Problem 1.

Part A. Suppose H_1, H_2 are sampled independently from universal hash function \mathcal{H} , and X_1, X_2 are drawn independently from the same distribution as X.

$$Col(H, H(X)) = \Pr[H_1 = H_2, H_1(X_1) = H_2(X_2)]$$

$$= \sum_{h \in \mathcal{H}} \Pr_{H_1, H_2} [H_1 = H_2 = h] \Pr_{X_1, X_2} [h(X_1) = h(X_2)]$$

$$= \sum_{h} |\mathcal{H}|^{-2} (\Pr[X_1 = X_2] + \Pr[h(X_1) = h(X_2), X_1 \neq X_2])$$

$$\leq |\mathcal{H}|^{-1} (\max_{x} \Pr[X = x] + \Pr[h(X_1) = h(X_2) | X_1 \neq X_2])$$

$$\leq |\mathcal{H}|^{-1} (2^{-k} + 2^{-\ell})$$

Part B. We use h to denote a possible function in \mathcal{H} , and s to denote a string in $\{0,1\}^{\ell}$.

$$\begin{split} &\|(H,H(X))-(H,U)\|_2^2\\ &=\sum_{h,s}\Pr[(H,H(X))=(h,s)]^2+\sum_{h,s}\Pr[(H,U)=(h,s)]^2\\ &-2\sum_{h,s}\Pr[(H,H(X))=(h,s)]\Pr[(H,U)=(h,s)]\\ &=\operatorname{Col}(H,H(X))+|\mathcal{H}|^{-1}2^{-\ell}-2|\mathcal{H}|^{-1}2^{-\ell}\sum_{h,s}\Pr[(H,H(X))=(h,s)]\\ &=\operatorname{Col}(H,H(X))-|\mathcal{H}|^{-1}2^{-\ell} \end{split}$$

Since $\ell = k - 2\log(1/\epsilon) - O(1)$, using the result in Part A we have

$$Col(H, H(X)) - |\mathcal{H}|^{-1} 2^{-\ell} \le |\mathcal{H}|^{-1} 2^{-k} \le \frac{\epsilon^2}{|\mathcal{H}| 2^{\ell}}.$$

Part C. By Cauchy Schwartz inequality,

$$4\Delta^2 \le \|(H, H(X)) - (H, U)\|_2^2 \cdot |\mathcal{H}| 2^{\ell} \le \epsilon^2.$$

Problem 2.

If Hybrid 0 and Hybrid 1 are distinguishable, an adversary can sample r, x, and distinguish $\mathbf{s}^T \mathbf{A} + \mathbf{e}^T$ and \mathbf{b} . This violates the decisional LWE assumption.

Define $\mathbf{A}' = \begin{bmatrix} \mathbf{A} \\ \mathbf{b}^T \end{bmatrix}$. Define a family of hash function $h_{A'} : \{0,1\}^m \to \mathbb{Z}_p^{n+1}$ as $h(\mathbf{r}) = \mathbf{A}'\mathbf{r}$. h is a universal hash function because for any distinct vectors $\mathbf{x}, \mathbf{y} \in \{0,1\}^m$,

$$\Pr[h(\mathbf{x}) = h(\mathbf{y})] = \Pr[\mathbf{A}'(\mathbf{x} - \mathbf{y}) = 0] = p^{-(n+1)}.$$

The last step is because if \mathbf{x}, \mathbf{y} are distinct at the i^{th} bit and $\mathbf{A}'(\mathbf{x} - \mathbf{y}) = 0$, the entry of \mathbf{A}' on row i is determined after sampling the value on other rows. Recall that \mathbf{A}' is a $(n+1) \times m$ matrix with all its entries uniformly sampled from \mathbb{Z}_p , the probability of $\mathbf{A}'(\mathbf{x} - \mathbf{y}) = 0$ should be $p^{-(n+1)}$.

We use the result in Problem 1: set $\ell = (n+1)\log p$, k = m, and ϵ is chosen so that $\ell = k - 2\log(1/\epsilon)$, then

$$\Delta((H, H(X)), (H, U)) \le \frac{\epsilon}{2} = 2^{-(m - (n+1)\log p)/2}.$$

If $m \ge 3(n+1)\log p$, the distinguish probability of any adversary is less than $p^{-(n+1)}$.

Problem 3.

Part A. Notice that $(1+N)^k = 1 + kN \mod N^2$. Since N is odd, we have $1+N = (1+N)^{1+N}$ is the square of $(1+N)^{\frac{1+N}{2}}$. So $1+N \in \mathbb{QR}_{N^2}$.

We can see that $\operatorname{ord}(1+N)=N$. Here $\operatorname{ord}(g)$ denotes the order of g, which is the smallest positive integer k satisfying $g^k=1$. So 1+N generates a group of size N, which must be \mathbb{G}_N . (\mathbb{G}_N is the only subgroup of \mathbb{QR}_{N^2} that is of size N. This relies on the fact that $p' \neq q$ and $q' \neq p$.)

Part B. Suppose $g = (1 + N)^x = 1 + xN$, then $g^a = (1 + N)^y = 1 + yN$. We can calculate x, y then find $k = x^{-1}y \mod N$ using Euclidean algorithm.

Remark: We can not simply calculate the inverse of x because $\phi(N)$ is unknown.

Part C. Sample random $x \in \mathbb{Z}_{N^2}^*$, then x^2 is uniformly sampled in \mathbb{QR}_{N^2} . Then there exist unique $(g,h) \in \mathbb{G}_N \times \mathbb{H}_N$ such that $gh = x^2$ and (g,h) is uniformly distributed in $\mathbb{G}_N \times \mathbb{H}_N$.

Let $y = x^{2N}$. We prove y is uniformly sampled in \mathbb{H}_N . Let h_0 be a generator of \mathbb{H}_N and $h = h_0^a$, then $y = g^N h^N = h^N = h_0^{aN}$. Since $\gcd(N, p'q') = 1$, and a is uniformly chosen from $\mathbb{Z}_{p'q'}$, we have aN uniformly chosen from $\mathbb{Z}_{p'q'}$.

Part D. $\operatorname{Dec}(sk,c) = sk^{-1}\log_{1+N}(c^{sk}) \mod N$. Part B shows \log_{1+N} is efficiently computable.

Since $c^{sk} = h^{sk}(1+N)^{mp'q'} = (1+N)^{mp'q'}$, we have $Dec(sk,c) = sk^{-1}mp'q' = m$.

Under DCR assumption, h is indistinguishable from a random element in \mathbb{QR}_{N^2} , thus multiply h to $(1+N)^m$ could act as a one time pad.

Problem 4.

Part A. $pk = (G, g, g^x), c = (c_1, c_2) = (g^y, g^{xy} \cdot m)$

Rerandomization: sample z from $\{0, 1, ..., |G| - 1\}$

$$c' = (g^z \cdot c_1, (g^x)^z \cdot c_2) = (g^{y+z}, g^{xy}g^{xz} \cdot m)$$

Homomorphic evaluation:

Denote $c = (c_1, c_2) = (g^y, g^x y \cdot m_1), c' = (c'_1, c'_2) = (g^{y'}, g^{xy'} \cdot m_2)$

Message m_1, m_2 is in Abelian group G

$$Eval(c,c') = (c_1c'_1, c_2c'_2) = (g^{y+y'}, g^{x(y+y')m_1m_2})$$

Part B. $pk = N, c = h(1+N)^m$

Rerandomization: sample h' from \mathbb{H}_N .

$$c' = c \cdot h' = hh'(1+N)^m$$

Homomorphic evaluation: Denote $c = h(1+N)^{m_1}$, $c' = h'(1+N)^{m_2}$.

Message m_1, m_2 is in Abelian group \mathbb{Z}_N .

$$\text{Eval}(c, c') = c \cdot c' = hh'(1+N)^{m_1+m_2} \mod N^2$$

Part C. $pk = (\mathbf{A}, \mathbf{b}), c = (c_1, c_2) = (\mathbf{Ar}, \mathbf{b}^T \mathbf{r} + \lfloor p/q \rfloor m)$

Rerandomization: sample $r' \in \{0, 1\}^m$

$$c' = c + (\mathbf{Ar'}, \mathbf{b}^T \mathbf{r'}) = (\mathbf{A(r + r')}, \mathbf{b}^T (\mathbf{r + r'}) + |p/q|m)$$

Homomorphic evaluation:

Denote $c = (\mathbf{Ar}, \mathbf{b}^T \mathbf{r} + \lfloor p/q \rfloor m_1), c' = (\mathbf{Ar}', \mathbf{b}^T \mathbf{r}' + \lfloor p/q \rfloor m_2).$

Message m_1, m_2 is in Abelian group \mathbb{Z}_q

$$Eval(c, c') = c + c' = (\mathbf{A}(\mathbf{r} + \mathbf{r}'), \mathbf{b}^{T}(\mathbf{r} + \mathbf{r}') + \lfloor p/q \rfloor (m_1 + m_2))$$

Problem 5.

Part A. Let (Gen, Enc, Dec) be a CPA-secure public-key encryption scheme, construct another encryption scheme that consists of

- $\widetilde{\mathsf{Gen}}(1^{\lambda})$: return $(pk, sk) \leftarrow \mathsf{Gen}(1^{\lambda})$.
- $\bullet \ \ \widetilde{\mathrm{Enc}}(pk,m) := \begin{cases} \mathrm{Enc}(pk,m) \| m & \text{ if } \mathrm{Dec}(m,\mathrm{Enc}(pk,0)) = 0 \\ \mathrm{Enc}(pk,m) \| 0 & \text{ otherwise} \end{cases}$
- $\widetilde{\mathsf{Dec}}(sk, c_1 || c_2) := \mathsf{Dec}(sk, c_1)$

It is not circularly secure since $\mathsf{Enc}(sk,sk)$ leaks sk. However, CPA security preserves since the original scheme is CPA secure and it's hard for an adversary to find some m s.t. $\mathsf{Dec}(m,\mathsf{Enc}(pk,0))=0$.

Part B. The CPA security follows directly from the binary-secret LWE assumption. Note that

$$\mathsf{Enc}(\mathbf{s},\mathbf{s}) = \left(\mathbf{R},\mathbf{s}^T\mathbf{R} + \mathbf{e}^T + \left\lfloor\frac{q}{2}\right\rfloor\mathbf{s}^T\right) = \left(\mathbf{R},\mathbf{s}^T\left(\mathbf{R} + \left\lfloor\frac{q}{2}\right\rfloor\mathbf{I}_n\right) + \mathbf{e}^T\right),$$

which is identically distributed to $\mathsf{Enc}(\mathbf{s},0^n) - \left(\left\lfloor \frac{q}{2}\right\rfloor \mathbf{I}_n,0\right)$. Hence it's circularly secure.

Problem 6.

Part A.

$$\begin{split} &\Delta \left(\left(\widetilde{pk}, \operatorname{Enc}(\widetilde{pk}, 0) \right), \ \left(\widetilde{pk}, \operatorname{Enc}(\widetilde{pk}, 1) \right) \right) \\ &= \sum_{\widetilde{pk}} \operatorname{Pr} \left[\operatorname{Gen}(1^{\lambda}, \operatorname{lossy}) = \widetilde{pk} \right] \Delta \left(\operatorname{Enc}(\widetilde{pk}, 0), \operatorname{Enc}(\widetilde{pk}, 1) \right) \\ &\leq \sum_{\widetilde{pk}} \operatorname{Pr} \left[\operatorname{Gen}(1^{\lambda}, \operatorname{lossy}) = \widetilde{pk} \right] \operatorname{negl}(\lambda) \\ &\leq \operatorname{negl}(\lambda) \end{split}$$

Part B. Any lossy encryption scheme is CPA-secure under lossy mode since $\mathsf{Enc}(\widetilde{pk},0)$ and $\mathsf{Enc}(\widetilde{pk},1)$ are statistically indistinguishable.

By key indistinguishability, any adversary cannot distinguish which mode the scheme runs under, it is therefore CPA-secure under real mode after a simple hybrid.

Part C. Let $\mathsf{Gen}(1^{\lambda},\mathsf{lossy})$ first run $\mathsf{Gen}(1^{\lambda},\mathsf{real})$ to obtain (N,p,q), then sample $z \overset{\$}{\leftarrow} \mathcal{QR}_N$ uniformly, output $\widetilde{pk} = (N,z)$.

Key indistinguishability follows from Quadratic Residuosity assumption, note that $\mathsf{Enc}(\widetilde{pk},0)$ and $\mathsf{Enc}(\widetilde{pk},1)$ are both uniformly random in \mathcal{QR}_N hence lossy encryption holds.