Fundamentals of Cryptography: Problem Set 2

Due Wednesday Sep 25 3PM

Collaboration is permitted (and encouraged); however, you must write up your own
solutions and acknowledge your collaborators.
If a problem has Opt, it will not be graded.

Problem 0 Read Section 3.1, 3.2, 3.3 of “Introduction to Modern Cryptography (2nd
ed)” by Katz & Lindell or Section 3.1 to 3.5 of “A Graduate Course in Applied Cryp-
tography” by Dan Boneh and Victor Shoup.

You are also recommended to read Section 3.7 of “A Graduate Course in Applied
Cryptography”, which analyzes a widely-used practical PRG.

Problem 1 (3pt) A integer set Z C N is called polynomial-time-enumerable if (a) there
exists a deterministic polynomial-time algorithm A, such that A(1") outputs whether
n € Z; (b) Let sz(n) :=min{i:i € Z and ¢ > n}, then sz(n) = poly(n).

For any integer set Z C N, a function G : {0,1}* — {0, 1}* is a PRG on length in Z,
if

e (G can be computed in polynomial time;
e there exists £ : N — N such that Vn € N, ¢(n) > n, and |G(z)| = ¢(|z|);

e for all PPT distinguisher D, there is a negligible function £(n) = negl(n), such that
forallneZ

Pr [D(G(s))=1]— Pr [D(r)=1]| <e(n).

se{0,1)n re{0,1}40n)

Assume G is a PRG on length in a polynomial-time-enumerable set Z, construct a
PRG based on G. (You may assume w.l.o.g. that £(n) =n +1.)

Problem 2 (10pt) Assume G, Gy, Gy are secure PRGs with same stretch function /.
(That is, |G(s)| = |Go(s)| = |G1(s)| = £(]s]).) In each of the following cases, either prove
that G’ is a PRG, or show a counterexample.

Part A (Opt) G'(s) := G(0]|s), where || donates concatenation.
Part B G'(s) := G(sa2.,), where n denote the bit length of s.
Part C G'(s) := G(s)||G(s + 1 mod 2").

Part D (Opt) G'(s) := G1(Ga(s)).

Part E G'(s) := G, (s), where s is the first bit of s.

1

Part F G'(s) := s1||Gs, (s2.n), where sy, denotes all but the first bit of s.

Part G G'(s) := G1(S1:[10gn))[|G2(S|10gn+1):m), Where s, denotes the substring of s that
starts from the a-th bit and ends at the b-th bit.

Problem 3 (5pt) An important application of PRG in complexity is derandomization.

Part A (4pt) Assume PRG exists. For any language £ in BPP, show that there exists
a p.p.t. Turing machine M such that

e For every z € L, the probability M (z) outputs 1 is at least 2/3.
e For every z ¢ L, the probability M (x) outputs 1 is at most 1/3.

e For every z € {0,1}", the execution of M (x) consumes at most n random bits.

Part B (1pt) Your construction in Part A is likely to be false, unless the definition of
PRG is slightly strengthed. How to strength the definition of PRG so that the
construction becomes correct?

Remark: As a consequence, assume the existence of PRG (under the strengthened def-
inition of Part B), any L € BPP can be decided by a deterministic 2" poly(n)-time
algorithm. Moreover, complexitists are willing to consider stronger assumptions, e.q.,
existence of PRGs that fool any sub-exponential distinguisher. Such stronger assumption
implies that £ can be decide by a deterministic 2P°Y18(M) _time algorithm.

Problem 4 (3pt) Yao’s Hybrid Argument Assuming G is a secure PRG satisfying
|G(s)] = |s| + 1, we can construct a PRG G’ for any polynomial stretch function £(\) €
poly(A). To simplify the proof, define auxiliary functions G; as

G() is G,
Gi(5> = 51HG2‘71(52:|5|) = 51:i||G(8i+1:|s\)-

Then
G,(S) = Gg(|5|)_|s|_1<. .. GQ(G1<G0(S))) ..)

is a secure PRG for stretch function ¢. (We considered a very similar construction in the
class.)

Prove that G’ is a secure PRG. In particular, for any p.p.t. distinguisher D', show
how to construct a p.p.t. distinguisher D such that

1
Pr [D TPl 2
se{()I,‘l}’\[(G(s))] {01 (r)]‘ ~ poly(\)

Pr [D'(G'(s))]— Pr [D'(r)]|.

s<{0,1}* r<{0,1}¢(N)

Problem 5 (Opt): Asymptotic Notations Let g : N — R, be a function mapping
natural numbers to positive real numbers. We define a few function classes. For any
f:N—= R, we say

e f(n) € O(g(n)) if and only if 3c € Ry, N € Ns.t. Vn > N, |f(n)] < c-g(n);

e f(n) € o(g(n)) if and only if Ve € Ry, AN € Ns.t. Vn > N, |f(n)| < c- g(n);

As equivalent definitions,

() € Olg(n)) <= Timsup 'g Eg' € 0, +00),
f(n) € o(g(n)) — liirisogp ’;EZ;| =0.

For any f: N — R, we say

e f(n) € Qg(n))if and only if e € R, N € Ns.t. Vn > N, f(n) > c- g(n);

e f(n) € w(g(n)) if and only if Ve € R, ,IN € Ns.t. Vn > N, f(n) > c- g(n);
<

e f(n) € ©(g(n)) if and only if J¢1,c0 € Ry, N € Ns.t. Vn > N, ¢y - g(n)
ca-g(n).

As equivalent definitions,

f(n) <

f(n) € Qg(n)) — ligicgf% € (0, 400,

f(n) €ew(gn)) <~ liminfm — +00,
n—oo g(n)
f(n) € ©(g(n)) = f(n) € O(g(n)) and f(n) € Q(g(n)).
Remark: As a common abuse of notation, people often write “f(n) = O(g(n))” instead
of “f(n) € O(g(n))”. In such case, “=" is not symmetric. Exchanging the two sides gives
“O(g(n)) = f(n)”, which is not a valid statement.

Part A Say f(n) = n° for a constant ¢ € N. Prove that f(n) € 0(2"). As mentioned in
the remark, this is typically written as n® = o(2").

Part B Prove or disprove: for any function f: N — R, if f ¢ O(2") then f € Q(2").
Part C Say fi(n) € O(g(n)), fa(n) € ©(g(n)), prove or disprove fi(n)+fa(n) € O(g(n)).
Part D Prove that: for f: N — R, and g : N — R, we have

f(n) =0(g(n)) <= g(n) =Q(f(n)),

f(n) =o(g(n)) < g(n) =w(f(n)),

f(n)=06(g(n)) <= g(n) =0(f(n)).
Part E There is an infinite sequence of functions fi, fo,... Foreach i € N, f; € O(g(n)).

Prove or disprove) ._ fi(n) = O(n - g(n)).

Cryptographers also consider the function classes of polynomial functions, denoted by
poly(n), and negligible functions, denoted negl(n). They are defined as

poly(n) := U O(n'), negl(n) := ﬂ o<i).

nt
1€EN 1€EN

In other words, f(n) € poly(n) if f(n) is smaller than some polynomial, g(n) € negl(n)
if g(n) is smaller than every inverse-polynomial.

Remark: As a common abuse of notation, people often write “f(n) = poly(n) and g(n) =
negl(n)” instead of “f(n) € poly(n) and g(n) € negl(n)”.

3

Part F For any f: N —- R, g: N — R, such that f(n) € poly(n) and g(n) € negl(n),
prove that:

f(n)-g(n) € negl(n), log(1 + f(n)) € O(logn),
1

70 ¢ negl(n), —log(g(n)) € w(logn).

