
Fundamentals of Cryptography: Problem Set 2

Due Wednesday Sep 25 3PM

Collaboration is permitted (and encouraged); however, you must write up your own
solutions and acknowledge your collaborators.

If a problem has 0pt, it will not be graded.

Problem 0 Read Section 3.1, 3.2, 3.3 of “Introduction to Modern Cryptography (2nd
ed)” by Katz & Lindell or Section 3.1 to 3.5 of “A Graduate Course in Applied Cryp-
tography” by Dan Boneh and Victor Shoup.

You are also recommended to read Section 3.7 of “A Graduate Course in Applied
Cryptography”, which analyzes a widely-used practical PRG.

Problem 1 (3pt) A integer set I ⊆ N is called polynomial-time-enumerable if (a) there
exists a deterministic polynomial-time algorithm A, such that A(1n) outputs whether
n ∈ I; (b) Let sI(n) := min{i : i ∈ I and i ≥ n}, then sI(n) = poly(n).

For any integer set I ⊆ N, a function G : {0, 1}∗ → {0, 1}∗ is a PRG on length in I,
if

• G can be computed in polynomial time;

• there exists ℓ : N → N such that ∀n ∈ N, ℓ(n) > n, and |G(x)| = ℓ(|x|);

• for all PPT distinguisher D, there is a negligible function ε(n) = negl(n), such that
for all n ∈ I ∣∣∣∣ Pr

s←{0,1}n
[D(G(s)) = 1]− Pr

r←{0,1}ℓ(n)
[D(r) = 1]

∣∣∣∣ ≤ ε(n).

Assume G is a PRG on length in a polynomial-time-enumerable set I, construct a
PRG based on G. (You may assume w.l.o.g. that ℓ(n) = n+ 1.)

Problem 2 (10pt) Assume G,G0, G1 are secure PRGs with same stretch function ℓ.
(That is, |G(s)| = |G0(s)| = |G1(s)| = ℓ(|s|).) In each of the following cases, either prove
that G′ is a PRG, or show a counterexample.

Part A (0pt) G′(s) := G(0∥s), where ∥ donates concatenation.

Part B G′(s) := G(s2:n), where n denote the bit length of s.

Part C G′(s) := G(s)∥G(s+ 1 mod 2n).

Part D (0pt) G′(s) := G1(G2(s)).

Part E G′(s) := Gs1(s), where s1 is the first bit of s.

1

Part F G′(s) := s1∥Gs1(s2:n), where s2:n denotes all but the first bit of s.

Part G G′(s) := G1(s1:⌊logn⌋)∥G2(s⌊logn+1⌋:n), where sa:b denotes the substring of s that
starts from the a-th bit and ends at the b-th bit.

Problem 3 (5pt) An important application of PRG in complexity is derandomization.

Part A (4pt) Assume PRG exists. For any language L in BPP, show that there exists
a p.p.t. Turing machine M such that

• For every x ∈ L, the probability M(x) outputs 1 is at least 2/3.

• For every x /∈ L, the probability M(x) outputs 1 is at most 1/3.

• For every x ∈ {0, 1}n, the execution of M(x) consumes at most n random bits.

Part B (1pt) Your construction in Part A is likely to be false, unless the definition of
PRG is slightly strengthed. How to strength the definition of PRG so that the
construction becomes correct?

Remark: As a consequence, assume the existence of PRG (under the strengthened def-
inition of Part B), any L ∈ BPP can be decided by a deterministic 2n poly(n)-time
algorithm. Moreover, complexitists are willing to consider stronger assumptions, e.g.,
existence of PRGs that fool any sub-exponential distinguisher. Such stronger assumption
implies that L can be decide by a deterministic 2poly(log(n))-time algorithm.

Problem 4 (3pt) Yao’s Hybrid Argument Assuming G is a secure PRG satisfying
|G(s)| = |s| + 1, we can construct a PRG G′ for any polynomial stretch function ℓ(λ) ∈
poly(λ). To simplify the proof, define auxiliary functions Gi as

G0 is G,

Gi(s) = s1∥Gi−1(s2:|s|) = s1:i∥G(si+1:|s|).

Then
G′(s) := Gℓ(|s|)−|s|−1(. . . G2(G1(G0(s))) . . .)

is a secure PRG for stretch function ℓ. (We considered a very similar construction in the
class.)

Prove that G′ is a secure PRG. In particular, for any p.p.t. distinguisher D′, show
how to construct a p.p.t. distinguisher D such that∣∣∣ Pr

s←{0,1}λ
[D(G(s))]− Pr

r←{0,1}λ+1
[D(r)]

∣∣∣ ≥ 1

poly(λ)

∣∣∣ Pr
s←{0,1}λ

[D′(G′(s))]− Pr
r←{0,1}ℓ(λ)

[D′(r)]
∣∣∣.

Problem 5 (0pt): Asymptotic Notations Let g : N → R+ be a function mapping
natural numbers to positive real numbers. We define a few function classes. For any
f : N → R, we say

• f(n) ∈ O(g(n)) if and only if ∃c ∈ R+, N ∈ N s.t. ∀n ≥ N, |f(n)| ≤ c · g(n);

• f(n) ∈ o(g(n)) if and only if ∀c ∈ R+,∃N ∈ N s.t. ∀n ≥ N, |f(n)| ≤ c · g(n);

2

As equivalent definitions,

f(n) ∈ O(g(n)) ⇐⇒ lim sup
n→∞

|f(n)|
g(n)

∈ [0,+∞),

f(n) ∈ o(g(n)) ⇐⇒ lim sup
n→∞

|f(n)|
g(n)

= 0.

For any f : N → R+, we say

• f(n) ∈ Ω(g(n)) if and only if ∃c ∈ R+, N ∈ N s.t. ∀n ≥ N, f(n) ≥ c · g(n);

• f(n) ∈ ω(g(n)) if and only if ∀c ∈ R+,∃N ∈ N s.t. ∀n ≥ N, f(n) ≥ c · g(n);

• f(n) ∈ Θ(g(n)) if and only if ∃c1, c2 ∈ R+, N ∈ N s.t. ∀n ≥ N, c1 · g(n) ≤ f(n) ≤
c2 · g(n).

As equivalent definitions,

f(n) ∈ Ω(g(n)) ⇐⇒ lim inf
n→∞

f(n)

g(n)
∈ (0,+∞],

f(n) ∈ ω(g(n)) ⇐⇒ lim inf
n→∞

f(n)

g(n)
→ +∞,

f(n) ∈ Θ(g(n)) ⇐⇒ f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)).

Remark: As a common abuse of notation, people often write “f(n) = O(g(n))” instead
of “f(n) ∈ O(g(n))”. In such case, “=” is not symmetric. Exchanging the two sides gives
“O(g(n)) = f(n)”, which is not a valid statement.

Part A Say f(n) = nc for a constant c ∈ N. Prove that f(n) ∈ o(2n). As mentioned in
the remark, this is typically written as nc = o(2n).

Part B Prove or disprove: for any function f : N → R+, if f /∈ O(2n) then f ∈ Ω(2n).

Part C Say f1(n) ∈ O(g(n)), f2(n) ∈ Θ(g(n)), prove or disprove f1(n)+f2(n) ∈ Θ(g(n)).

Part D Prove that: for f : N → R+ and g : N → R+, we have

f(n) = O(g(n)) ⇐⇒ g(n) = Ω(f(n)),

f(n) = o(g(n)) ⇐⇒ g(n) = ω(f(n)),

f(n) = Θ(g(n)) ⇐⇒ g(n) = Θ(f(n)).

Part E There is an infinite sequence of functions f1, f2, . . . For each i ∈ N, fi ∈ O(g(n)).
Prove or disprove

∑
i=n fi(n) = O(n · g(n)).

Cryptographers also consider the function classes of polynomial functions, denoted by
poly(n), and negligible functions, denoted negl(n). They are defined as

poly(n) :=
⋃
i∈N

O(ni), negl(n) :=
⋂
i∈N

o
(1

ni

)
.

In other words, f(n) ∈ poly(n) if f(n) is smaller than some polynomial, g(n) ∈ negl(n)
if g(n) is smaller than every inverse-polynomial.
Remark: As a common abuse of notation, people often write “f(n) = poly(n) and g(n) =
negl(n)” instead of “f(n) ∈ poly(n) and g(n) ∈ negl(n)”.

3

Part F For any f : N → R+, g : N → R+ such that f(n) ∈ poly(n) and g(n) ∈ negl(n),
prove that:

f(n) · g(n) ∈ negl(n), log(1 + f(n)) ∈ O(log n),

1

f(n)
/∈ negl(n), − log(g(n)) ∈ ω(log n).

4

