
Peking University Fundamentals of Cryptography, 2024 Autumn

Lecture #8
Public-key Encryption

2024-11-13

1 Public-Key Encryption

Private key encryption needs an identical pair of keys to be secure. Thus we need a secure method
to generate this pair of keys. A direct attempt is to generate it in one side and try to send it in the
presence of an eavesdropper, which is called key-exchange.

Consider the following scheme Π = (Gen,Enc,Dec)

• Gen(1λ)→ (pk, sk)

• Enc(pk,m)→ c

• Dec(sk, c)→ m

that is correct (i.e. Dec(sk,Enc(pk,m)) = m). If this scheme satisfies that, for any p.p.t. adversary
A, the following game satisfies Pr[PubKeav

A,Π → 1] ≤ 1
2 + negl(λ) then we say Π is secure, or has

indistinguishable encryptions:

1. The challenger samples (sk, pk)← Gen(1λ) and send pk to A

2. A send a pair of message (m0,m1) with same length to the challenger

3. The challenger samples b← {0, 1} and send Enc(pk,mb) to A

4. A guess b′ and win if b′ = b

As the encryption key pk is made public, any secure public-key encryption is automatically CPA-
secure.

Additionally, we define the CCA-security on Π by allowing A to have oracle access of Dec(sk, ·) on
any ciphertext except the challenging one given to A.

2 Key Encapsulation

With a secure key-exchange scheme Π, we can combine Π with a secure private-key encryption scheme
to encrypt arbitrary length messages, as known as the “encapsulation” trick.

2.1 Encapsulation Trick

Consider the following scheme Π = (Gen,Encap,Decap)

1

Peking University Fundamentals of Cryptography, 2024 Autumn

• Gen(1λ)→ (pk, sk)

• Encap(pk)→ {k, cap(k)}

• Decap(sk, cap(k))→ k

that is correct (i.e. Decap(sk, cap(k)) = k for any k, cap(k) generated by Encap). If this scheme
satisfies that, for any p.p.t. adversary A, the following game satisfies Pr[PubKencap

A,Π → 1] ≤ 1
2+negl(λ)

then we say Π is secure:

1. The challenger sample (sk, pk)← Gen(1λ) and send pk to A

2. The challenger generate (k, cap(k))← Encap(pk) and send cap(k) to A

3. The challenger sample a random bit b ← {0, 1}, and send k to A if b = 0, or a random value r

otherwise

4. A guess b′ and win if b′ = b

Also, we define the CCA-security by giving oracle access of Decap(sk, ·) to the adversary A on any
input except the cap(k) given.

2.2 Construct Key Encapsulation Using Trapdoor Permutation

A trapdoor permutation is a pair of (f, t) generated by some efficient algorithm Gen(1λ) such that

• f : D → D where D is similar to {0, 1}λ

• There exists an efficient algorithm invert based on Gen that invert(t, f(x))→ x

• For any p.p.t. adversary A, Pr[A(f, f(x))→ x] ≤ negl(λ)

With a trapdoor permutation, we can build a key encapsulation protocol

• Gen(1λ)→ (f, t)

• Encap(f)→ (h(k), c = f(k)) where k is uniformly sampled from D

• Decap(t, c)→ h(invert(t, c))

with some hardcore function h whose candidate may be

• a hardcore bit of f

• a hardcore function of f

• a random oracle

while in the first two cases the Encap and Decap process may need to run multiple times to carry long
enough keys, and they’re not CCA-secure.

2

Peking University Fundamentals of Cryptography, 2024 Autumn

2.3 Key Encapsulation to Public-Key Encryption

With a CPA-secure key encapsulation and a CPA-secure private-key encryption, we can construct
a CPA-secure public-key encryption by attaching the value Enc(k,m) after the result of Encap(pk),
where k is the encapsulated key.

Consider the real world W and the hybrid world W ′ in which Alice and Bob has a pair of pre-generated
keys r and use r to encrypt their data. In W ′ the adversary has negl(λ) advantage (as this is a CPA-
secure private-key encryption), and by the security of key encapsulation, Pr[W ′ → 1] and Pr[W → 1]

should also differ within negl(λ).

Similar argument can be used to prove CCA-security of this hybrid.

3 Discrete Log and Diffie-Hellman

In real world secure encryption schemes, we must make some relatively reasonable assumptions on the
computational difficulty of some specific problems. One among these is discrete log, which introduces
Diffie-Hellman and its variants.

3.1 Discrete Log and Diffie-Hellman Assumptions

Dlog Assumption: (Finding discrete log is hard.) Given a group G with a generator g sampled by
some algorithm Gen and an element gt ∈ G, finding t is difficult, i.e. for any p.p.t. adversary A

Pr
(G,g)←Gen(1λ),t←{1,2,...,|G|}

[A(G, g, gt)→ t] ≤ negl(λ)

Based on Dlog assumption, we have two variants of Diffie-Hellman assumption.

Computational Diffie-Hellman Assumption: For any p.p.t. adversary A, Pr[A(g, gx, gy) → gxy] ≤
negl(λ).

Decisional Diffie-Hellman Assumption: (G, g, gx, gy, gxy) ≈c (G, g, gx, gy, gr). i.e. any p.p.t. distin-
guisher D can’t distinguish them with noticeable advantage.

3.2 Break Discrete Log with Specific Primes

If all the factors of p − 1 are small, then the discrete log on Z∗p can be calculated efficiently using
Chinese Remainder Theorem.

For example, let p = 2 × 3 × 5 × 7 + 1 = 211, which is a prime. The group Z∗p is isomorphic with
Z2 × Z3 × Z5 × Z7, which means both g30 and g30t are 0 on the first 3 dimensions, and x = t mod 7

is the only solution in Z7 that g30x = g30t on the last dimension. Thus we can guess t mod 7 in 7

guesses. The same trick can then be applied to guess t mod 2, 3, 5 and use CRT to recover t.

3

Peking University Fundamentals of Cryptography, 2024 Autumn

Table 3-1: A visualized chart of the argument above

projection Z2 Z3 Z5 Z7

g g2 g3 g5 g7

gt tg2 tg3 tg5 tg7

g30 0 0 0 30g7

g30t 0 0 0 30tg7

3.3 Diffie-Hellman Based Encryption

Based on Diffie-Hellman assumption, we can construct a encapsulation scheme

• Gen(1λ)→ (pk = (G, g, gx), sk = x) where x is uniformly sampled from Z∗|G|

• Encap(pk)→ (h(gxy), c = gy) where y is uniformly sampled from Z∗|G|

• Decap(sk, c)→ h(cx = gxy) recovers the encapsulated key

in which we need a random oracle h to achieve CCA-security.

And we can construct a similar encryption scheme

• Gen(1λ)→ (pk = (G, g, gx), sk = x) where x is uniformly sampled from Z∗|G|

• Enc(pk,m)→ (gy, h(gxy) ·m) where y is uniformly sampled from Z∗|G|

• Dec(sk, (ck, cm))→ (h(cxk))
−1 · cm

that is CCA-secure with random oracle h under the DDH assumption.

4 RSA-based Encryption

RSA was invented based on the difficulty of factorization.

4.1 Intuition

Factorization problem: Given N = pq where p, q are primes, find p, q.

Assumption: (Factorization is hard.) For any p.p.t. adversary A

Pr
p,q←primes(λ)

[A(pq)→ (p, q)] ≤ negl(λ)

Consider the group Z∗N . The size of this group is φ(N) = (p− 1)(q − 1).

Conditioning on N = pq, calculating φ(N) is as hard as factorizing N , as p+ q = N − φ(N) + 1 and
we can solve (p, q) using a quadratic equation.

4

Peking University Fundamentals of Cryptography, 2024 Autumn

4.2 Plain RSA

RSA Assumption: Given (N, e,me), then m is hard to find, i.e. For any p.p.t. adversary A

Pr
p,q←prime(λ),N=pq

[A(N, e,me)→ m] ≤ negl(λ)

Strong RSA Assumption: Given (N, y), then non-trivial pair (m, e) such that me = y is hard to find,
i.e. For any p.p.t. adversary A

Pr
p,q←prime(λ),N=pq

[A(N, y)→ (m, e) ∧ e ̸= 1 ∧me = y] ≤ negl(λ)

Both two assumptions above can derive a weaker variant by replacing prime with safe-prime.

The intuition of introducing strong RSA assumption is to remove the randomness requirement on e.

Consider the following protocol Π = (Gen,Enc,Dec) where

• Gen(1λ)→ (pk = (N = pq, e), sk = d = e−1 mod φ(N))

• Enc(pk,m)→ me mod N

• Dec(sk, c)→ cd mod N

which is a plain RSA scheme. It’s insecure as Enc is deterministic.

4.3 Encapsulation RSA

The following protocol Π = (Gen,Enc,Dec) where

• Gen(1λ)→ (pk = (N = pq, e), sk = d = e−1 mod φ(N))

• Enc(pk,m)→ (re mod N,h(r)⊕m) where r is uniformly sampled from Z∗N

• Dec(sk, (ck, cm))→ h(cdk mod N)⊕ cm

(with a random oracle h) is an encapsulation RSA scheme.

In real life, we can’t directly use random oracles; instead we can let h be a hardcore bit such as
h(r) := lsb(r), where lsb denotes least significant bit (i.e. the value of r mod 2).

However, a problem is that this scheme is only capable of encrypting 1 bit of message. The following
argument gives a solution to this problem.

5

Peking University Fundamentals of Cryptography, 2024 Autumn

Suppose that lsb is a hardcore bit of f(r) = re. Consider the following process

r → cd
λ → b0 = lsb(cdλ)

re → cd
λ−1 → b1 = lsb(cdλ−1

)

re
2 → cd

λ−2 → b2 = lsb(cdλ−2
)

...
...

...
re

λ−1 → cd → bλ−1 = lsb(cd)
re

λ → c

By hybrid argument (replacing b0, b1, b2, . . . , bi−1 with real random in the i-th hybrid), {bi} is close to
uniform when c is known. i.e. lsb(r) is a hardcore bit of f(r) = re implies h′(r) := {b0, b1, . . . , bλ−1}
is a hardcore function of f ′(r) = re

λ .

5 Rabin Encryption

Many other encryption schemes used are also based on the difficulty of factorization.

5.1 Intuition

Consider the quadratic residue group QRp = {a2|a ∈ Z∗p} ∼= Zp′ for safe prime p = 2p′ + 1.

For N = pq, where p = 2p′ + 1 and q = 2q′ + 1, define the Jacobi Symbol of a ∈ Z∗N as(a

N

)
=

(
a

p

)(
a

q

)
and the Jacobi Symbol of a ∈ Zp is

(
a

p

)
=

0 a = 0

1 ∃x ∈ Z∗p, a = x2

−1 otherwise

Jacobi Symbol can be efficiently calculated.

Define QRN := {a ∈ QRp ∧ a ∈ QRq|a ∈ Z∗N}, and pseudo-QRN := {a /∈ QRp ∧ a /∈ QRq|a ∈ Z∗N}

The Jacobi Symbol of a ∈ Z∗N is 1 if and only if a is in QRN or pseudo-QRN .

Assumption: QRN and pseudo-QRN are indistinguishable.

5.2 Rabin Encryption

Based on the assumptions above, we have the Rabin Encryption described as Π = (Gen,Enc,Dec)
below:

• Gen(1λ)→ (pk = (N = pq, g ∈ pseudo-QRN), sk = (p, q))

6

Peking University Fundamentals of Cryptography, 2024 Autumn

• Enc(pk,m)→ r2 · gm where r is uniformly sampled from Z∗N

• Dec(sk, c) checks if c is in QRN , which indicates m = 0 and otherwise m = 1.

Sadly, this scheme is also only capable of encrypting 1 bit of message.

7

	Public-Key Encryption
	Key Encapsulation
	Encapsulation Trick
	Construct Key Encapsulation Using Trapdoor Permutation
	Key Encapsulation to Public-Key Encryption

	Discrete Log and Diffie-Hellman
	Discrete Log and Diffie-Hellman Assumptions
	Break Discrete Log with Specific Primes
	Diffie-Hellman Based Encryption

	RSA-based Encryption
	Intuition
	Plain RSA
	Encapsulation RSA

	Rabin Encryption
	Intuition
	Rabin Encryption

