
Cryptography: Pset 12 Problem 1

Problem 1.

Part A. WLOG assume that l = 1, otherwise we just send each bit separately. For
each i ∈ {1, . . . , t}, the receiver chooses b = 1 if i = x and b = 0 otherwise; the sender
chooses m̂0 = 0 and m̂1 = mi. Then the receiver uses the 1-out-of-2 OT to get vi = m̂b.
The result is v1 ∨ · · · ∨ vt.

To simulate the view of sender, we just call OT.SimS ((0,mi) ,⊥) for i ∈ {1, . . . , t}.
To simulate the view of receiver, we just call OT.SimT (0, 0) for i ̸= x and OT.SimT (1,mx)
for i = x. Therefore the scheme is secure.

Part B. The protocol goes like this:

• The sender prepares t random messages r1, · · · , rt uniformly sampled from {0, 1}ℓ.

• The given 1-out-of-2 OT protocol is used for t rounds. In round i, the sender
prepares the following two inputs for the OT protocol:(

ri,
⊕
j<i

rj ⊕mi

)

• If the receiver wants to learn mx, he or she requires the former message in the first
x− 1 rounds, and the later message in round x, which means he or she can learn

r1, · · · , rx−1,
⊕
j<x

rj ⊕mx

helping him or her reveal mx.

The correctness for this protocol is obvious. The view of the sender can be simu-
lated by t OT.SimS, which runs OT.SimS on t pairs of inputs prepared by the sender
independently.

The view of the receiver can also be simulated by t OT.SimR. In the first x−1 rounds,
the (semi-honest) receiver can only require the former message, and t OT. Sim R simply
samples r ← $ and returns OT.SimR(r, 0) to the receiver. Of course it should remember
all r-s. When round x comes, the receiver requires the later message, the t OT.SimR will
return OT.SimR (mx ⊕R, 1), where R denotes the XOR sum of all r-s. In the remaining
rounds, it simply returns OT.SimR($, b) for the require bit b from the receiver. Thus, the
protocol is secure against semi-honest sender and semi-honest receiver.

Page 1

Cryptography: Pset 12 Problem 2

Problem 2.

Part A. For each i ∈ {nin + 1, . . . , n}, evaluate

Li,vi = Dec
(
Lj2,vj2

[1],Dec
(
Lj1,vj1

[1], ci,Lj1,vj1
[0],Lj2,vj2

[0]

))
For each i ∈ {n− nout + 1, . . . , n}, output vi = Li,vi (assume that Li,0 = 0 and

Li,1 = 1).

Part B. For each wire j, assume j is one of the input wires of d gates, then Lj,0 and Lj,1

will be used as key for 2d times. To use only one-time pad, we can generate 2d different
keys for Lj,0 (and Lj,1), so every key will be only used once.

For a gate with output wire i among these d gates, the two keys generated for this
gate should be of length |Li,0| (or |Li,1|). Therefore, assume the output wire of these d

gates are i1, . . . , id, respectively, then |Lj,0| =
∑d

k=1 2 |Lik,0|+ 1, where +1 stands for the
mask bit. It is easy to use induction to prove that

|Lj,0| =
∑
d

2d × [the number of paths with length d starting from wire j]

Therefore, for circuits with depth O(log n), the length of input label is poly(n), so
they can be efficiently garbled.

Part C. Here we prove the security of Part A. The simulator works as follows:

1. Sim samples L1, · · · , Lnin
uniformly at random, and use them as the input labels.

It also samples L′
1[1], · · · , Lnin

[1]′ uniformly at random, and generate the comple-
mentary labels L′

1, · · · , L′
nin

.

2. Find a gate such that both of its input labels have been determined, and its c
has not been determined. Let Li, Lj denote its input labels, and L′

i, L
′
j be their

complements. If it is not an output gate, then Sim samples an output label Lk

uniformly at random. It also samples L′
k[1], and generate a complementary output

label L′
k.

3. Sim computes ck,Li[0],Li[0] using Li, Lj, Lk. For the other three cyphertexts, it uses
Lk or L′

k arbitrarily.

4. Repeat Step 2 and 3 until the c of all gates have been determined.

5. Output the generated c as C̃, and (L1, · · · , Lnin
) as

(
L1,x1 , · · · , Lnin,xnin

)
.

We then show that the generated view is computationally indistinguishable from the
real view. First, (L1, · · · , Lnin

) is sampled uniformly. Then for all gates, the “correct”
output is always consistent. Notice that all the “complementary” labels are not present
in the generated view. Thus by the CPA-security of the encryption scheme, the dis-
tribution of the three “incorrect” cyphertexts in the generated view is computationally
indistinguishable from the real view, which completes the proof.

Page 2

	
	

