Fundamentals of Cryptography: Midterm

Wednesday Nov 8, 3-6PM

Problem 1 (1pt) ...there exists an positive integer ¢ such that f(n) = O(n°).
Problem 2 (1pt) ...for any positive integer ¢, f(n) = O(n=°).

Problem 3 (2pt) ...either of the following.

e choose a message and ask the challenger to return a fresh encryption.

e choose a ciphertext # ¢ and ask the challenger to return its decryption.

Problem 4 (2pt) (a)(c)
CRHEF is seemingly a stronger assumption than OWF. P # N P is seemingly a weaker
assumption than OWF.

Problem 5 (2pt) (d)(b)(c)(a)
Problem 6 (3pt) In the j-th hybrid H;, the distinguisher receives a sample from the
following distribution

Sample yi, ..., y; < {0,1}, 27 + {0,1}*;
Fori=j+1,...,\ compute y;||z" = g(z'™!);
Output y: [yl . .. lyallz*.

Problem 7 (5pt) F’ is not necessarily a PRF.
Suppose H : {0,1}*1 x {0,1}* — {0,1}* be a secure PRF. Define F as

F(k,z) = k1| H (k2:x,0)2.0 if 2 =10
’ H(koz, ) otherwise

That is, the output is mostly the same as H(ks.», z), the first bit in the output is replaced

by k; when input x = 0.
Then F’ is not a PRF, because the first bit of F”(k, z) always equals to 1.

Problem 8 (5pt) Let F’:{0,1}* x A" — {0, 1} be a secure PRF. Construct F as

F'(k,0), if 2 =0

Flk,z) =
(. 2) {F’(k, i)® F'(k,i—1), otherwise

Then psum(k, x) = F (K, z).



Problem 9 (5pt) We start with a simple property of DUF. For any polynomial-size
sets M, A C {0,1}*

Fl’gr Adistinct mg,my € M, 36 € A, H(k,mo) ® H(k,m1) = | < negl(\).

The property follows simply from the union bound.

Let 2, 2}, b, x4, 2%, v}, yb, y& be the input, output and intermediate values associated
with the distinguisher’s i-th query. Without loss of generality, we can assume inputs
(zf,x}) are distinct.

Without loss of generality, we can assume the adversary is deterministic. (A random-
ized adversary is just an distribution over deterministic adversaries.)

Here is an outline of the hybrid proof.

e Hybrid 0 is the real world.

e Hybrid 1: F(ks,-), F(ks,-) are replaced by a truly random function fs, fs.
Hybrid 1 is indistinguishable from Hybrid 0 due to the security of PRF F'

e Hybrid 2: f5, f3 are replaced by a randomness generator, which ignores the input
and outputs a fresh random string.

e Hybrid 3: The ideal world. (%, %) is sampled at random.
Hybrid 2 is indistinguishable from Hybrid 3 because their distributions are identical.
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It remains to show the indistinguishability between Hybrid 1 and Hybrid 2. To for-
malize the proof, we specify how the randomness are used in Hybrid 1 and Hybrid 2.
There is a tape of random strings 1,79, .. ..

e In Hybrid 2, the randomness generator always pick the next unused random string.

e In Hybrid 1, the random functions fs, f3 are sampled on the fly. Whenever f;(z) is
queried and not defined, set f;(x) as the next unused random string.

If there is no duplicated queries to fs, f3, then Hybrid 1 is identical to Hybrid 2.

In Hybrid 2, there is not collision in x3 with overwhelming probability because {x%}
are i.i.d. uniform. Also in Hybrid 2, there is not collision in zs with overwhelming
probability, because {z%} are perfectly hidden from the adversary. If the adversary can
force a collision in z5 blindly, it can also attack the security of DUF.

Note that, the probability that is no collision on either {z4} or {z%} in Hybrid 1 is
exactly the same as in Hybrid 2. Let (r1,rs,...) be a tape such that the corresponding
execution in Hybrid 1 has a collision. Before the first duplicated query, the executions
in Hybrid 2 and Hybrid 1 are identical. Thus the same collision also occurs in Hybrid 2
using tape (71,79, ...). Such technique is called randomness mapping.
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Problem 10 (5pt) Define an encryption scheme IT as
e Gen(1*): Compute kg < Geny(1%), kg < Genp(1?). Output (ka, kp).

e Enc((ka,kp),m): Sample random r of the same length as m. Compute cq
Enca(ka,r), cg < Encg(kp,m @ r)). Output c = (ca, cp).

e Dec((ka,kp),(ca,cp)) = Deca(ka,ca) ® Decg(kp,cp).

Correctness is straight-forward.

Since the scheme is symmetric, assume without loss of generality that I1g is CPA-
secure and II 4 is not. We show a reduction from an adversary breaking II to an adversary
breaking 1.

Let A be an adversary that wins PrivK{}; with non-negligible probability. Consider
the following adversary B.

e B samples key kq < Geny(1%).

o A(1%) is emulated.

e Whenever A asks for the encryption of m: B samples random r, compute ¢4 <—
Enca(ka,r); asks the challenger to compute cp as the encryption of m @ r; returns
(ca,cp) to A.

e When A picks two message mg, my: B samples random r, compute c4 < Encs(ka,1);

asks the challenger to compute cp as the encryption of my, @ r; returns (ca, cg) to

A.

e When A outputs a guess O, B outputs the same guess.

cpa

The probability B wins PrivKy’; = is identical to that of A winning PrivKyy,.

Problem 11 (5pt) Let H : {0,1}" — {0,1} be a PRF, let G : {0,1}* — {0,1}*"* be
a PRG, define F' as

F<<k1,07 kl,l) k2707 k2,17 ey kn707 kn,l)a x) = @ H(l{fl7xl,$)
i=1

where its key G(k) = (k1,0, k1.1, k2,0, k2.1, - - -, kno, kn,1) is parsed as 2n keys for H.
For a bit-fixing constrain ¢ € {0,1,7}", the constrained key k. consists of

k’@o, if C; = 0
ki,l; if C;, = 1
(ki,OJ ki,l)a ifc; =7

for each 1 < i < n.

The correctness is rather straight-forward.

For privacy, for every (i,b) that ¢; = 1 — b, H(k;p,-) can be replaced by a random
function from {0, 1}" to {0, 1} since k;; is hidden from the distinguisher.



