Fundamentals of Cryptography: Problem Set 3

Due Wed Oct 9 3PM

Collaboration is permitted (and encouraged); however, you must write up your own
solutions and acknowledge your collaborators.
If a problem has Opt, it will not be graded.

Problem 0 Read Section 7.1, 7.2, 7.3 of “Introduction to Modern Cryptography (2nd
ed)” by Katz & Lindell.

If you are curious about how to construct PRG from OWF, you may read “Pseudo-
random Generators from One-Way Functions: A Simple Construction for Any Hardness”
by Thomas Holenstein.

Problem 1 (Opt): Concentration Inequalities This problem recaps a few useful
probability bounds. They show how random variables “concentrate” around their means.
Section A of “Introduction to Modern Cryptography (2nd ed)” may help you answer this
question.

Part A (Markov’s Inequality) Let X be a random variable over non-negative real
numbers. Prove that, for any a > 0,
E[X]

Pr[X >a] <
a

Part B (Chernoff Bound) Let p € [0,1] be a constant. Let Xj,..., X, be random
variables that are sampled independently from Bern(p). That is, for each i €
{1,...,n}, we have X; € {0,1} and Pr[X; = 1] = p.

(1) Compute E[et2: %] for any t € R.
(2) Prove that,
1 E[et 2 Xi]
Pr [EZX'L Z p+€i| S etn(p-‘ra) )
for any ¢ > 0.
(3) Optimize the above bound by choosing ¢ wisely.
The optimized bound is call Chernoff bound, it should looks like

1
P [_ X; > ] < e~ Plptelp)n
T\ % p+e e

where D(p+¢l|p) is the notatino of KL divergence, and is defined as D(p+¢||p) :=
(p+e) log(’%) +(1—-p—2¢) log(%;e). Since D(p + €l|p) > 2%, Chernoff bound
can be relaxed to

1 2
P[— X; > ]< —2n
rn; Zpt+el <e
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Part C (Chebyshev’s Inequality) Let X be a random variable. Prove that
Var[X]

a?

Pr[\X ~E[X]| > a| <

for any a > 0. Here Var[X] := E[(X — E[X])?] is the variance of X.

Let X1,..., X, be random variables such that E[X;] = p and Var[X;] = o2 for all 4.
We also assume that Xi,..., X,, are pair-wise independent. Prove that

PrH—ZX p‘ >a} <

for any a > 0.

Problem 2 (14pt) Assume f is a length-preserving OWF (i.e., |f(z)| = |z|). In each
of the following cases, prove f’ is a OWF, or show a counterexample.

Part A f'(z) := f(x)||f(f(z)).
Part B f'(z) := 2 @ f(x).

f(2)]|f(Z), where Z denote the bit-wise NOT operation.

(

()
Part C f'(x)

(z) :=

Part D f'(z f(G(x)), where G is a PRG that |G(s)| = |s| + 1.

Part E f'(z) := G(f(z)), where G is a PRG that |G(s)| = |s| + 1.
(z) =

Part F f'(x f(z]|0...0), where n = |z|.

log n many

Part G f'(z) := (f(%))1:(n—10gn), Where n = |z|. That is, f'(x) outputs the first n—log(n)
bits of f(x).

Problem 3 (6pt) Hardness Amplification of Weak OWFs For simplicity, we

consider length-preserving weak OWF. f: {0,1}* — {0,1}* is a length-preserving weak

OWF, if |f(x)| = |z| for any = € {0,1}*, and there exists a polynomial ¢, such that for

any PPT A, for any sufficiently large n,

o @) = @) <1- ot
2 A(f(x))

(Note the order of the quantifiers!)
Assume f is such a weak OWF. Define f’ such that for xy, ..., z,, € {0,1}",

f@ll - Mlam) = f@)ll - (2m)

where m = m(n) is a polynomial on n. (m(n) will be fixed later.)
We prove f’is a OWF by contradiction. Assume f’ is not a OWF, then there exists
PPT A’, and polynomial p such that

Pr (£ = f). o P ) = Flan)] >

Z1 e Zm—{0,1}™ p(n)



for infinitely many integer n.

Define A as
A(y)  let n = ly|, let m =m(n)
sample i & {1,...,m}
for all j # 4, sample z; & {0,1}" and let y; = f(z;)
let y; =y
call Zq ... || Zm < A" (vl - |ym)
if f/@l - N#m) =l - lym,
output z;

We say = € {0,1}" is “good” if A inverts f(z) with a good probability. Concretely,
we define z € {0,1}" is “good” if and only if

I [r@) = @) 2 %

for a polynomial r(n). (r(n) will be fixed later.) If = is not “good”, we say = is “bad”.
Part A Prove that
Py F@0) = @), Fim) = Flam)]
E15e B = A (f (@) ] f (2m)

<4 ( Pr [zis “good”]) :
z<—{0,1}"

for any sufficiently large n.

Part B Choose polynomials m(n), r(n) properly, so that

P : C(b d77 <
xe{ol,nl}n[x is "ad”] < 2q(n)

for infinitely many n. (Note that, you can let r(n) depend on both p(n) and ¢(n);
while m(n) can depend on ¢(n) and cannot depend on p(n).)

Part C Define A,epeat 88

Avepeat(y) et n = [y|
repeat the following for n - r(n) times
call & < A(y)

if f(2) =,
output z

Show that A,epear Violates our assumptions on f.

The contradiction rules out our assumption. So f’ must be a OWF.



Problem 4 (bonus 3pt) How to invert OWP, with Preproccessing To invert
an OWP, the naive algorithm is to enumerate all possible inputs, which takes 2™ times
for m-bit inputs/outputs. There is no obvious smarter algorithm for a general OWP.
In this problem, we show how to reduce the time complexity of inverting a OWP, if
preproccessing is allowed.

Let f:{0,1}" — {0,1}" be a permutation that can be efficiently computed. For this
problem, we are not considering the asymptotic complexity, you can assume that f can
be computed in unit time.

The attack is done in a different setting that allows preproccessing. The adversary is

split into A = (Ap, A;).

e A, is the preproccessing algorithm and is unbounded. For example, Aq can query
f(z) for all x € {0,1}". In the end, Ay should ouput a bounded length advice
string L, which will be passed to Aj.

e A, is the online algorithm (in the RAM model). It takes the advice string L and a
value f(x) as inputs. Its task is to find = in bounded time.

For any integer ¢ < 2", construct adversary A = (A, A;) such that
e the advice string L contains up to % poly(n) bits,

e for any = € {0,1}", the online algorithm 4, (L, f(x)) always outputs = in at most
t poly(n) times.



