, computes
αi =

∏n
j=1 g

sj
ij u

−c
i , and outputs ({αi}, c, {sj}) as an perfect simulated transcript.

Part B The extractor works as follows:

1. Get the first message from P , α1, . . . , αm.

2. Randomly choose two distinct challenges c, c′.

3. Get the answers {sj}, {s′j} by rewinding the prover.

4. Calculate xj = (sj − s′j)/(c− c′) in Zp for j = 1, . . . , n.

Part C The prover knows x, y satisfying

a = gx, b = gy, c = bx, c = ay.

This is a linear formula which has a ZK proof of knowledge system, as shown in part A
and part B.
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Fundamentals of Cryptography: Problem Set 9 Problem 1 (conti.)

Part D Since vy1 = gβ1y and v3 = gβ3 , we have vy1v
−1
3 = gβ1y−β3 . Since ey1 = uβ1ygxy and

e3 = uβ3gxy, we have ey1e
−1
3 = uβ1y−β3 . Take w = β1y − β3.

v1 = gβ1

vy1v
−1
3 = gβ1y−β3

v2 = gβ2

e1 = uβ1gx

ey1e
−1
3 = uβ1y−β3

e2 = uβ2gy

⇐⇒



v1 = gβ1

vy1v
−1
3 = gw

v2 = gβ2

e1 = uβ1gx

ey1u
−w = e3

e2 = uβ2gy

The above equation is linear, so it can be proved use the construction in Part A. Here we
take (x, y, w, β1, β2) as the witness. The existence of (β1, β2, x, y, w) is equivalent to the
existence of (β1, β2, β3, x, y), because we can solve β3 by β3 = β1y − w

Part E Suppose v = gβ, v′ = gβ
′ . Take yd = λd, yi−1 = λi−1+xyi for i = d, d−1, . . . , 1.

Then y0 = f(x). The existence of (β, β′, y0, . . . , yd) is equivalent to the existence of
(β, β′, x). We prove the existence of (β, x, yd, . . . , y0) so that:

v = gβ

e = uβgx

u′ = gβ
′

e′ = uβ′
gy0

gyd = gλd

gyi−1 = gλi−1gxyi for i = 1, . . . , d

⇐⇒



v = gβ

e = uβgx

u′ = gβ
′

e′ = uβ′
gy0

gyd = gλd

gyi−1uβyi = gλi−1eyi for i = 1, . . . , d

This step is by multiply uβyi on both sides of the last equation gyi−1 = gλi−1gxyi and plug
in the second equation e = uβgx. Therefore, the equation system is transformed to a
linear system and can be proved using the construction in Part A.

Part F Notice that b ∈ {0, 1} ⇐⇒ b2 = b. So we set f(x) = x2 and prove that (v, e)
is also an encryption of b2 using the construction in Part E.
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Fundamentals of Cryptography: Problem Set 9 Problem 2

Problem 2.
In the opening phase, the sender S sends (m, r). If c = hmgr, the receiver accepts.

Perfect hiding: for any m, hmgr is uniformly distributed in G.
Computational binding: if the sender can output accepted (m′, r′) with m ̸= m′, then

we can solve discrete log of h based on the sender: hm′
gr

′
= hmgr implies that the discrete

log logg(h) = r−r′

m′−m
. Since the hardness of DDH problem in G implies the hardness of

discrete log problem in G, the protocol should be computational binding.
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