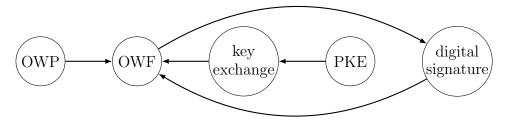
Fundamentals of Cryptography: Final

Wednesday Jan 8, 2-4PM

Problem 1 (b)

Problem 2



Problem 5A We should that H is not a PRF. Then neither is F. Choose $\ell = 2\lambda$ distinct $x_1, \ldots, x_\ell \in \{0, 1\}^{n/2}$. Let \mathbf{u}_i denote the first row of

$$M_{1,x_{i,1}}M_{2,x_{i,2}}\cdots M_{n/2,x_{i,n/2}}$$

Let \mathbf{v}_j denote the first column of

$$M_{n/2+1,x_{j,1}}M_{n/2+2,x_{j,2}}\cdots M_{n/2+n/2,x_{j,n/2}}.$$

Then

$$H(x_i \| x_j) = \text{first entry of } M_{1,x_{i,1}} \cdots M_{n/2,x_{i,n/2}} \cdot M_{n/2+1,x_{j,1}} \cdots M_{n/2+n/2,x_{j,n/2}}$$
$$= \mathbf{u}_i^{\mathsf{T}} \mathbf{v}_j$$

Consider a $\ell \times \ell$ matrix M such that $M_{i,j} = H(x_i || x_j)$.

$$M = \begin{bmatrix} H(x_1 \| x_1) & \cdots & H(x_1 \| x_\ell) \\ \vdots & \ddots & \vdots \\ H(x_\ell \| x_1) & \cdots & H(x_\ell \| x_\ell) \end{bmatrix} = \begin{bmatrix} | & & | \\ \mathbf{u}_1 & \cdots & \mathbf{u}_\ell \\ | & & | \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} | & & | \\ \mathbf{v}_1 & \cdots & \mathbf{v}_\ell \\ | & & | \end{bmatrix}$$

So the rank of M is no larger than λ .

But the rank of a random $\ell \times \ell$ matrix is close to ℓ with high probability. This allows an efficient distinguisher to distinguish between H and a random function.

Problem 5B OT implies PKE.

Let (OT_1, OT_2, OT_3) be a two-message OT protocol. It is enough to construct a PKE scheme for encrypting one-bit messages. The PKE scheme can be defined as follows:

• Gen runs $OT_1(0) \to (msg_1, \pi)$. Let the first message msg_1 be the public key, let the status π be the secret key.

- $\mathsf{Enc}(pk, x)$ runs $\mathsf{OT}_2(\mathsf{msg}_1, (x, 0)) \to \mathsf{msg}_2$. Let msg_2 be the ciphertext.
- Dec runs $OT_3(\pi, msg_2)$ to recover x.

The correctness is straight-forward.

For CPA-security, it is sufficient to show that (public key, encryption of 0) is indistinguishable from (public key, encryption of 1). Let $View_E((m_0, m_1), b)$ denote the view of an external party during an execution of the OT protocol, when the sender has messages m_0, m_1 and the receiver has selection bit b.

(public key, encryption of 0) $\equiv \mathsf{View}_E((0,0),0) \approx_c \mathsf{View}_E((0,0),1) \approx_c \mathsf{View}_E((1,0),1) \approx_c \mathsf{View}_E((1,0),0)$ $\equiv (\text{public key, encryption of } 1)$

The first and last \approx_c follow from the security against semi-honest sender. The middle \approx_c follows from the security against semi-honest receiver.

Problem 6 Share the k secrets separately. More concretely, for each $\alpha \in [k]$, we will construct a secret sharing scheme such that

For any subset $T = \{i_1, ..., i_k\}$, where $1 \le i_1 < i_2 < \cdots < i_k \le n$:

(Correctness) If $i^* = i_{\alpha} \in T$, the secret can be recovered from $(s_{i_1}, \ldots, s_{i_k})$.

(**Privacy**) Otherwise, nothing about the secret can be recovered from $(s_{i_1}, \ldots, s_{i_k})$.

This condition is implied by the following condition:

For any subset $T \subseteq [n]$:

(Correctness) If $(i^* \in T) \land (T \cap \{1, \ldots, i^*-1\} \ge \alpha - 1) \land (T \cap \{i^*+1, \ldots, n\} \ge k - \alpha)$, the secret can be recovered from $(s_{i_1}, \ldots, s_{i_k})$.

(**Privacy**) Otherwise, nothing about the secret can be recovered from $(s_{i_1}, \ldots, s_{i_k})$.

Inspired by the observation, the PoSS distribution algorithm can be constructed as follows

- For each $\alpha \in [k]$
 - Additively share m_i among $m_{\alpha,L}, m_{\alpha,i*}, m_{\alpha,H}$.
 - Use an $(\alpha 1)$ -out-of- $(i^* 1)$ threshold secret sharing to distribute $m_{\alpha,L}$ among shares $m_{\alpha,1}, \ldots, m_{\alpha,i^*-1}$.
 - Use an $(k-\alpha)$ -out-of- $(n-i^*)$ threshold secret sharing to distribute $m_{\alpha,H}$ among shares $m_{\alpha,i^*+1}, \ldots, m_{\alpha,n}$.
- The *i*-th share consists of $m_{1,i}, \ldots, m_{k,i}$.

Problem 7 Construct such OT protocol recursively. Let $\Pi_1 = \Pi$. Assume Π_n is a 2-message 1-out-of-2ⁿ OT protocol. Construct Π_{n+1} as follows:

- Let *i* be the selection number. The receiver parses $i = (i_0, i_{1:})$ into its most significant bit i_0 and the rest $i_{1:}$, runs $\Pi.OT_1(i_0) \rightarrow (\mathsf{msg}_1, \pi)$, runs $\Pi_n.OT_1(i_{1:}) \rightarrow (\mathsf{msg}'_1, \pi')$, sends $(\mathsf{msg}_1, \mathsf{msg}'_1)$ to the sender.
- Let $m_0, \ldots, m_{2^{n+1}-1}$ denote the sender's list of inputs. The sender runs

$$\Pi_{n}.\mathsf{OT}_{2}(\mathsf{msg}_{1}',(m_{0},\ldots,m_{2^{n}-1})) \to \mathsf{msg}_{2,0}$$
$$\Pi_{n}.\mathsf{OT}_{2}(\mathsf{msg}_{1}',(m_{2^{n}},\ldots,m_{2^{n+1}-1})) \to \mathsf{msg}_{2,1}$$
$$\Pi.\mathsf{OT}_{2}(\mathsf{msg}_{1},(\mathsf{msg}_{2,0},\mathsf{msg}_{2,1})) \to \mathsf{msg}_{2}$$

sends msg_2 to the receiver.

• Upon receiving msg_2 , the receiver computes

$$\Pi.\mathsf{OT}_{2}(\pi,\mathsf{msg}_{2})\to\mathsf{msg}_{2,i_{0}}$$
$$\Pi_{n}.\mathsf{OT}_{2}(\pi',\mathsf{msg}_{2,i_{0}})\to m_{i}$$

For the communication complexity. Note that the second message of Π must be at least ℓ bit, thus the first message of Π is at most $poly(\lambda)$ bit.

communication complexity of Π_n when inputs are ℓ -bit long

 $\leq \operatorname{poly}(\lambda) + \operatorname{communication} \operatorname{complexity} \operatorname{of} \Pi_{n-1}$ when inputs are $(\ell + \operatorname{poly}(\lambda))$ -bit long $\leq n \operatorname{poly}(\lambda) + \ell$

Problem 8 Set n = 5, so 2 parties' views will be opened to the verifier. We requires that the MPC protocol is (perfectly) correct, and has semi-honest static security against $\lfloor \frac{n-1}{2} \rfloor$ corruptions. For example, BGW satisfies all the requirements, and does not rely on any assumption.

Completeness Obvious.

Soundness. Since the protocol Π is (perfectly) correct, the prover cannot fool the verifier if V_1, \ldots, V_5 are the views in an honest execution.

To fool the verifier, the views V_1, \ldots, V_5 must not be consistent: (a) either *i*-th party is not following the protocol in the view V_i , for some *i*; (b) or V_i, V_j do not agree with each other, for some *i*, *j*. In either case, the verifier will catch the prover with probability at least $1/\binom{5}{2}$. (Soundness error $1 - 1/\binom{5}{2}$.)

- **Zero-knowledge.** The verifier opens the views of $\lfloor \frac{n-1}{2} \rfloor$ parties, and tries to learn information about the witness. This is essentially the same as $\lfloor \frac{n-1}{2} \rfloor$ semi-honest static corruptions. If Π is perfectly/statistically/computationally secure against $\lfloor \frac{n-1}{2} \rfloor$ semi-honest static corruptions, then the open views can be perfectly/statistically/computationally simulated without knowing the witness, then the ZKP protocol is perfectly/statistically/computationally zero-knowledge.
- **Proof of knowledge.** In the OT hybrid model, the extractor gets V_1, \ldots, V_5 . If the views are consistent, then $w = w_1 + \cdots + w_5$ is a witness.