Fundamentals of Cryptography: Midterm

Wednesday Nov 8, 3-6PM

Problem 1 (1pt) Complete the definition of polynomial growth. For a functions $f : \mathbb{N} \to \mathbb{R}^+$. We say f(n) = poly(n) if ______fill the blank____.

Problem 2 (1pt) Complete the definition of negligible functions. A function $f : \mathbb{N} \to \mathbb{R}^+$ is *negligible*, if _______.

Problem 3 (1pt) Complete the definition of strong unforgeability of MAC schemes. A MAC scheme (Gen, MAC, Verify) is strongly secure if for any p.p.t. adversary \mathcal{A} , the adversary wins the following game with at most negligible probability:

- The challenger samples key $k \leftarrow \text{Gen}(1^{\lambda})$.
- \mathcal{A} repeatedly queries the challenger. For i = 1, 2 upto $poly(\lambda)$, the adversary chooses a message m_i , and the challenger answers $t_i \leftarrow MAC(k, m_i)$.
- fill the blank (How does the game finish? When will the adversary win?)

Problem 4 (2pt) The assumption that PRGs exist is known to be equivalent to the assumption that <u>choose all correct answers</u>

(a) OWFs exist; (b) CRHFs exist; (c) PRFs and PRPs exist; (d) $P \neq NP$.

Problem 5 (2pt) <u>choose all correct answers</u>

(a) if $f: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda}$ is a OWF, then f'(x) = f(f(x)) is also a OWF; (b) if $h: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda-1}$ is a CRHF, then h'(x) = h(h(x)) is also a CRHF; (c) if $F: \{0,1\}^{\lambda} \times \{0,1\}^{\lambda} \to \{0,1\}^{\lambda}$ is a PRF, then F'(k,x) = F(k,F(k,x))is also a PRF; (d) if $F: \{0,1\}^{\lambda} \times \{0,1\}^{\lambda} \to \{0,1\}^{\lambda}$ is a PRP, then F'(k,x) = F(k,F(k,x))is also a PRP.

Problem 6 (2pt) Sort the following security definitions, from weakest to strongest.

(a) CPA-security; (b) CCA1-security; (c) CCA2-security;

(d) indistinguishable encryptions in the presence of an eavesdropper.

Problem 7 (3pt) Let $h : \{0,1\}^{2\lambda} \to \{0,1\}^{\lambda}$ be a hash function. If h is a CRHF, then h must be a OWF. The statement can be proved by reduction. Assume there is a p.p.t. adversary \mathcal{A} that inverts h with non-negligible probability, construct another p.p.t. adversary \mathcal{B} that finds collision of h with non-negligible probability. State how \mathcal{B} is constructed based on \mathcal{A} .

Problem 8 (3pt) Let $g : \{0,1\}^{\lambda} \to \{0,1\}^{\lambda+1}$ be a PRG. We can construct a lengthdoubling PRG $g' : \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda}$ as

 $g'(x^0)$ takes $x^0 \in \{0,1\}^{\lambda}$ as input; For $i = 1, \ldots, \lambda$, computes $y_i || x^i = g(x^{i-1})$, where $y_i \in \{0,1\}$ and $x^i \in \{0,1\}^{\lambda}$; Outputs $y_1 || y_2 || \ldots || y_{\lambda} || x^{\lambda}$.

No p.p.t. distinguisher can distinguish between g'(s) (when $s \leftarrow \{0, 1\}^{\lambda}$) and a random 2λ -bit string with non-negligible probability.

We prove g' is a PRG using hybrid argument. State the hybrid worlds or hybrid distributions that are used in the proof.

Problem 9 (5pt) In the class, we have considered the CPA security of a private-key encryption scheme (Gen, Enc, Dec). In this problem, we consider a generalized security definition.

For a given constant integer q, define q-challenge CPA attack. q-challenge CPA attack is a game defined between an adversary \mathcal{A} and a challenger.

q-challenge CPA game $\mathrm{Priv}\mathrm{K}^{q\text{-}\mathrm{CPA}}_{\Pi,\mathcal{A}}(1^{\lambda})$

- The challenger samples a key $k \leftarrow \text{Gen}(1^{\lambda})$. During the game, the adversary can always queries the encryption oracle using key k. That is, at any point during the game, the adversary can choose a message m and ask the challenger to return the encryption Enc(k, m).
- For i = 1, ..., q,

The adversary chooses a pair of messages $m_{i,0}, m_{i,1}$ such that $|m_{i,0}| = |m_{i,1}|$.

The challenger samples a random bit $b_i \leftarrow \{0, 1\}$, and returns the encryption $c_i \leftarrow \mathsf{Enc}(k, m_{i,b_i})$.

- The adversary outputs its guesses (b'_1, \ldots, b'_q) .
- The game outputs 1 if and only if $(b'_1, \ldots, b'_q) = (b_1, \ldots, b_q)$.

We say that an encryption scheme Π is q-challenge CPA-secure, if for any p.p.t. adversary \mathcal{A} , there exists a negligible function ε such that

$$\Pr[\operatorname{PrivK}_{\Pi,\mathcal{A}}^{q-\operatorname{CPA}}(1^{\lambda}) \to 1] \leq \frac{1}{2^{q}} + \varepsilon(\lambda).$$

Prove or disprove the following statement: for any constant q, any CPA-secure encryption scheme is also q-challenge CPA-secure.

Problem 10 (5pt) Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be a CPA-secure encryption scheme.

Part A Is $\text{Enc}_A(k,m) = \text{Enc}(k, \text{Enc}(k,m))$ the encryption function of a CPA-secure encryption scheme? Formally, $\text{Enc}_A(k,m)$ computes $c_1 \leftarrow \text{Enc}(k,m)$, $c_2 \leftarrow \text{Enc}(k,c_1)$ and outputs c_2 .

Part B Is $\operatorname{Enc}_B((k_1, k_2), m) = \operatorname{Enc}(k_1, \operatorname{Enc}(k_2, \operatorname{Enc}(k_1, m)))$ the encryption function of a CPA-secure encryption scheme? Formally, $\operatorname{Enc}_B((k_1, k_2), m)$ computes $c_1 \leftarrow \operatorname{Enc}(k_1, m), c_2 \leftarrow \operatorname{Enc}(k_2, c_1), c_3 \leftarrow \operatorname{Enc}(k_1, c_2)$ and outputs c_3 .

If the answer is negative, present a counter-example. If the answer is affirmative, state the reduction. In either case, you don't need to prove in detail why the counter-example or the reduction works.

Problem 11 (5pt) Let $F : \{0,1\}^{\lambda} \times \{0,1\}^{\lambda} \to \{0,1\}^{\lambda}$ be a secure PRF. Let F_{CBC} be the basic CBC-MAC (illustrated in Figure 1).

$$F_{\text{CBC}}(k, (m_1, m_2, \dots, m_{\ell})) := \begin{cases} F(k, m_{\ell} \oplus F_{\text{CBC}}(k, (m_1, m_2, \dots, m_{\ell-1}))), & \text{if } \ell > 1\\ F(k, m_1), & \text{if } \ell = 1 \end{cases}$$
$$= F(k, m_{\ell} \oplus F(k, m_{\ell-1} \oplus \dots F(k, m_2 \oplus F(k, m_1)) \dots)).$$

Is the following a strongly secure MAC scheme?

- Gen (1^{λ}) samples $k, k' \leftarrow \{0, 1\}^{\lambda}$, outputs key (k, k').
- $MAC((k, k'), m) = F_{CBC}(k, (k' || m || k'))$. (For simplicity, we ignoring the padding, and assume the message length is always a multiple of λ .)
- Verify is automatically defined since MAC is deterministic.

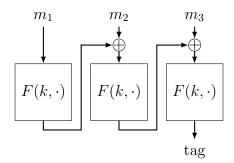


Figure 1: Basic CBC-MAC

Problem 12 (5pt) Given two hash functions $H_1, H_2 : \{0, 1\}^{\ell(\lambda)} \to \{0, 1\}^{\lambda}$ for fixed-length messages. Construct another hash function H for fixed-length messages based on H_1, H_2 , such that H is a CRHF when either H_1 or H_2 is a CRHF.

Recall the definition of CRHF. A hash function $H : \{0,1\}^{\ell(\lambda)} \to \{0,1\}^{\lambda}$ is a CRHF (for fixed-length messages) if

- *H* is shrinking. $\ell(\lambda) > \lambda$.
- *H* is polynomial-time computable and $\ell(\lambda) = \text{poly}(\lambda)$.
- *H* resists collision attack. For any p.p.t. adversary \mathcal{A} , the probability that $\mathcal{A}(1^{\lambda})$ outputs two distinct messages $m_0, m_1 \in \{0, 1\}^{\ell(\lambda)}$ such that $H(m_0) = H(m_1)$ is negligible.