
Fundamentals of Cryptography: Problem Set 3

Due Wed Oct 9 3PM

Collaboration is permitted (and encouraged); however, you must write up your own
solutions and acknowledge your collaborators.

If a problem has 0pt, it will not be graded.

Problem 0 Read Section 7.1, 7.2, 7.3 of “Introduction to Modern Cryptography (2nd
ed)” by Katz & Lindell.

If you are curious about how to construct PRG from OWF, you may read “Pseudo-
random Generators from One-Way Functions: A Simple Construction for Any Hardness”
by Thomas Holenstein.

Problem 1 (0pt): Concentration Inequalities This problem recaps a few useful
probability bounds. They show how random variables “concentrate” around their means.
Section A of “Introduction to Modern Cryptography (2nd ed)” may help you answer this
question.

Part A (Markov’s Inequality) Let X be a random variable over non-negative real
numbers. Prove that, for any a > 0,

Pr[X ≥ a] ≤ E[X]

a
.

Part B (Chernoff Bound) Let p ∈ [0, 1] be a constant. Let X1, . . . , Xn be random
variables that are sampled independently from Bern(p). That is, for each i ∈
{1, . . . , n}, we have Xi ∈ {0, 1} and Pr[Xi = 1] = p.

(1) Compute E[et
∑

i Xi] for any t ∈ R.
(2) Prove that,

Pr
[1
n

∑
i

Xi ≥ p+ ε
]
≤ E[et

∑
i Xi]

etn(p+ε)
,

for any t > 0.

(3) Optimize the above bound by choosing t wisely.

The optimized bound is call Chernoff bound, it should looks like

Pr
[1
n

∑
i

Xi ≥ p+ ε
]
≤ e−D(p+ε∥p)·n ,

where D(p+ ε∥p) is the notatino of KL divergence, and is defined as D(p+ ε∥p) :=
(p + ε) log(p+ε

p
) + (1 − p − ε) log(1−p−ε

1−p). Since D(p + ε∥p) ≥ 2ε2, Chernoff bound
can be relaxed to

Pr
[1
n

∑
i

Xi ≥ p+ ε
]
≤ e−2ε

2n .

1

Part C (Chebyshev’s Inequality) Let X be a random variable. Prove that

Pr
[
|X − E[X]| ≥ a

]
≤ Var[X]

a2

for any a > 0. Here Var[X] := E[(X − E[X])2] is the variance of X.

Let X1, . . . , Xn be random variables such that E[Xi] = p and Var[Xi] = σ2 for all i.
We also assume that X1, . . . , Xn are pair-wise independent. Prove that

Pr
[∣∣∣ 1
n

∑
i

Xi − p
∣∣∣ ≥ a

]
≤ σ2

na2

for any a > 0.

Problem 2 (14pt) Assume f is a length-preserving OWF (i.e., |f(x)| = |x|). In each
of the following cases, prove f ′ is a OWF, or show a counterexample.

Part A f ′(x) := f(x)∥f(f(x)).

Part B f ′(x) := x⊕ f(x).

Part C f ′(x) := f(x)∥f(x̄), where x̄ denote the bit-wise NOT operation.

Part D f ′(x) := f(G(x)), where G is a PRG that |G(s)| = |s|+ 1.

Part E f ′(x) := G(f(x)), where G is a PRG that |G(s)| = |s|+ 1.

Part F f ′(x) := f(x∥ 0 . . . 0︸ ︷︷ ︸
logn many

), where n = |x|.

Part G f ′(x) := (f(x))1:(n−logn), where n = |x|. That is, f ′(x) outputs the first n−log(n)
bits of f(x).

Problem 3 (6pt) Hardness Amplification of Weak OWFs For simplicity, we
consider length-preserving weak OWF. f : {0, 1}∗ → {0, 1}∗ is a length-preserving weak
OWF, if |f(x)| = |x| for any x ∈ {0, 1}∗, and there exists a polynomial q, such that for
any PPT A, for any sufficiently large n,

Pr
x

$←{0,1}n
x̂←A(f(x))

[
f(x̂) = f(x)

]
≤ 1− 1

q(n)
.

(Note the order of the quantifiers!)
Assume f is such a weak OWF. Define f ′ such that for x1, . . . , xm ∈ {0, 1}n,

f ′(x1∥ . . . ∥xm) = f(x1)∥ . . . ∥f(xm)

where m = m(n) is a polynomial on n. (m(n) will be fixed later.)
We prove f ′ is a OWF by contradiction. Assume f ′ is not a OWF, then there exists

PPT A′, and polynomial p such that

Pr
x1,...,xm

$←{0,1}n
x̂1,...,x̂m←A′(f(x1)∥...∥f(xm))

[
f(x̂1) = f(x1), . . . , f(x̂m) = f(xm)

]
>

1

p(n)

2

for infinitely many integer n.
Define A as

A(y) let n = |y|, let m = m(n)

sample i
$← {1, . . . ,m}

for all j ̸= i, sample xj
$← {0, 1}n and let yj = f(xj)

let yi = y
call x̂1∥ . . . ∥x̂m ← A′(y1∥ . . . ∥ym)
if f ′(x̂1∥ . . . ∥x̂m) = y1∥ . . . ∥ym,

output x̂i

We say x ∈ {0, 1}n is “good” if A inverts f(x) with a good probability. Concretely,
we define x ∈ {0, 1}n is “good” if and only if

Pr
x̂←A(f(x))

[
f(x̂) = f(x)

]
≥ 1

r(n)

for a polynomial r(n). (r(n) will be fixed later.) If x is not “good”, we say x is “bad”.

Part A Prove that

Pr
x1,...,xm

$←{0,1}n
x̂1,...,x̂m←A′(f(x1)∥...∥f(xm))

[
f(x̂1) = f(x1), . . . , f(x̂m) = f(xm)

]

≤ m2

r(n)
+
(

Pr
x←{0,1}n

[x is “good”]
)m

,

for any sufficiently large n.

Part B Choose polynomials m(n), r(n) properly, so that

Pr
x←{0,1}n

[x is “bad”] ≤ 1

2q(n)

for infinitely many n. (Note that, you can let r(n) depend on both p(n) and q(n);
while m(n) can depend on q(n) and cannot depend on p(n).)

Part C Define Arepeat as

Arepeat(y) let n = |y|
repeat the following for n · r(n) times

call x̂← A(y)
if f(x̂) = y,

output x̂

Show that Arepeat violates our assumptions on f .

The contradiction rules out our assumption. So f ′ must be a OWF.

3

Problem 4 (bonus 3pt) How to invert OWP, with Preproccessing To invert
an OWP, the naive algorithm is to enumerate all possible inputs, which takes 2n times
for n-bit inputs/outputs. There is no obvious smarter algorithm for a general OWP.
In this problem, we show how to reduce the time complexity of inverting a OWP, if
preproccessing is allowed.

Let f : {0, 1}n → {0, 1}n be a permutation that can be efficiently computed. For this
problem, we are not considering the asymptotic complexity, you can assume that f can
be computed in unit time.

The attack is done in a different setting that allows preproccessing. The adversary is
split into A = (A0,A1).

• A0 is the preproccessing algorithm and is unbounded. For example, A0 can query
f(x) for all x ∈ {0, 1}n. In the end, A0 should ouput a bounded length advice
string L, which will be passed to A1.

• A1 is the online algorithm (in the RAM model). It takes the advice string L and a
value f(x) as inputs. Its task is to find x in bounded time.

For any integer t < 2n, construct adversary A = (A0,A1) such that

• the advice string L contains up to 2n

t
poly(n) bits,

• for any x ∈ {0, 1}n, the online algorithm A1(L, f(x)) always outputs x in at most
t poly(n) times.

4

