
Fundamentals of Cryptography: Problem Set 7

Due Wednesday Nov 20, 3PM

Collaboration is permitted (and encouraged); however, you must write up your own
solutions and acknowledge your collaborators.

Problem 0 Read Section 9 (Number Theory and Cryptographic Hardness Assumption) and 12
(Public-Key Encryption) of “Introduction to Modern Cryptography” by Katz & Lindell or
Section 10, 11 of “A Graduate Course in Applied Cryptography” by Boneh & Shoup.

Problem 1 (5pt) Show that 5-round Feistel is not an indifferentiable construction of
random permutation based on random oracles. The definition of indifferentiability can
be found in Section 8.10.3 Random oracles: safe modes of operation of “A Graduate Course in
Applied Cryptography”.

Given t random oracles O1, . . . ,Ot : {0, 1}λ → {0, 1}λ, the t-round Feistel network is
a permutation on {0, 1}2λ, defined as:

FeistelO1,...,Ot(x0, x1), takes (x0, x1) as the input.

For each i = 1, 2, . . . , t:

Set xi+1 ← xi−1 ⊕Oi(xi).

Output (xt, xt+1) as the output.

In the class, we discussed how 4-round Feistel is not an indifferentiable construction
of random permutation. Here, you are going to extend the negative statement to 5-
round. That is, you need to construct an efficient adversary A such that for any efficient
simulator S,

Pr
O1,...,O5:{0,1}λ→{0,1}λ

[AO1,...,O5,Feistel
O1,...,O5 and its inverse(1λ)→ 1]

− Pr
permutation P :{0,1}2λ→{0,1}2λ

[ASP,P−1
,P,P−1

(1λ)→ 1]

is non-negligible.
Notation: If the round number in the subscript looks annoying to you, you can use
A,B,C,D,E, F,G instead of x0, x1, . . . , x6.

Problem 2 (6pt) Unsafe Groups As we mentioned in the class, the hardness of
Diffie-Hellman depends on the group generation algorithm. Let Gen be a group generation
algorithm. Gen(1λ) samples a cyclic group G together with a generator g. Technically,
the generation algorithm outputs the description of G – including efficient algorithms
for multiplication, inversion. For efficiency, the size of G is at most 2poly(λ) (otherwise a
group element can not be represented by poly(λ) bits).

1

Part A. Show that, if all prime factors of |G| are small, then computational Diffie-
Hellman is easy. More precisely, show that computational Diffie-Hellman problem
for group generated by Gen is easy if, for any (G, g) sampled by Gen(1λ), |G| can
be efficiently computed and all prime factors of |G| are no more than poly(λ).

Part B. Show that, if some prime factors of |G| is small, then decisional Diffie-Hellman
is easy. More precisely, show that decisional Diffie-Hellman problem for group
generated by Gen is easy if, for any (G, g) sampled by Gen(1λ), |G| can be efficiently
computed and at least one prime factors of |G| is no more than poly(λ).

Problem 3 (4pt) Matrix Diffie-Hellman Let Gen be a cyclic group generation
algorithm. The DDH assumption (parameterized by Gen) says that, if (G, g)← Gen(1λ)

(G, g, ga, gb, gab) ≈c (G, g, ga, gb, gc)

where a, b, c are independently and uniformly sampled from Z|G| = {0, 1, . . . , |G| − 1}.
Show that DDH assumption implies the matrix DDH assumption, that is, for h,w =
poly(λ),

(G, g, ga1 , . . . , gah , gb1 , . . . , gbw , ga1b1 , . . . , gahbw) ≈c (G, g, ga1 , . . . , gah , gb1 , . . . , gbw , gc1,1 , . . . , gch,w)

where a1, . . . , ah, b1, . . . , bw, c1,1, . . . , ch,w are independently and uniformly sampled from
{1, . . . , |G|}. This assumption is called matrix DDH, because it can be written as the
following matrix form

(
G, g, g


a1
...
ah


, g


b1
...
bw


, g


a1b1 · · · a1bw
...

. . .
...

ahb1 . . . ahbw

)
≈c

(
G, g, g


a1
...
ah


, g


b1
...
bw


, g


c1,1 · · · c1,w
...

. . .
...

ch,1 . . . ch,w

)
.

Here we use the conventional notation

g


c1,1 · · · c1,w
...

. . .
...

ch,1 . . . ch,w

 :=

g
c1,1 · · · gc1,w
...

. . .
...

gch,1 . . . gch,w

 .

Problem 4 (8pt) Play with Diffie-Hellman Let Gen be a cyclic group generation
algorithm. For any (G, g) sampled by Gen(1λ), |G| is a prime and can be efficiently
computed.

Part A. Worst-case to average case reduction. Assume there is a p.p.t. adversary
A such that for any (G, g) sampled by Gen(1λ),

Pr
x,y←Z|G|

[
A(G, g, gx, gy) = gxy

]
≥ 1

poly(λ)
.

That is, A solves CDH in the average case. Construct another p.p.t. adversary B
such that for any (G, g) sampled by Gen(1λ), for any x, y ∈ Z|G|,

Pr
[
B(G, g, gx, gy) = gxy

]
≥ 99%.

That is, B should solve CDH with good probability in the worst case.

2

Part B. Show the equivalence between the following variants of CDH assumption. In
all the variants, (G, g) are sampled by Gen(1λ), and x, y are random in Z|G|.

CDH assumption given G, g, gx, gy hard to find gxy

“square” CDH assumption given G, g, gx hard to find gx
2

“inverse” CDH assumption given G, g, gx hard to find gx
−1

“division” CDH assumption given G, g, gx, gy hard to find gx/y

To show problem A is at least as hard as problem B, the proof should be a reduction
that assumes an adversary A can solve problem A with non-negligible probability,
and constructs another adversary B solving problem B with non-negligible proba-
bility.

For some of the reductions, you may additionally assume that Gen(1λ) always sam-
ples g as a random generator in G.

Problem 5 (8pt) The strong RSA assumption says that, for any p.p.t. adversary A,

Pr
[
xe = y and e ≥ 3 is an odd integer : A(N, y)→ (x, e)

]
≤ negl(λ),

where N = pq and p, q are two random λ-bit safe primes, and y is sampled from Z∗N .
Consider the following keyed function:

• Gen(1λ) generates the key as follows. Sample two random λ-bit safe primes p, q, set
N = pq, sample s← Z∗N , and output key k = (N, p, q, s).

• Function f(k, i) takes as inputs a key k, and i ∈ {1, . . . ,m}. The output of f(k, i)
is m = poly(λ) bits long, and is defined as

f(k, i) = s1/ei mod N,

where ei is the i-th odd prime. In other words, f(k, i) = x such that xei = s.

Part A. Show that f(k, i) can be computed by a poly-time algorithm.

Part B. Given a key k = (N, p, q, s), for any set S ⊆ {1, . . . ,m}, define kS as

kS = (N, s1/
∏

i∈S ei mod N).

Show that, there is poly-time algorithm Eval, such that for any S ⊆ {1, . . . ,m}, for
any i ∈ S

Eval(kS, S, i) = f(k, i) .

Part C. Show that, under the strong RSA assumption, any p.p.t. adversary wins the
following game with negligible probability

• Generate k ← Gen(1λ).

• The adversary chooses sets S1, S2, · · · ⊆ {1, . . . ,m} and receives kS1 , kS2 , . . .

• Eventually, the adversary outputs i, y.

• The adversary wins if and only if f(k, i) = y and i /∈
⋃

j Sj.

3

Remark: By the pigeonhole principle, if m≫ λ, for any key k, there must exists distinct
S, S ′ such that kS = kS′ . Say i ∈ S \ S ′. In some sense, f(k, i) is revealed by kS, but “is
not revealed by kS′”.

Remark: We are constructing a “constrained PRF” whose input domain is {1, . . . ,m},
such that it is possible to generated a constrained key for any constrains.

Technically speaking, the keyed function f is not a PRF, because its output is not
pseudorandom. (RSA assumption does not imply indistinguishability from uniform.)
This gap can be closed by using the Goldreich-Levin hard-core predicate.

4

