Fundamentals of Cryptography: Problem Set 7

Due Wednesday Nov 20, 3PM

Collaboration is permitted (and encouraged); however, you must write up your own
solutions and acknowledge your collaborators.

Problem 0 Read Section 9 (Number Theory and Cryptographic Hardness Assumption) and 12
(Public-Key Encryption) of “Introduction to Modern Cryptography” by Katz & Lindell or
Section 10, 11 of “A Graduate Course in Applied Cryptography” by Boneh & Shoup.

Problem 1 (5pt) Show that 5-round Feistel is not an indifferentiable construction of
random permutation based on random oracles. The definition of indifferentiability can
be found in Section 8.10.3 Random oracles: safe modes of operation of “A Graduate Course in
Applied Cryptography”.

Given t random oracles Oy, ..., 0; : {0,1}* — {0,1}*, the t-round Feistel network is
a permutation on {0, 1}?}, defined as:

Feistel 01t (xo,21), takes (xg, 1) as the input.
Foreachi:=1,2,... &
Set Tir] & Ti—1 D Oz(xz)

Output (z¢, x411) as the output.

In the class, we discussed how 4-round Feistel is not an indifferentiable construction
of random permutation. Here, you are going to extend the negative statement to 5-
round. That is, you need to construct an efficient adversary A such that for any efficient
simulator S,

Pr [A(Ql,...,(95,Feistelol """ 95 and its inverse(lz\) N 1]
01,...,05:{0,1}*—{0,1}*

spp! ,pP,p—1 (1/\)

- Pr — 1]

permutation P:{0,1}2*—{0,1}2*

is non-negligible.
Notation: If the round number in the subscript looks annoying to you, you can use
A, B,C,D,E, F,G instead of xg,x1,...,xs.

Problem 2 (6pt) Unsafe Groups As we mentioned in the class, the hardness of
Diffie-Hellman depends on the group generation algorithm. Let Gen be a group generation
algorithm. Gen(1*) samples a cyclic group G together with a generator g. Technically,
the generation algorithm outputs the description of G — including efficient algorithms
for multiplication, inversion. For efficiency, the size of G is at most 2P°¥Y) (otherwise a
group element can not be represented by poly(\) bits).

1

Part A. Show that, if all prime factors of |G| are small, then computational Diffie-
Hellman is easy. More precisely, show that computational Diffie-Hellman problem
for group generated by Gen is easy if, for any (G, g) sampled by Gen(1%), |G| can
be efficiently computed and all prime factors of |G| are no more than poly(\).

Part B. Show that, if some prime factors of |G| is small, then decisional Diffie-Hellman
is easy. More precisely, show that decisional Diffie-Hellman problem for group
generated by Gen is easy if, for any (G, g) sampled by Gen(1%), |G| can be efficiently
computed and at least one prime factors of |G| is no more than poly(\).

Problem 3 (4pt) Matrix Diffie-Hellman Let Gen be a cyclic group generation
algorithm. The DDH assumption (parameterized by Gen) says that, if (G, g) + Gen(1*)

(G,9,9% ¢" 9*) =. (G, g,9" 9", g°)

where a,b, ¢ are independently and uniformly sampled from Zg = {0,1,...,|G| — 1}.
Show that DDH assumption implies the matric DDH assumption, that is, for h,w =

poly (),
(G7g7ga1’ A 7gah7gb17 o 7gbw7galb17 A 7gahbw) %C (G7g7ga17' .. ’gah’gbl7' .. 7gbwa961’17' .. 7g(:h,u})

where ay,...,ap,b1,...,by,C11,...,Chq are independently and uniformly sampled from
{1,...,|G|}. This assumption is called matrix DDH, because it can be written as the
following matrix form

a1 by arby - arby, ai by €11 Cuw

(G’guq i) glbu] glanbr ... anbu) ~e (G,g,g il glow] glent - e)
Here we use the conventional notation

Cl,l . e Cl,’w chl .. gCLw

Ch71 . Ch7w Ch,1 . Ch,w
g 9 9

Problem 4 (8pt) Play with Diffie-Hellman Let Gen be a cyclic group generation
algorithm. For any (G, g) sampled by Gen(1%), |G| is a prime and can be efficiently
computed.

Part A. Worst-case to average case reduction. Assume there is a p.p.t. adversary
A such that for any (G, g) sampled by Gen(1%),

S 1

~ poly(A)’

That is, A solves CDH in the average case. Construct another p.p.t. adversary B
such that for any (G, g) sampled by Gen(1%), for any z,y € Zq,

Pr [A(G, 9:9°,9") = g””y]

m,y<—Z‘G|

Pr[B(G.g.97,9") = 9] = 99%.
That is, B should solve CDH with good probability in the worst case.

2

Part B. Show the equivalence between the following variants of CDH assumption. In
all the variants, (G, g) are sampled by Gen(1%), and z,y are random in Zg,.

CDH assumption given G, g, 9", ¢ hard to find gV
“square” CDH assumption given G, g, g* hard to find ¢*°
“inverse” CDH assumption given G, g, g" hard to find g®
“division” CDH assumption given G, g, ¢% ¢¢ hard to find ¢*/¥

To show problem A is at least as hard as problem B, the proof should be a reduction
that assumes an adversary A can solve problem A with non-negligible probability,
and constructs another adversary B solving problem B with non-negligible proba-
bility.

For some of the reductions, you may additionally assume that Gen(1*) always sam-
ples g as a random generator in G.

Problem 5 (8pt) The strong RSA assumption says that, for any p.p.t. adversary A,
Pr|{z® =y and e > 3 is an odd integer : A(N,y) — (=, e)] < negl(\),

where N = pq and p, g are two random A-bit safe primes, and y is sampled from Zj,.
Consider the following keyed function:

e Gen(1%) generates the key as follows. Sample two random A-bit safe primes p, g, set
N = pq, sample s < ZY;, and output key k = (N, p,q, s).

e Function f(k,) takes as inputs a key k, and ¢ € {1,...,m}. The output of f(k,1)
is m = poly(\) bits long, and is defined as

f(k,i) = s'% mod N,
where e; is the i-th odd prime. In other words, f(k,i) = z such that z% = s.
Part A. Show that f(k,i) can be computed by a poly-time algorithm.
Part B. Given a key k = (N, p,q, s), for any set S C {1,...,m}, define kg as
ks = (N, sV liese mod N).
Show that, there is poly-time algorithm Eval, such that for any S C {1,...,m}, for
any i € S

Eval(ks, S,) = f(k,i).

Part C. Show that, under the strong RSA assumption, any p.p.t. adversary wins the
following game with negligible probability

Generate k < Gen(1%).

The adversary chooses sets S1, S, -+ C {1,...,m} and receives kg,, ks,, - . -

Eventually, the adversary outputs i, y.
The adversary wins if and only if f(k,i) =y and i ¢ |, S;.

3

Remark: By the pigeonhole principle, if m > A, for any key k, there must exists distinct
S, S" such that kg = kg. Say i € S\ S’. In some sense, f(k,i) is revealed by kg, but “is
not revealed by kg/”.

Remark: We are constructing a “constrained PRF” whose input domain is {1,...,m},
such that it is possible to generated a constrained key for any constrains.

Technically speaking, the keyed function f is not a PRF, because its output is not
pseudorandom. (RSA assumption does not imply indistinguishability from uniform.)
This gap can be closed by using the Goldreich-Levin hard-core predicate.

