
Fundamentals of Cryptography: Problem Set 8

Due Wednesday Nov 27, 3PM

Collaboration is permitted (and encouraged); however, you must write up your own
solutions and acknowledge your collaborators.

Problem 0 For more information about pairing-based IBE, you can read the paper
“Identity-Based Encryption from the Weil Pairing”.

If you are interested in elliptic curves, you are encouraged to read Section 15 of “A
Graduate Course in Applied Cryptography” by Boneh & Shoup.

For LWE-based fully homomorphic encryption, you can check the MIT cryptography
course 6.875 website mit6875.org.

Problem 1 (6pt) Leftover Hash Lemma A k-source X is a random variable (taking
values in {0, 1}n) such that, for all x ∈ {0, 1}n, Pr[X = x] ≤ 2−k.

A family H of functions h : {0, 1}n → {0, 1}ℓ is universal if for distinct x, y ∈ {0, 1}n,

Pr[h(x) = h(y)] =
1

2ℓ

where the probability is taken over a uniform selection of h from H.
If the familyH of functions h : {0, 1}n → {0, 1}ℓ is universal, ℓ = k−2 log(1/ϵ)−O(1),

and X is a k-source random variable, then

∆((H,H(X)), (H,U)) =
1

2

∑
h∈H,s∈{0,1}ℓ

|Pr[(H,H(X)) = (h, s)]−Pr[(H,U) = (h, s)]| ≤ ϵ/2

Here ∆(X, Y ) is the statistical distance between X, Y , and let U be an uniformly random
ℓ-bit string.

Part A. Given a random variable X, define the collision probability:

Col(X) = Pr[X = X ′] =
∑
x

Pr[X = x]2

where X ′ are drawn independently from the same distribution as X. Prove

Col(H,H(X)) ≤ |H|−1(2−k + 2−ℓ)

Part B. We now turn to analyze the squared l2 distance

∥(H,H(X))−(H,U)∥22 =
∑

h∈H,s∈{0,1}ℓ

(
Pr[(H,H(X)) = (h, s)]−Pr[(H,U) = (h, s)]

)2

Prove the l2 distance is less than ϵ2

|H|2ℓ .

Part C. Using the result in Part B to prove

∆((H,H(X)), (H,U)) ≤ ϵ/2.
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Problem 2 (6pt) LWE-based Encryption The decisional Learning with Errors
(LWE) assumption says that, for any prime p ≤ 2n, for any ℓ = poly(n), (here n is
the security parameter)

(A, sTA+ eT ) ≈c (A,bT )

where A← Zn×ℓ
p , s← Zn

p , e← {−B(n), . . . , B(n)}ℓ, b← Zℓ
p.

Here B should be viewed as a parameter of the assumption. The smaller B is, the
stronger the assumption is.

Consider the following public-key encryption scheme.

Gen(1n) chooses a prime p ≤ 2n, samples A ← Zn×m
p , s ← Zn

p , e ←
{−B, . . . , B}m, computes bT = sTA+ eT , outputs

pk = (A,b), sk = s.

Enc(pk , x), for x ∈ {0, 1}, samples r← {0, 1}m and outputs the ciphertext

ct = (Ar,bT r+ ⌊p
2
⌋ · x).

Since the scheme only encrypts 1 bit, CPA-security means (pk ,Enc(pk , 0)) and (pk ,Enc(pk , 1))
are computationally indistinguishable. This is proved by a hybrid argument.

Hybrid 0 (Real world) The distinguisher receives (pk , ct = Enc(pk , x)), where
pk = (A,b) = (A, sTA+ eT ) as sampled in Gen(1n)
ct = Ar,bT r+ ⌊p

2
⌋ · x for random r← {0, 1}m.

Hybrid 1 The distinguisher receives (pk , ct), where
pk = (A,b) for random matrix A← Zn×m

p and random vector b← Zm
p .

ct = Ar,bT r+ ⌊p
2
⌋ · x for random r← {0, 1}m.

Hybrid 2 The distinguisher receives (pk , ct), where
pk = (A,b) for random matrix A← Zn×m

p and random vector b← Zm
p .

ct = a, v + ⌊p
2
⌋ · x for random (a, v)← Zn

p × Zp.

Apparently, in hybrid 2, the distinguisher guesses x correctly with probability 1/2.
Why are hybrid 0 and hybrid 1 computationally indistinguishable?
Why are hybrid 1 and hybrid 2 statistically indistinguishable? What condition should

n,m, p satisfies? (We may need the Leftover hash Lemma.)

Problem 3 (8pt) Paillier Encryption Let n be the security parameter. Sample two
n-bit safe primes p = 2p′ + 1, q = 2q′ + 1. Let N = pq. We focus on the multiplicative
group Z∗

N2 , and its subgroup QRN2 := {x2|x ∈ Z∗
N2}. Apparently, QRN2

∼= QRp2×QRq2 ,
here ∼= is the notion of group isomorphism. The size of QRp2 is

|QRp2| =
1

2
|Z∗

p2| =
1

2
φ(p2) =

1

2
p(p− 1) = p · p′,

which is the product of two distinct primes. Thus QRp2 must be isomorphic to Zp ×Zp′ .
Similarly, QRq2 is isomorphic to Zq × Zq′ .

QRN2
∼= QRp2 ×QRq2

∼= Zp × Zp′ × Zq × Zq′
∼= ZN × Zp′q′ .

2



Therefore, QRN2 can be decomposed into two groups GN and HN . Group GN is the only
size-N subgroup of QRN2 . Group HN is the only size-(p′q′) subgroup of QRN2 . Moreover,
for every x ∈ QRN2 , there exists unique (g, h) ∈ GN ×HN such that x = gh.

Part A. GN is called the “easy” subgroup of QRN2 . Show that 1 +N is a generator of
GN .

Part B. Show that the discrete log problem is easy in GN . In particular, given N ,
g ∈ GN and ga, show how compute a′ in poly(n) time such that ga

′
= ga.

Part C. HN is called the “hard” subgroup of QRN2 . How to sample a random element
in HN when N is given but p, q are hidden?

Part D. By the Decisional Composite Residuosity (DCR) assumption, a random element
in HN is indistinguishable from a random element in QRN2 . That is,

(N, h) ≈c (N, x),

where N is sampled as mentioned, h← HN and x← QRN2 .

Show that, under the DCR assumption, the following public-key encryption scheme
is CPA-secure.

Gen(1n) samples safe primes p = 2p′+1, q = 2q′+1, lets N = pq.
Output pk = N , sk = p′q′.

Enc(pk ,m), for m ∈ ZN , samples h ← HN and outputs the
ciphertext c = h · (1 +N)m.

Dec(sk , c) = fill the blank

Problem 4 (4pt) Homomorphic Encryption Most public-key encryption schemes
we explored so far are inherently not CCA-secure because they support conflicting fea-
tures: rerandomization and/or homomorphic evaluation.

A public-key encryption scheme is rerandomizable, if given the public key pk and
a ciphertext c encrypting x (i.e., there exists a random tape so that c is the output
of Enc(pk , x)), there is an efficient algorithm Rerand who samples another ciphertext c′

that also encrypts x. It should satisfy one of the following rerandomization requirement
depending on the level of security.

Indistinguishable. If two ciphertexts c0, c1 both encrypts the same message, and c′ is the
rerandomization of cb, no efficient distinguisher can guess b with significant between
than 50-50 chance given c′, sk ;

Statistical indistinguishable. The sample as indistinguishable, except the distinguisher
is computationally unbounded.

Statistical. The distribution of c′ is close to that of a fresh encryption of x.

Perfect. The distribution of c′ is the same as a fresh encryption of x.

A public-key encryption scheme is add-homomorphic, if the message space is an
Abelian group G, and given the public key and two ciphertexts c1, c2 encrypting x, y ∈ G
respectively, there is an efficient algorithm Eval to compute another ciphertext c which
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encrypts x+ y. Note that, since the algorithm Eval does not know the secret key, it has
to compute x+ y “blindly”.

Goldwasser-Micali encryption is an example of rerandomizable and add-homomorphic
encryption where the Abelian group is F2 = {0, 1}. Recall that in Goldwasser-Micali,
the public key is pk = (N, a) where N = pq and a is a quadratic non-residue modulo
either p or q. To rerandomize a ciphertext c = r2ax = Enc(pk , x), sample random s ∈ Z∗

N

and output the rerandomization cs2 = (rs)2ax. To homomorphically add two ciphertexts
c1 = r2ax, c2 = s2ay, simply output c1c2 = (rs)2ax+y.

Show how the following three encryption schemes are rerandomizable and add-homomorphic.
Specify the rerandomization algorithm, the Abelian group, and the homomorphic evalu-
ation algorithm. In the first two parts, the rerandomization should be perfect. You do
not need to prove the correctness of your algorithms.

Part A DDH-based Encryption.

Part B Paillier Encryption (Problem 3).

Part C LWE-based Encryption (Problem 2).

The Abelian group is Zq where q ≪ p, thus you will need to slightly modifies the
encryption algorithm.

Note that for LWE-based encryption, the distribution of the resulting ciphertext
(from the rerandomization algorithm or the homomorphic evaluation algorithm) is
different from that of a fresh encryption.

Remark: It was shown by Bogdanov and Lee in “Limits of provable security for homo-
morphic encryption.” that add-homomorphism implies rerandomization.

Problem 5 (8pt) Circular Security This problem considers circular security, which
has been mentioned in the class to bootstrap somewhat homomorphic encryption schemes
to fully homomorphic encryption schemes.

Definition 1 (Circularly secure PKE). A public key encryption scheme (Gen,Enc,Dec) is
said to be circularly secure if any p.p.t. algorithm A wins the following game (interacting
with a challenger) with probability at most 1

2
+ negl(λ):

i. The challenger samples (pk , sk) ← Gen(1λ) and sends (pk , c∗) to A, where c∗ ←
Enc(pk , sk) is a ciphertext of the secret key.

ii. A sends two messages (m0,m1) to the challenger.

iii. The challenger samples b← {0, 1} and sends c← Enc(pk ,mb) to A.

iv. A outputs a bit b′. We say that A wins if b′ = b.

Part A It turns out that not every CPA secure public key encryption scheme is also
circularly secure. Construct a public-key encryption scheme which is CPA secure
but not circularly secure, relying only on the existence of public-key encryption
schemes. Prove that your scheme is CPA secure but not circularly secure.
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Part B In this part, you will show that a variant of the LWE-based secret key encryption
we saw in class does satisfy circular security (under an LWE-like assumption).
In particular, we consider a variant of the LWE problem where the secret s is a
uniformly random binary string.

Definition 2 (Binary-secret LWE Assumption). The assumption is parameterized
by a modulus q and an error distribution χ (q and χ may depend on the LWE
security parameter n), stating that for any polynomial m(n), the following two
distributions are computationally indistinguishable:

{(A, sTA+eT ) : s
$← {0, 1}n,A $← Zn×m

q , e← χm} ≈c {(A,bT ) : A
$← Zn×m

q , b
$← Zm

q }.

Under the new assumption, prove that the encryption scheme defined by

Enc(s ∈ {0, 1}n,m ∈ {0, 1}m;R $← Zn×m
q , e

$← χm) :=
(
R, sTR+ eT +

⌊q
2

⌋
mT

)
is a circularly secure secret key encryption scheme.

Hint. Show that it is possible to generate an encryption of s given only an encryption
of 0.

Problem 6 (6pt) Lossy Encryption In this problem, we will explore an alternate
notion of security for public key encryption schemes called lossy encryption. This defi-
nition of security is more powerful than CPA security, and allows us to construct other
primitives like oblivious transfer and encryption schemes secure against chosen ciphertext
attacks.

Lossy encryption schemes have two modes of operation: real and lossy. In real mode,
a lossy encryption scheme behaves like a public key encryption scheme. In lossy mode,
the ciphertexts produced by the encryption algorithm contain no information about the
message that was encrypted. Formally, a lossy encryption scheme (Gen,Enc,Dec) has the
following syntax:

• Gen(1λ,mode): The Gen algorithm takes the security parameter as input (as usual).
It also takes as input a mode which can be either real or lossy. In the real mode, it
outputs a pair of keys (pk , sk). In the lossy mode, it outputs a lossy public key p̃k .

• Enc(pk , b): The Enc algorithm takes a public key (either a real or a lossy public
key) and a bit b and outputs a ciphertext ct . (The definition can be generalized to
allow longer messages.)

• Dec(sk , ct): The Dec algorithm takes as input a secret key (has to be real) and
outputs a decrypted bit b.

Furthermore, it has the following properties:

Correctness: The encryption scheme is correct in the real mode. That is, for any b,

Pr[(pk , sk)← Gen(1λ, real) : b = Dec(sk ,Enc(pk , b))] = 1

where the probability is over the randomness of Gen, Enc and Dec algorithms.
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Key Indistinguishability: Real public keys are indistinguishable from lossy public
keys. That is,

{pk : (pk , sk)← Gen(1λ, real)} ≈c {p̃k : p̃k ← Gen(1λ, lossy)}.

Lossy encryption: Encryption using the lossy key completely loses information about
the message encrypted. That is, output distributions of encryptions of 0 and 1,
under lossy keys, are statistically indistinguishable. Formally, for every p̃k in the
support of Gen(1λ, lossy),

Enc
(
p̃k , 0

)
≈s Enc

(
p̃k , 1

)
where the randomness is the coins of the Enc algorithm, and ≈s means that the
statistical distance between the two distributions is negligible in λ.

Part A Show that every lossy encryption scheme also satisfies(
p̃k ,Enc

(
p̃k , 0

))
≈s

(
p̃k ,Enc

(
p̃k , 1

))
where p̃k ← Gen(1λ, lossy), the randomness is the coins of the Gen and Enc.

Part B Show that every lossy encryption scheme is also CPA secure (operating in the
real mode).

Part C Define a lossy key generation algorithm for the Goldwasser-Micali encryption
scheme. Prove the three properties above (correctness, key indistinguishability and
lossy encryption) for the Goldwasser-Micali scheme with your lossy key generation
algorithm, assuming the Quadratic Residuosity assumption.
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