
Fundamentals of Cryptography: Problem Set 10

Due Wednesday Dec 11, 3PM

Collaboration is permitted (and encouraged); however, you must write up your own
solutions and acknowledge your collaborators.

Problem 0 Read section Proving properties in zero-knowledge of Boneh & Shoup, or lecture
14, 15, 16 of course 6.875 in mit6875.org.

Problem 1 (18pt) Let p be a prime such that p = 2O(n), where n is the security
parameter. Let G be a group of order p. Let g be a generator of G.

Part A. Linear Relation Consider boolean formulas ϕ of the following type:

ϕ(x1, ..., xn) :=

{ n∏
j=1

g
xj

1j = u1 ∧
n∏

j=1

g
xj

2j = u2 . . . ∧
n∏

j=1

g
xj

mj = um

}
.

That is, the formula is satisfied if the m linear constraints are all satisfied. In such
a formula ϕ, the gij’s and ui’s are elements of the group G. Some of these group
elements could be system parameters or even constants, while others are specific to
the formula. The xi’s are the formal variables of the formula.

Let L be the language

L = {(g1,1, . . . , gm,n, u1, . . . , um) : ∃(x1, . . . , xn) s.t. ϕ(x1, . . . , xn) = true} .

Design a three-message proof system which allows an efficient prover P to convince
a verifier V that the given (g1,1, . . . , gm,n, u1, . . . , um) is in L. The prover is given
the witness (x1, . . . , xn). The proof system should have completeness error 0 (the
honest prover is always accepted by the honest verifier). The soundness error (the
probability that a cheating prover can fool the verifier) should be O(1

p
). And the

proof system should be honest-verifier perfect zero-knowledge.

You should state your construction, and prove its completeness, soundness, and
zero-knowledge.

Part B. Prove that your construction in part A is actually a proof of knowledge system.
That is, you shoud design an efficient extractor, such that, given any prover whose
completeness error is small, your extractor can extract the witness from the given
prover.

Part C. DH triple Let L be the language

L = {(a, b, c) : ∃(x, y) s.t. a = gx, b = gy, c = gxy}.

Use the construction in Part A to design a three-message proof system which allows
an efficient prover P to convince a verifier V that a given (a, b, c) ∈ G3 is in L. The
prover is given the witness (x, y).

1



Part D. Encrypted DH Triple Suppose Alice is given x, y and encrypts each of gx, gy, gxy

under Bob’s public key u ∈ G, producing three ciphertexts (v1, e1), (v2, e2), (v3, e3),

(v1, e1) = Enc(u, gx) = (gβ1 , uβ1gx)

(v2, e2) = Enc(u, gy) = (gβ2 , uβ2gy)

(v3, e3) = Enc(u, gxy) = (gβ3 , uβ3gxy)

where β1, β2, β3 ∈ Zp are uniformly generated by Alice during each time of en-
cryption. Alice, as a prover, presents these ciphertexts to a verifier Charlie, and
wants to convince him that these ciphertexts really do encrypt a DH-triple, without
revealing anything else.

Design a three-message proof system for Alice. (Since u is generated by Bob, no
one in the proof system, including the prover (Alice), the verifier (Charlie), the
simulator, is given the discrete logarithm of u.)

Part D. Encrypted Polynomial Suppose Alice has two ciphertexts (v, e) and (v′, e′)
under Bob’s public key u. The first ciphertext encrypts a group element gx and
the second encrypts gx

′
. Alice wants to convince Charlie that x′ = f(x) for some

specific polynomial f(x) =
∑d

i=0 λix
i. We shall assume that the degree d and the

coefficients λ0, . . . , λd are fixed, public values.

Design a three-message proof system for Alice.

Part E. Encrypted Bit Suppose Alice wants to prove to Charlie that a ciphertext
(v, e) is the encryption of a bit gb under Bob’s public key u for some b ∈ {0, 1}.
Design a three-message proof system for Alice.

Hint: See Boneh & Shoup

Problem 2 (4pt) The common reference string model is similar to the common random
string model. In the common reference string model, a trusted external party samples a
public string from a specific distribution (rather than from the uniform distribution).

In this problem, we construct a commitment scheme in the common reference string
(CRS) model. The CRS is crs = (G, g) where G is a DDH-hard group and g is a generator
of G.

The commitment phase of the commitment scheme is defined as follows:

1. The sender S is given a message m ∈ Zp;

2. The receiver R sends h ∈ G to the sender;

3. The sender S samples random r ∈ Zp, and sends hmgr.

Finish the protocol by describe the opening phase. Prove that this commitment
protocol exhibits perfect hiding and computational binding properties.

Remark: The need of CRS can be eliminated by letting the receiver samples a DDH-hard
group and proves ∃t, h = gt using a ZKP protocol.
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