
Fundamentals of Cryptography: Problem Set 11

Due Wednesday Dec 18, 3PM

Collaboration is permitted (and encouraged); however, you must write up your own
solutions and acknowledge your collaborators.

Problem 0 Check lecture 17, 18, 19, 20 of course 6.875 in mit6875.org.

Problem 1 (7pt) Threshold Secret Sharing Lower Bound t-out-of-n secret shar-
ing is a randomized algorithm Share : X ×R → S1×S2× · · · ×Sn, where X is the secret
space, R is the randomness space, and Si the i-th share space.

(Prefect) Correctness For any subset T ⊆ [n] such that |T | ≥ t, there is a recovering
algorithm RecT , such that for any x ∈ X , r ∈ R, let (s1, . . . , sn) = Share(x, r), we
have RecT ((si)i∈T ) = x.

(Prefect) Privacy For any subset T ⊆ [n] such that |T | < t, for any x, x′ ∈ X , the two
distribution

ShareT (x, r), ShareT (x
′, r)

are identical, where the randomness comes from r ← R. Here ShareT (x, r) consists
of all the i-th coordinate of Share(x, r) for i ∈ T .

As we mentioned in the class, Shamir secret sharing is a secure threshold secret
sharing. The t-out-of-n Shamir secret sharing is as follows. Let F be a finite field of
size at least n + 1. The sharing algorithm, given secret s, samples a random degree-at-
most-(t − 1) polynomial p over F such that p(0) = x, and output p(1), . . . , p(n) as the
shares.

In this problem, we show that the share size of Shamir secret sharing is close to
optimal, even if the secret is only 1-bit (i.e., X = {0, 1}).

Part A. Let Share : X ×R → S1 × S2 × · · · × Sn be a 2-out-of-n secret sharing. Show
that

∑n
i=1 log |Si| ≥ Ω(n log n).

Hint: Show that
∑n

i=1
1

|Si| ≤ 1.

Part B. Let Share : X ×R → S1×S2× · · ·×Sn be a t-out-of-n secret sharing, for some
t > 1. Show that

∑
i log |Si| ≥ Ω((n− t) log(n− t)).

Remark: We also know
∑

i log |Si| ≥ Ω(t log t) if t < n [Bogdanov-Guo-Komargodski
2016]. Thus

∑
i log |Si| ≥ Ω(n log n) unless t = 1 or n.
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Problem 2 (5pt) Ramp Secret Sharing In the previous problem, we show that for
t-out-of-n threshold secret sharing, the (average) sharing size is at least Ω(log n), even if
the secret is only 1 bit. We care about the ratio between the (largest) sharing size and
secret length. For 1-bit secret, this ratio is Θ(log n). But for longer secret, this ratio can
be improved. If the secret is at least log n bit long, then every sharing can be as long as
the secret.

The ratio between the (largest) sharing size and secret length, when the secret is
sufficiently long, is called the information ratio of the secret sharing. So the information
ratio of threshold secret sharing is 1. One can argue that 1 is a nature lower bound of
information ratio.

However, for ramp secret sharing, as we are going to show, the information ratio
can be smaller than 1. The (k, ℓ, n)-ramp secret sharing is a randomized algorithm
Share : X ×R → S1 × S2 × · · · × Sn, where X is the secret space, R is the randomness
space, and Si the i-th share space.

(Prefect) Correctness For any subset T ⊆ [n] such that |T | ≥ ℓ, there is a recovering
algorithm RecT , such that for any x ∈ X , r ∈ R, let (s1, . . . , sn) = Share(x, r), we
have RecT ((si)i∈T ) = x.

(Prefect) Privacy For any subset T ⊆ [n] such that |T | ≤ k, for any x, x′ ∈ X , the two
distribution

ShareT (x, r), ShareT (x
′, r)

are identical for random r ∈ R. Here ShareT (x, r) consists of all the i-th coordinate
of Share(x, r) for i ∈ T .

Apparently, k, ℓ should satisfy k < ℓ ≤ n. Note that, the t-out-of-n Shamir secret
sharing is (t− 1, t, n)-ramp secret sharing.

Your task is to construct a (k, ℓ, n)-ramp secret sharing scheme for any k < ℓ ≤ n,
such that its information ratio is bounded by

maxi log |Si|
log |X |

= O
( 1

ℓ− k

)
.

State your construction and prove its correctness and privacy.

Problem 3 (6pt) Perfect security against semi-honest adversary means the view of
the adversary can be perfectly simulated given the corrupted party’s input and output.
Show that no 2-party computation protocol computing the AND function is perfectly
secure against semi-honest adversaries.
Remark: The claim can be generalized to statistically secure protocols.

Problem 4 (6pt) PKO Implies Security with Selective Abort In this problem,
we consider a weaker security notion “privacy with knowledge of outputs (PKO)”. In
the new security notion, the adversary learns no extra information compare to an honest
execution, but the adversary can choose an incorrect output for each honest party.

Assume that, any f ∈ P/poly has an efficient multi-party computation protocol
which achieves (computational) PKO security against up to t corruptions. Show that,
for any f ∈ P/poly, there is also an efficient multi-party computation protocol which
achieves (computational) security with selective abort against up to t corruptions.
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Malicious Security Definitions An n-party MPC protocol computing a function f is
computationally (resp. perfectly/statistically) secure against up to t active corruptions,
if for any p.p.t. (resp. unbounded) environment E , adversary A, for any set S ⊆ [n] of at
most t corrupted parties, there exists a p.p.t. (resp. unbounded) simulator S, such that
the view of the environment in the real world and the ideal world are computationally
(resp. perfectly/statistically) indistinguishable.

real world:

P1 P2 P3 P4 P5

environment E

adversary A

Honest Pi receives input xi from E , exe-
cutes the protocol, sends the protocol’s
output yi to E .
All corrupted parties are controlled by
the adversary. They may interacts arbi-
trarily with E and honest parties.

ideal world:

P1 P2 P3 P4 P5

environment E

simulator S

ideal functionality F

Honest Pi receives input xi from E , for-
wards xi to F , receives yi from F sends
yi to E .
All corrupted parties are controlled by
the simulator. Each corrupted party Pi

sends xi to F and receives yi from F .
They may interacts arbitrarily with E .

There are several different level of security definitions, depending on how the ideal
functionality is define.

Full Security = Guaranteed Output Delivery (GOD) Security: Upon receiving
xi from every party Pi, locally compute (y1, . . . , yn) = f(x1, . . . , xn), send yi to Pi.

Security with Abort: Upon receiving xi from every party Pi, locally compute (y1, . . . , yn) =
f(x1, . . . , xn), send yi to Pi if Pi is corrupted.

Wait for an signal babort ∈ {0, 1} from S. If babort = 1, send ⊥ to all honest parties;
otherwise send yi to Pi.

Security with Selective Abort: Upon receiving xi from every party Pi, locally com-
pute (y1, . . . , yn) = f(x1, . . . , xn), send yi to Pi if Pi is corrupted.

For each honest Pi, wait for signals babort,i ∈ {0, 1} from S. If babort,i = 1, send ⊥
to Pi; otherwise send yi to Pi.

Privacy with Knowledge of Output (PKO) Security: Upon receiving xi from ev-
ery party Pi, locally compute (y1, . . . , yn) = f(x1, . . . , xn), send yi to Pi if Pi is
corrupted.

For each honest Pi, wait for ŷi ∈ {0, 1} from S. If ŷi = ⊤, send yi to Pi; otherwise
send ŷi to Pi.
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