
Fundamentals of Cryptography: Final

Wednesday Jan 10, 2-4PM

Problem 1 (1pt) p is a safe prime if fill the blank .

Problem 2 (4pt) State, to the best of your knowledge, the relations between the
following cryptographic assumptions. Draw an arrow from assumption A to assumption
B if assumption A implies assumption B. Note that the relation is transitive, so if you
draw an arrow from A to B and an arrow from B to C, there is no need to draw a third
arrow from A to C.

• The existence of OWFs. • The existence of OWPs.

• The existence of constant-round key exchange protocols.

• The existence of (CPA-secure) public-key encryption schemes.

• The existence of digital signature schemes.

Problem 3 (2pt) State the difference between zero-knowledge proof (ZKP) and zero-
knowledge proof of knowledge (ZKPoK). In either proof system, we assume both the
prover and the verifier are efficient, the honest prover is given the instance and a witness.
Compared with ZKP, ZKPoK satisfies an additional property: fill the blank .

Problem 4 (3pt) Garbled Circuits You should state how to garble a boolean circuit.
The solution is not unique.

Given the circuit C, for each wire i ∈ [n], the garbling algorithm generates two
random Li,0, Li,1 as follows: fill the blank . Output L1,0, L1,1, . . . , Lnin,0, Lnin,1

as the input labels. And output the garbled circuit C̃ as follows

• For each i ∈ {nin+1, . . . , n}, generate and output a table as follows: fill the blank .
Say the gate function is g : {0, 1} × {0, 1} → {0, 1}, and the gate takes wires j1, j2
as inputs.

• For each output wire i ∈ {n− nout + 1, . . . , n}, output fill the blank .

Formalization of a circuit (for problem 4). A circuit has n wires, including nin

input wires, nout output wires and n− nin − nout intermediate wires. W.l.o.g., the wires
are indexed by 1, . . . , n. Given the input x, the value of the i-th wire, denoted by vi, and
the output of the circuit are determined as follows. For a boolean circuit, the input is in
{0, 1}nin . For an arithmetic circuit over R, the input is in R ∈ {0, 1}nin .

• For each i ≤ nin, the i-th wire is the i-th input wire, so vi = xi.

• For each i > nin, the i-th wire is the output of a gate. Say the gate function is g, and
the gate takes wires j1, . . . , jt as inputs (j1 ≤ · · · ≤ jt < i). Then vi = g(vj1 , . . . , vjt).

• The output of the circuit is (vn−nout+1, . . . , vn).
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Problem 5 (5pt + bonus) Paillier Encryption Revisit In Pset 9, we analyze
the Paillier encryption scheme. The public key is N = pq, where p, q are two random
distinct λ-bit safe primes. Given the public key, the message space is ZN . The encryption
algorithm is Enc(pk = N,m ∈ ZN)→ h · (1+N)m, where h is a random “hard subgroup”
element.

The security of Paillier encryption is based on the decisional composite residuosity
(DCR) assumption, which says a random element in the “hard subgroup” is indistin-
guishable from a random element in QRN2 (or ZN2 , depending on how the hard subgroup
is defined).

In this problem, we consider a generalization of Paillier encryption. The message
space is ZNd , where d is a given constant.

Part A. State the generalized Paillier encryption scheme. How to encrypt and decrypt?

Gen(1λ) samples safe primes p = 2p′+1, q = 2q′+1, lets N = pq.
Output pk = N , sk = p′q′.

Enc(pk ,m), for m ∈ ZNd , fill the blank

Dec(sk , c), for c ∈ ZNd+1 , fill the blank

Part B. Prove the new public-key encryption scheme is CPA-secure. State the necessary
assumption.

Part C (bonus). Let d = 2. Is the new assumption stronger or weaker or equivalent to
the DCR assumption used by standard Paillier? Prove your statement.

Problem 6 (5pt) Construct an “identity-based signature” scheme (Gen,Ext, Sign,Verify).
The syntax is

• The key generation algorithm Gen(1λ) samples a public key pk and a master secret
key msk .

• Given the master key and an ID, the key extraction algorithm Ext(msk , ID) returns
an ID-associated key sk ID.

• Given an ID, an associated key, and a message, the signing algorithm Sign(ID, sk ID,m)
outputs a signature σ.

• Given the public key, an ID, a message, and a signature, the verification algorithm
Verify(pk , ID,m, σ) accepts or rejects.

The scheme is secure, if no p.p.t. adversary can win the following unforgeability game
with non-negligible probability.

• The challenger samples (pk ,msk)← Gen(1λ), and sends pk to the adversary.

• The adversary are allowed to make the following two types of queries

– The adversary chooses an ID, and receives the associated key sk ID.

– The adversary chooses an ID and a message, and receives the corresponding
signature.
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• After polynomially many queries, the adversary outputs (ÎD, m̂, σ̂).

• The adversary wins if 1) the adversary never queried the key associated with
ÎD, 2) the adversary never queried the signature of message m̂ under ÎD, and
3) Verify(pk , ÎD, m̂, σ̂) accepts.

State your construction, and prove its security. The construction can be based on any
cryptographic assumption mentioned in class.

Problem 7 (5pt) Consider the following commitment scheme that commits one-bit
messages. The scheme is defined in the CRS model. The common reference string is a
random λ-bit safe prime p and a generator g ∈ Z∗

p. ((p, g) can also be determined by a
common random string.)

• To commit a bit m ∈ {0, 1}, sample random integers x, y from a sufficiently large
domain such that gx ̸= g±1 and gy ̸= 1, send (gx, gy, gxy) as the commitment if
m = 0, send (gx, gxy, gy) as the commitment if m = 1.

• Open the commitment by sending (m,x, y).

Part A. Is the commitment scheme (computationally) hiding under proper computa-
tional assumption? Explain your answer.

Part B. Is the commitment scheme (statistically) binding? Explain your answer.

Part C. How to fix the problems in part A and/or part B so that the scheme becomes
(computationally) hiding and (statistically) binding?

Problem 8 (5pt) In this problem, F denotes a finite field that may depend on the
security parameter.

Oblivious linear function evaluation (OLE) is a special case of 2-party computation.
The receiver’s input is a value x ∈ F, the sender’s input is (a, b) ∈ F2, the receiver’s
output is ax+ b. The sender’s input can be viewed as a linear function z 7→ az + b, and
the receiver’s output is the evaluation of the linear function on receiver’s input.

OLE can be generalized to “oblivious polynomial evaluation (OPE)”. The receiver’s
input is a value x ∈ F, the sender’s input is (a0, a1, . . . , ad) ∈ Fd+1 where d is a public
constant, the receiver’s output is

∑d
i=0 aix

i.

Part A. Show that OLE implies OPE in the semi-honest setting. That is, given a
semi-honest OLE protocol, construct a semi-honest OPE protocol. Also prove the
security of your protocol.

Part B. Show that OLE implies OPE in the malicious setting. For simplicity, we con-
sider full security (the statement holds under other malicious security notation as
well). That is, given a (computationally) fully secure OLE protocol, construct a
(computationally) fully secure OPE protocol. Explain in high level why your pro-
tocol is secure.

You can rely on the fact that fully secure OLE protocol implies fully secure VOLE
protocol. VOLE is short for vector OLE, the receiver’s input is x ∈ F, the sender’s
input consists of two vectors a,b, the receiver’s output is ax+ b.

The construction should be black-box. For example, it should not relied on generic
zero-knowledge proof.
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2PC security definition (for problem 8). Consider a 2PC problem, two parties are
Alice and Bob, their inputs are x and y, their outputs are fA(x, y) and fB(x, y).

A 2-party computation protocol is semi-honest secure, if there are p.p.t. simula-
tors SA,SB, such that for any x, y, Alice’s view in ⟨A(x),B(y)⟩ can be simulated by
SA(x, fA(x, y)), Bob’s view can be simulated by SB(y, fB(x, y)).

A 2-party computation protocol is fully secure, if it is fully secure when Alice or Bob
is maliciously corrupted. We focus on the case if Alice is corrupted, the case of corrupted
Bob is symmetric. The protocol is fully secure against maliciously corrupted Alice, if for
any p.p.t. environment E , for any p.p.t. adversary A, there is a p.p.t. simulator S, such
that the following two distributions are indistinguishable:

(E ’s view, A’s view, Bob’s output)
in the real world

• E sends input y to Bob.

• E ,A interact during the protocol.

• A and Bob run the protocol, during
which A may arbitrarily deviate from
the protocol.

(E ’s view, S’s output, Bob’s output)
in the ideal world

• E sends input y to Bob.

• E ,A interact during the protocol.

• A chooses an input x. A and Bob send
x, y respectively to a trusted party. The
trusted party sends fA(x, y), fB(x, y) to
A, Bob respectively.
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